

Third Edition

Charles H. Roth, Jr.
The University of Texas
at Austin

Lizy Kurian John
The University of Texas
at Austin

DIGITAL SYSTEMS DESIGN
USING VHDL®

Australia • Brazil • Mexico • Singapore • United Kingdom • United States

Digital Systems Design Using VHDL®,
Third Edition
Charles H. Roth, Jr. and Lizy Kurian John

Product Director, Global Engineering:
Timothy L. Anderson

Associate Media Content Developer:
Ashley Kaupert

Product Assistant: Alexander Sham

Marketing Manager: Kristin Stine

Director, Higher Education Production:
Sharon L. Smith

Content Project Manager: Jana Lewis

Production Service: RPK Editorial
Services, Inc.

Copyeditor: Harlan James

Proofreader: Lori Martinsek

Indexer: Shelly Gerger-Knechtl

Compositor: SPi Global

Senior Art Director: Michelle Kunkler

Internal Designer: Stratton Design

Cover Designer: Tin Box Studio

Cover Images: (upper image)
 stockchairatgfx/Shutterstock.com, (lower
image) Raimundas/Shutterstock.com

Intellectual Property
Analyst: Christine Myaskovsky
Project Manager: Sarah Shainwald

Text and Image Permissions Researcher:
Kristiina Paul

Manufacturing Planner: Doug Wilke

© 2018, 2008 Cengage Learning®

ALL RIGHTS RESERVED. No part of this work covered by the copyright
herein may be reproduced or distributed in any form or by any means,
except as permitted by U.S. copyright law, without the prior written
permission of the copyright owner.

ARM® is a registered trademark of ARM Limited. “ARM” is used to
represent ARM Holding plc; its operating company ARM Limited; and
its regional subsidiaries. ARM, the ARM logo, and AMBA are registered
trademarks of ARM Limited. All rights reserved.

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706.

For permission to use material from this text or product,
submit all requests online at www.cengage.com/permissions.

Further permissions questions can be emailed to
permissionrequest@cengage.com.

Library of Congress Control Number: 2016952395

ISBN: 978-1-305-63514-2

Cengage Learning
20 Channel Center Street
Boston, MA 02210
USA

Cengage Learning is a leading provider of customized learning
solutions with employees residing in nearly 40 different countries
and sales in more than 125 countries around the world. Find your local
representative at www.cengage.com.

Cengage Learning products are represented in Canada by
Nelson Education Ltd.

To learn more about Cengage Learning Solutions, visit
www.cengage.com/engineering.

Purchase any of our products at your local college store or at our
preferred online store www.cengagebrain.com.

Unless otherwise noted, all items © Cengage Learning.

Printed in the United States of America
Print Number: 01 Print Year: 2016

iii

Preface vii
About the Authors xii

Chapter 1 Review of Logic Design Fundamentals 1
1.1 Combinational Logic 1
1.2 Boolean Algebra and Algebraic Simpli�cation 3
1.3 Karnaugh Maps 7
1.4 Designing With NAND and NOR Gates 10
1.5 Hazards in Combinational Circuits 12
1.6 Flip-Flops and Latches 16
1.7 Mealy Sequential Circuit Design 18
1.8 Moore Sequential Circuit Design 25
1.9 Equivalent States and Reduction of State Tables 28
1.10 Sequential Circuit Timing 30
1.11 Tristate Logic and Busses 31
 Problems 34

Chapter 2 Introduction to VHDL 39
2.1 Computer-Aided Design 39
2.2 Hardware Description Languages 42
2.3 VHDL Description of Combinational Circuits 44
2.4 VHDL Modules 47
2.5 Sequential Statements and VHDL Processes 54
2.6 Modeling Flip-Flops Using VHDL Processes 55
2.7 Processes Using Wait Statements 59
2.8 Two Types of VHDL Delays: Transport and Inertial Delays 62
2.9 Compilation, Simulation, and Synthesis of VHDL Code 63
2.10 VHDL Data Types and Operators 67
2.11 Simple Synthesis Examples 69
2.12 VHDL Models for Multiplexers 72
2.13 VHDL Libraries 75
2.14 Modeling Registers and Counters Using VHDL Processes 79
2.15 Behavioral and Structural VHDL 85
2.16 Variables, Signals, and Constants 94

CONTENTS

iv Contents

2.17 Arrays 97
2.18 Loops in VHDL 101
2.19 Assert and Report Statements 102
2.20 Tips for Debugging VHDL Code 106
 Problems 114

Chapter 3 Introduction to Programmable Logic Devices 128
3.1 Brief Overview of Programmable Logic Devices 128
3.2 Simple Programmable Logic Devices 131
3.3 Complex Programmable Logic Devices 146
3.4 Field Programmable Gate Arrays 150
3.5 Programmable SoCs (PSOC) 174
 Problems 176

Chapter 4 Design Examples 184
4.1 BCD to Seven-Segment Display Decoder 185
4.2 A BCD Adder 186
4.3 32-Bit Adders 188
4.4 Traf�c Light Controller 198
4.5 State Graphs for Control Circuits 201
4.6 Scoreboard and Controller 203
4.7 Synchronization and Debouncing 206
4.8 Add-and-Shift Multiplier 208
4.9 Array Multiplier 213
4.10 A Signed Integer/Fraction Multiplier 216
4.11 Keypad Scanner 228
4.12 Binary Dividers 235
 Problems 244

Chapter 5 SM Charts and Microprogramming 256
5.1 State Machine Charts 256
5.2 Derivation of SM Charts 261
5.3 Realization of SM Charts 271
5.4 Implementation of the Dice Game 274
5.5 Microprogramming 278
5.6 Linked State Machines 295
 Problems 297

Chapter 6 Designing with Field Programmable Gate
Arrays 308

6.1 Implementing Functions in FPGAs 308
6.2 Implementing Functions Using Shannon’s Decomposition 314

Contents v

6.3 Carry Chains in FPGAs 319
6.4 Cascade Chains in FPGAs 320
6.5 Examples of Logic Blocks in Commercial FPGAs 322
6.6 Dedicated Memory in FPGAs 324
6.7 Dedicated Multipliers in FPGAs 330
6.8 Cost of Programmability 331
6.9 FPGAs and One-Hot State Assignment 333
6.10 FPGA Capacity: Maximum Gates versus Usable Gates 335
6.11 Design Translation (Synthesis) 336
6.12 Mapping, Placement, and Routing 346
 Problems 351

Chapter 7 Floating-Point Arithmetic 361
7.1 Representation of Floating-Point Numbers 361
7.2 Floating-Point Multiplication 370
7.3 Floating-Point Addition 378
7.4 Other Floating-Point Operations 385
 Problems 386

Chapter 8 Additional Topics in VHDL 391
8.1 VHDL Functions 391
8.2 VHDL Procedures 394
8.3 VHDL Prede�ned Function Called NOW 397
8.4 Attributes 398
8.5 Creating Overloaded Operators 402
8.6 Multivalued Logic and Signal Resolution 403
8.7 The IEEE 9-Valued Logic System 408
8.8 SRAM Model Using IEEE 1164 412
8.9 Model for SRAM Read/Write System 414
8.10 Generics 417
8.11 Named Association 418
8.12 Generate Statements 419
8.13 Files and TEXTIO 421
 Problems 425

Chapter 9 Design of RISC Microprocessors 433
9.1 The RISC Philosophy 433
9.2 The MIPS ISA 436
9.3 MIPS Instruction Encoding 441
9.4 Implementation of a MIPS Subset 445
9.5 VHDL Model of the MIPS Subset 451
9.6 Design of an ARM Processor 465
9.7 ARM Instruction Encoding 475

vi Contents

9.8 Implementation of a Subset of ARM Instructions 483
9.9 VHDL Model of the ARM Subset 491
 Problems 509

Chapter 10 Verification of Digital Systems 515
10.1 Importance of Veri�cation 515
10.2 Veri�cation Terminology 519
10.3 Functional Veri�cation 521
10.4 Timing Veri�cation 526
10.5 Static Timing Analysis for Circuits with No Skew 528
10.6 Static Timing Analysis for Circuits with Clock Skew 535
10.7 Glitches in Sequential Circuits 539
10.8 Clock Gating 540
10.9 Clock Distribution Circuitry 544
 Problems 546

Chapter 11 Hardware Testing and Design for
Testability 554

11.1 Faults and Fault Models 555
11.2 Testing Combinational Logic 556
11.3 Testing Sequential Logic 560
11.4 Scan Testing 564
11.5 Boundary Scan 566
11.6 Memory Testing 577
11.7 Built-In Self-Test 579
 Problems 589

Chapter 12 Additional Design Examples (Online)

Appendix A 596
 VHDL Language Summary

Appendix B 604
 IEEE Standard Libraries

Appendix C 606
 TEXTIO Package

Appendix D 608
 Projects

References 618
Index 622

vii

This textbook is intended for a senior-level course in digital systems design. The book covers
both basic principles of digital system design and the use of a hardware description language,
VHDL, in the design process. After basic principles have been covered, students are encour-
aged to practice design by going through the design process. For this reason, many digital
system design examples, ranging in complexity from a simple binary adder to a microproces-
sor, are included in the text.

Students using this textbook should have completed a course in the fundamentals of logic
design, including both combinational and sequential circuits. Although no previous knowl-
edge of VHDL is assumed, students should have programming experience using a modern
higher-level language such as C. A course in assembly language programming and basic
computer organization is also very helpful, especially for Chapter 9.

This book is the result of many years of teaching a senior course in digital systems design
at the University of Texas at Austin. Throughout the years, the technology for hardware
implementation of digital systems has kept changing, but many of the same design principles
are still applicable. In the early years of the course, we handwired modules consisting of
discrete transistors to implement our designs. Then integrated circuits were introduced,
and we were able to implement our designs using breadboards and TTL logic. Now we are
able to use FPGAs and CPLDs to realize very complex designs. We originally used our own
hardware description language together with a simulator running on a mainframe computer.
When VHDL was adopted as an IEEE standard and became widely used in industry, we
switched to VHDL. The widespread availability of high-quality commercial CAD tools now
enables us to synthesize complex designs directly from the VHDL code.

All of the VHDL code in this textbook has been tested using the Modelsim simula-
tor. The Modelsim software is available in a student edition, and we recommend its use in
conjunction with this text. The companion website that accompanies this text provides a
link for downloading the Modelsim student edition and an introductory tutorial to help
 students get started using the software. Students can access these materials by visiting
https://login.cengage.com.

Structure
Because students typically take their �rst course in logic design two years before this course,
most students need a review of the basics. For this reason, Chapter 1 includes a review of
logic design fundamentals. Most students can review this material on their own, so it is unnec-
essary to devote much lecture time to this chapter.

PREFACE

viii Preface

Chapter 2 starts with an overview of modern design �ow. It also summarizes various
technologies for implementation of digital designs. Then, it introduces the basics of VHDL,
and this hardware description language is used throughout the rest of the book. Additional
features of VHDL are introduced on an as-needed basis, and more advanced features are
covered in Chapter 8. From the start, we relate the constructs of VHDL to the corresponding
hardware. Some textbooks teach VHDL as a programming language and devote many pages
to teaching the language syntax. Instead, our emphasis is on how to use VHDL in the digital
design process. The language is very complex, so we do not attempt to cover all its features.
We emphasize the basic features that are necessary for digital design and omit some of the
less-used features. Use of standard IEEE VHDL libraries is introduced in this chapter and
only IEEE standard libraries are used throughout the test. Chapter 2 also provides coding tips
and strategies on how to write VHDL code that can lead to the intended hardware quickly.

VHDL is very useful in teaching top-down design. We can design a system at a high level
and express the algorithms in VHDL. We can then simulate and debug the designs at this
level before proceeding with the detailed logic design. However, no design is complete until
it has actually been implemented in hardware and the hardware has been tested. For this
reason, we recommend that the course include some lab exercises in which designs are imple-
mented in hardware. We introduce simple programmable logic devices (PLDs) in Chapter 3
so that real hardware can be used early in the course if desired. Chapter 3 starts with an
overview of programmable logic devices and presents simple programmable logic devices
�rst, followed by an introduction to complex programmable logic devices (CPLDs) and
Field Programmable Gate Arrays (FPGAs). There are many products in the market, and it
is useful for students to learn about commercial products. However, it is more important for
them to understand the basic principles in the construction of these programmable devices.
Hence we present the material in a generalized fashion, with references to speci�c products
as examples. The material in this chapter also serves as an introduction to the more detailed
treatment of FPGAs in Chapter 6.

Chapter 4 presents a variety of design examples, including both arithmetic and non-
arithmetic examples. Simple examples such as a BCD to 7-segment display decoder to more
complex examples such as game scoreboards, keypad scanners, and binary dividers are pre-
sented. The chapter presents common techniques used for computer arithmetic, including
carry look-ahead addition and binary multiplication and division. Use of a state machine for
sequencing the operations in a digital system is an important concept presented in this chap-
ter. Synthesizable VHDL code is presented for the various designs. A variety of examples are
presented so that instructors can select their favorite designs for teaching.

Use of sequential machine charts (SM charts) as an alternative to state graphs is covered
in Chapter 5. We show how to write VHDL code based on SM charts and how to realize hard-
ware to implement the SM charts. Then, the technique of microprogramming is presented.
Transformation of SM charts for different types of microprogramming is discussed. Then, we
show how the use of linked state machines facilitates the decomposition of complex systems
into simpler ones. The design of a dice-game simulator is used to illustrate these techniques.

Chapter 6 presents issues related to implementing digital systems in Field Programmable
Gate Arrays. A few simple designs are �rst hand-mapped into FPGA building blocks to illus-
trate the mapping process. Shannon’s expansion for decomposition of functions with several
variables into smaller functions is presented. Features of modern FPGAs like carry chains,
cascade chains, dedicated memory, dedicated multipliers, etc., are then presented. Instead
of describing all features in a selected commercial product, the features are described in a
general fashion. Once students understand the fundamental general principles, they will be
able to understand and use any commercial product they have to work with. This chapter
also introduces the processes and algorithms in the software design �ow. Synthesis, mapping,

Preface ix

placement, and routing processes are brie�y described. Optimizations during synthesis are
illustrated.

Basic techniques for �oating-point arithmetic are described in Chapter 7. We present a
simple �oating-point format with 2’s complement numbers and then the IEEE standard �oat-
ing-point formats. A �oating-point multiplier example is presented starting with development
of the basic algorithm, then simulating the system using VHDL, and �nally synthesizing and
implementing the system using an FPGA. Some instructors may prefer to cover Chapters 8
and 9 before teaching Chapter 7. Chapter 7 can be omitted without loss of any continuity.

By the time students reach Chapter 8, they should be thoroughly familiar with the basics
of VHDL. At this point we introduce some of the more advanced features of VHDL and
illustrate their use. The use of multi-valued logic, including the IEEE-1164 standard logic, is
one of the important topics covered. A memory model with tri-state output busses illustrates
the use of the multi-valued logic.

Chapter 9 presents the design of a microprocessor, starting from the description of the
instruction set architecture (ISA). The processor is an early RISC processor, the MIPS
R2000. The important instructions in the MIPS ISA are described and a subset is then imple-
mented. The design of the various components of the processor, such as the instruction mem-
ory module, data memory module, and register �le are illustrated module by module. These
components are then integrated together, and a complete processor design is presented.
The model can be tested with a test bench, or it can be synthesized and implemented on an
FPGA. In order to test the design on an FPGA, one will need to write input-output mod-
ules for the design. This example requires understanding of the basics of assembly language
programming and computer organization. After presenting the MIPS design, the chapter
progresses to a design with the ARM ISA. A simpli�ed introduction to the ARM ISA is �rst
presented, followed by an implementation of a subset of the ISA. This is a signi�cant addition
to the previous MIPS design. The coverage is augmented with relevant example questions,
solutions, and exercise problems on the ARM ISA.

Chapter 10 is a new chapter, presenting new material on veri�cation, a concept central to
the design of complex systems. A good understanding of timing in sequential circuits and the
principles of synchronous design is essential to the digital system design process. Functional
veri�cation is introduced, explaining jargon in veri�cation, validation, emulation, and distinc-
tion with testing. Self-testing test benches are explained. Concept of coverage is introduced.
Timing veri�cation is presented with static timing analysis of circuits. Clock skew, clock
 gating, power gating, and asynchronous design are introduced.

The important topics of hardware testing and design for testability are covered in
 Chapter 11. This chapter introduces the basic techniques for testing combinational and
sequential logic. Then scan design and boundary-scan techniques, which facilitate the testing
of digital systems, are described. The chapter concludes with a discussion of built-in self-test
(BIST). VHDL code for a boundary-scan example and for a BIST example is included. The
topics in this chapter play an important role in digital system design, and we recommend that
they be included in any course on this subject. Chapter 11 can be covered any time after the
completion of Chapter 8.

Chapter 12, available only online via https://login.cengage.com, presents three complete
design examples that illustrate the use of VHDL synthesis tools. First, a wristwatch design
shows the progress of a design from a textual description to a state diagram and then a
VHDL model. This example illustrates modular design. The test bench for the wristwatch
illustrates the use of multiple procedure calls to facilitate the testing. The second example
describes the use of VHDL to model RAM memories. The third example, a serial communi-
cations receiver-transmitter, should easily be understood by any student who has completed
the material through Chapter 8.

x Preface

New to the Third Edition
For instructors who used the second edition of this text, here is a mapping to help understand
the changes in the third edition. The IEEE numeric-bit library is used �rst until multi-valued
logic is introduced in Chapter 8. The multi-valued IEEE numeric-std library is used thereafter.
All code has been converted to use IEEE standard libraries instead of the BITLIB library.

Chapter 1 Logic hazard description is improved. More detailed examples on static haz-
ards are added. Students are introduced to memristors. The sequential circuit
timing section is kept to an introductory level because more elaborate static
timing analysis is presented in a new chapter on veri�cation, Chapter 10.

Chapter 2 Coding examples to improve test bench creation are introduced in Chapter 2.
Coding tips and strategies for synthesizable code are presented. Multiple
debugging examples are presented towards the end of the chapter.

Chapter 3 Information on commercial chips updated to re�ect state of the art. Added
introduction to programmable System on a Chip (SoC).

Chapter 4 General introduction to parallel pre�x adders with details of Kogge Stone
adder. New exercise problems including those on Kogge Stone and Brent-
Kung adders.

Chapter 5 Added historical perspective on microprogramming. New example problems
and new exercise problems.

Chapter 6 Information on commercial chips updated to re�ect state of the art. Xilinx
Kintex chips described. New problems added to make use of the new types
of FPGA architectures.

Chapter 7 Several new example problems on IEEE �oating point standards illustrated
in detail. Rounding modes in IEEE standard and Microsoft Excel illustrated
with examples. Several new exercise problems.

Chapter 8 Functions and procedures from the prior edition’s Chapter 2 moved to here.
Many sections from old Chapter 8 are still here. A memory model previously
in old Chapter 9 presented as example of multi-valued logic design in new
Chapter 8.

New examples on functions and procedures added. VHDL function NOW is
introduced. New exercise questions on Kogge-Stone and Brent-Kung adder
to utilize advanced VHDL features such as generate are added.

Chapter 9 This chapter covers ARM processor design. A simpli�ed introduction to the
ARM ISA is �rst presented followed by an implementation of a subset of
the ISA. This is a signi�cant addition to the MIPS design that was previously
presented. Several example questions and solutions on the ARM ISA are
presented. Several exercise problems are added.

Chapter 10 This is a new chapter on veri�cation. It covers functional veri�cation as
introduced, explaining terminology in veri�cation, validation, emulation,
and distinction with testing. Self-checking test benches are explained. Con-
cept of coverage is introduced. Timing veri�cation is presented with static
timing analysis of circuits. Clock skew, clock gating, power gating, and asyn-
chronous design are brie�y presented. Exercise problems cover functional
and timing veri�cation.

Preface xi

Chapter 11 The prior edition’s Chapter 10 on testing is modi�ed and retained as
 Chapter 11. Memory testing is introduced. Several new problems added.
Tests such as the popular March 14 tests are introduced in the chapter and
new exercise problems are included.

Chapter 12 This chapter will be available only electronically. The wristwatch design,
the memory timing models, and the UART design will be available to
 interested instructors and students. This chapter may be accessed at
https://login.cengage.com.

Instructor Resources
A detailed Instructor’s Solutions Manual containing solutions to all the exercises from the
text, VHDL code used in the book, and Lecture Note PowerPoint slides are available via a
secure, password-protected Instructor Resource Center at https://login.cengage.com.

Acknowledgments
We would like to thank the many individuals who have contributed their time and effort
to the development of this textbook. Over many years we have received valuable feedback
from the students in our digital systems design courses. We would especially like to thank
the faculty members who reviewed the previous edition and offered many suggestions for its
improvement. These faculty include:

Lee Belfore, Old Dominion University
Gang Feng, University of Wisconsin, Platteville
K. Gopalan, Purdue University, Calumet
Miriam Leeser, Northeastern University
Melissa C. Smith, Clemson University
Aaron Striegel, University of Notre Dame
Don Thomas, Carnegie Mellon University

We also wish to acknowledge Dr. Nur Touba’s comments on various parts of the book.
Dr. Earl Swartzlander provided comments on the parallel pre�x adder section.

We thank ARM Limited for providing the permission to include an example design
based on the ARM ISA in Chapter 9. Special thanks go to Ian Burgess at Mentor Graphics
for his work on the ModelSim code. We also take this opportunity to express our gratitude
to the student assistants who helped with the word processing, VHDL code testing, and
illustrations: Arif Mondal, Kevin Johns, Jae-Min Jo, Di Xie, Poulami Das, and Kangjoo Lee,
who helped on this version, and Roger Chen, William Earle, Manish Kapadia, Matt Morgan,
Elizabeth Norris, and Raman Suri, who helped on the previous edition.

We wish to acknowledge and thank our Global Engineering team at Cengage Learning for
their dedication to this new book: Timothy Anderson, Product Director; Ashley Kaupert, Asso-
ciate Media Content Developer; Jana Lewis, Content Project Manager; Kristin Stine, Market-
ing Manager; Elizabeth Brown and Brittany Burden, Learning Solutions Specialists; Alexander
Sham, Product Assistant; and Rose Kernan of RPK Editorial Services, Inc. They have skillfully
guided every aspect of this text’s development and production to successful completion.

Charles. H. Roth, Jr.
Lizy K. John

xii

ABOUT THE AUTHORS

Charles H. Roth, Jr. is Professor Emeritus of Electrical and Computer Engineering
at the University of Texas at Austin. He has been on the UT faculty since 1961.
He received his BSEE degree from the University of Minnesota, his MSEE and
EE degrees from the Massachusetts Institute of Technology, and his PhD degree
in EE from Stanford University. His teaching and research interests included
logic design, digital systems design, switching theory, microprocessor systems, and
 computer- aided design. He developed a self-paced course in logic design, which
formed the basis of his textbook, Fundamentals of Logic Design. He is also the
author of Digital Systems Design Using VHDL, two other textbooks, and several
software packages. He is the author or co-author of more than 50 technical papers
and reports. Six PhD students and 80 MS students have received their degrees
under his supervision. He received several teaching awards including the 1974 Gen-
eral Dynamics Award for Outstanding Engineering Teaching.

Lizy Kurian John is the B.N. Gafford Professor in the Electrical and Computer
Engineering at University of Texas at Austin. She received her PhD in Computer
Engineering from the Pennsylvania State University. Her research interests include
computer architecture, performance evaluation, workload characterization, digital
systems design, FPGAs, rapid prototyping, and recon�gurable architectures. She is
the recipient of many awards including the NSF CAREER award, UT Austin Engi-
neering Foundation Faculty Award, Halliburton, Brown, and Root Engineering
Foundation Young Faculty Award 2001, University of Texas Alumni Association
(Texas Exes) Teaching Award 2004, the Pennsylvania State University Outstand-
ing Engineering Alumnus 2011, etc. She has co-authored a book on Digital Systems
Design using VHDL (Cengage Publishers, 2007), a book on Digital Systems Design
using Verilog (Cengage Publishers, 2014) and has edited four books including a
book on Computer Performance Evaluation and Benchmarking. In the past, she has
served as Associate Editor of IEEE Transactions on Computers, IEEE Transac-
tions on VLSI and IEEE Micro. She holds 10 U.S. patents and is an IEEE Fellow
(Class of 2009).

1

REVIEW OF LOGIC DESIGN
FUNDAMENTALS

C H A P T E R

1

This chapter reviews many of the logic design topics normally taught in a �rst course in logic
design. First, combinational logic and then sequential logic are reviewed. Combinational
logic has no memory, so the present output depends only on the present input. Sequential
logic has memory, so the present output depends not only on the present input but also on
the past sequence of inputs. Various types of �ip-�ops and their state tables are presented.
Example designs for Mealy and Moore sequential circuits are illustrated, followed by tech-
niques to reduce the number of states in sequential designs. Circuit timing and synchronous
design are particularly important, since a good understanding of timing issues is essential to
the successful design of digital systems. A detailed treatment of sequential circuit timing is
presented in Chapter 10 in a section on timing veri�cation. For more details on any of the
topics discussed in this chapter, the reader should refer to a standard logic design textbook
such as Roth and Kinney, Fundamentals of Logic Design, 7th Edition (Cengage Learning,
2014). Some of the review examples that follow are referenced in later chapters of this text.

 1.1 Combinational Logic
Some of the basic gates used in logic circuits are shown in Figure 1-1. Unless otherwise speci-
�ed, all the variables used to represent logic signals are two-valued, and the two values are
designated 0 and 1. Normally positive logic is used, for which a low voltage corresponds to a
logic 0 and a high voltage corresponds to a logic 1. When negative logic is used, a low voltage
corresponds to a logic 1 and a high voltage corresponds to a logic 0.

For the AND gate of Figure 1-1, the output C 5 1 if and only if the input A 5 1 and
the input B 5 1. Use a raised dot or simply write the variables side by side to indicate the
AND operation; thus C 5 A AND B 5 A # B 5 AB. For the OR gate, the output C 5 1 if
and only if the input A 5 1 or the input B 5 1 (inclusive OR). Use 1 to indicate the OR
operation; thus C 5 A OR B 5 A 1 B. The NOT gate, or inverter, forms the complement
of the input; that is, if A 5 1, C 5 0, and if A 5 0, C 5 1. Use a prime 1 r 2 to indicate the

FIGURE 1-1: Basic Gates A
B

C A
B

C

A
B

CA C

AND: C = A B OR: C = A + B

NOT: C = A9 Exclusive OR: C = A % B

2 Chapter 1 Review of Logic Design Fundamentals

FIGURE 1-2: Full Adder

X

Y

Cin

Cout

Sum

(a) Full adder module (b) Truth table

Full
Adder

X Y Cin Cout Sum
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

complement (NOT) operation, so C 5 NOT A 5 A r. The exclusive-OR (XOR) gate has an
output C 5 1 if A 5 1 and B 5 0 or if A 5 0 and B 5 1. The symbol ! represents exclusive
OR, so write

 C 5 A XOR B 5 AB r 1 A rB 5 A ! B (1-1)

The behavior of a combinational logic circuit can be speci�ed by a truth table that gives the
circuit outputs for each combination of input values. As an example, consider the full adder of
Figure 1-2, which adds two binary digits (X and Y) and a carry 1Cin 2 to give a sum (Sum) and a
carry out 1Cout 2 . The truth table speci�es the adder outputs as a function of the adder inputs.
For example, when the inputs are X 5 0, Y 5 0, and Cin 5 1, adding the three inputs gives
0 1 0 1 1 5 01, so the sum is 1 and the carry out is 0. When the inputs are 011, 0 1 1 1 1 5 10,
so Sum 5 0 and Cout 5 1. When the inputs are X 5 Y 5 Cin 5 1, 1 1 1 1 1 5 11, so
Sum 5 1 and Cout 5 1.

Derive algebraic expressions for Sum and Cout from the truth table. From the table,
Sum 5 1 when X 5 0, Y 5 0, and Cin 5 1. The term X rY rCin equals 1 only for this com-
bination of inputs. The term X rYCinr 5 1 only when X 5 0, Y 5 1, and Cin 5 0. The term
XY rCinr is 1 only for the input combination X 5 1, Y 5 0, and Cin 5 0. The term XYCin is 1
only when X 5 Y 5 Cin 5 1. Therefore, Sum is formed by ORing these four terms together:

 Sum 5 X rY rCin 1 X rYCinr 1 XY rCinr 1 XYCin (1-2)

Each of the terms in this sum of products (SOP) expression is 1 for exactly one combina-
tion of input values. In a similar manner, Cout is formed by ORing four terms together:

 Cout 5 X rYCin 1 XY rCin 1 XYCinr 1 XYCin (1-3)

Each term in Equations (1-2) and (1-3) is referred to as a minterm, and these equations
are referred to as minterm expansions. These minterm expansions can also be written in
m-notation or decimal notation as follows:

 Sum 5 m1 1 m2 1 m4 1 m7 5 Sm 11, 2, 4, 7 2

 Cout 5 m3 1 m5 1 m6 1 m7 5 Sm 13, 5, 6, 7 2

The decimal numbers designate the rows of the truth table for which the corresponding func-
tion is 1. Thus Sum 5 1 in rows 001, 010, 100, and 111 (rows 1, 2, 4, 7).

1.2 Boolean Algebra and Algebraic Simplification 3

A logic function can also be represented in terms of the inputs for which the function
value is 0. Referring to the truth table for the full adder, Cout 5 0 when X 5 Y 5 Cin 5 0.
The term 1X 1 Y 1 Cin 2 is 0 only for this combination of inputs. The term 1X 1 Y 1 Cinr 2 is
0 only when X 5 Y 5 0 and Cin 5 1. The term 1X 1 Y r 1 Cin 2 is 0 only when X 5 Cin 5 0
and Y 5 1. The term 1X r 1 Y 1 Cin 2 is 0 only when X 5 1 and Y 5 Cin 5 0. Cout is formed
by ANDing these four terms together:

 Cout 5 1X 1 Y 1 Cin 2 1X 1 Y 1 Cinr 2 1X 1 Y r 1 Cin 2 1X r 1 Y 1 Cin 2 (1-4)

Cout is 0 only for the 000, 001, 010, and 100 rows of the truth table and, therefore, must
be 1 for the remaining four rows. Each of the terms in the Product of Sums (POS) expression
in Equation (1-4) is referred to as a maxterm, and (1-4) is called a maxterm expansion. This
maxterm expansion can also be written in decimal notation as

 Cout 5 M0
M1

M2
M4 5 PM 10, 1, 2, 4 2

where the decimal numbers correspond to the truth table rows for which Cout 5 0.

 1.2 Boolean Algebra and Algebraic Simplification
The basic mathematics used for logic design is Boolean algebra. Table 1-1 summarizes the
laws and theorems of Boolean algebra. They are listed in dual pairs; for example, Equation
(1-10D) is the dual of (1-10). They can be veri�ed easily for two-valued logic by using truth
tables. These laws and theorems can be used to simplify logic functions, so they can be real-
ized with a reduced number of components.

A very important law in Boolean algebra is the DeMorgan’s law. DeMorgan’s laws,
stated in Equations (1-16, 1-16D), can be used to form the complement of an expression on a
step-by-step basis. The generalized form of DeMorgan’s law in Equation (1-17) can be used
to form the complement of a complex expression in one step. Equation (1-17) can be inter-
preted as follows: To form the complement of a Boolean expression, replace each variable
by its complement; also replace 1 with 0, 0 with 1, OR with AND, and AND with OR. Add
parentheses as required to assure the proper hierarchy of operations. If AND is performed
before OR in F, then parentheses may be required to assure that OR is performed before
AND in F r.

Find the complement of F if

F 5 X 1 E rK 1C 1AB 1 D r 2 # 1 1 WZ r 1G rH 1 0 2 2
F r 5 X r 1E 1 K r 1 1C r 1 1A r 1 B r 2D 1 0 2 1W r 1 Z 1 1G 1 H r 2 # 1 2 2

Additional parentheses in F r were added when an AND operation in F was replaced with an OR. The dual of an expres-
sion is the same as its complement, except that the variables are not complemented.

E X A M PLE

4 Chapter 1 Review of Logic Design Fundamentals

TABLE 1-1: Laws and Theorems of Boolean Algebra

Operations with 0 and 1:

X 1 0 5 X (1-5) X # 1 5 X (1-5D)

X 1 1 5 1 (1-6) X # 0 5 0 (1-6D)

Idempotent laws:

X 1 X 5 X (1-7) X # X 5 X (1-7D)

Involution law:

1X r 2 r 5 X (1-8)

Laws of complementarity:

X 1 X r 5 1 (1-9) X # X r 5 0 (1-9D)

Commutative laws:

X 1 Y 5 Y 1 X (1-10) XY 5 YX (1-10D)

Associative laws:

 1X 1 Y 2 1 Z 5 X 1 1Y 1 Z 2
 5 X 1 Y 1 Z

(1-11) 1XY 2Z 5 X 1YZ 2 5 XYZ (1-11D)

Distributive laws:

X 1Y 1 Z 2 5 XY 1 XZ (1-12) X 1 YZ 5 1X 1 Y 2 1X 1 Z 2 (1-12D)

Simpli�cation theorems:

 XY 1 XY r 5 X (1-13) 1X 1 Y 2 1X 1 Y r 2 5 X (1-13D)

 X 1 XY 5 X (1-14) X 1X 1 Y 2 5 X (1-14D)

 1X 1 Y r 2Y 5 XY (1-15) XY r 1 Y 5 X 1 Y (1-15D)

DeMorgan’s laws:

1X 1 Y 1 Z 1 c2 r 5 X rY rZ rc (1-16) 1XYZ c 2 r 5 X r 1 Y r 1 Z r 1 c (1-16D)

3f 1X1, X2, c, Xn, 0, 1, 1, # 2 4 r 5 f 1X1r, X2r, c, Xnr , 1, 0, # , 1 2 (1-17)

Duality:

1X1 Y 1 Z1 c2D 5 XYZ c (1-18) 1XYZ c2D 5 X1 Y 1 Z1 c (1-18D)

3 f 1X1, X2, c, Xn, 0, 1, 1, # 2 4D 5 f 1X1, X2, c, Xn, 1, 0, # , 1 2 (1-19)

Theorem for multiplying out and factoring:

1X 1 Y 2 1X r 1 Z 2 5 XZ 1 X rY (1-20) XY 1 X rZ 5 1X 1 Z 2 1X r 1 Y 2 (1-20D)

Consensus theorem:

XY 1 YZ 1 X rZ 5 XY 1 X rZ (1-21) 1X 1 Y 2 1Y 1 Z 2 1X r 1 Z 2
5 1X 1 Y 2 1X r 1 Z 2

(1-21D)

1.2 Boolean Algebra and Algebraic Simplification 5

Four ways of simplifying a logic expression using the theorems in Table 1-1 are as follows:

1. Combining terms. Use the theorem XY 1 XY r 5 X to combine two terms. For example,

 ABC rD r 1 ABCD r 5 ABD r 3X 5 ABD r, Y 5 C 4

When combining terms by this theorem, the two terms to be combined should contain
exactly the same variables, and exactly one of the variables should appear complemented
in one term and not in the other. Since X 1 X 5 X, a given term may be duplicated and
combined with two or more other terms. For example, the expression for Cout in Equa-
tion (1-3) can be simpli�ed by combining the �rst and fourth terms, the second and fourth
terms, and the third and fourth terms:

 Cout 5 1X rYCin 1 XYCin 2 1 1XY rCin 1 XYCin 2 1 1XYCinr 1 XYCin 2
 5 YCin 1 XCin 1 XY (1-22)

Note that the fourth term in Equation (1-3) was used three times.
The theorem can still be used, of course, when X and Y are replaced with more compli-
cated expressions. For example,

1A 1 BC 2 1D 1 E r 2 1 A r 1B r 1 C r 2 1D 1 E r 2 5 D 1 E r

3X 5 D 1 E r, Y 5 A 1 BC, Y r 5 A r 1B r 1 C r 2 4

2. Eliminating terms. Use the theorem X 1 XY 5 X to eliminate redundant terms if pos-
sible; then try to apply the consensus theorem 1XY 1 X rZ 1 YZ 5 XY 1 X rZ 2 to elimi-
nate any consensus terms. For example,

A rB 1 A rBC 5 A rB 3X 5 A rB 4

A rBC r 1 BCD 1 A rBD 5 A rBC r 1 BCD 3X 5 C, Y 5 BD, Z 5 A rB 4

3. Eliminating literals. Use the theorem X 1 X rY 5 X 1 Y to eliminate redundant liter-
als. Simple factoring may be necessary before the theorem is applied. For example,

 A rB 1 A rB rC rD r 1 ABCD r 5 A r 1B 1 B rC rD r 2 1 ABCD r (by (1-12))

 5 A r 1B 1 C rD r 2 1 ABCD r (by (1-15D))

 5 B 1A r 1 ACD r 2 1 A rC rD r (by (1-10))

 5 B 1A r 1 CD r 2 1 A rC rD r (by (1-15D))

 5 A rB 1 BCD r 1 A rC rD r (by (1-12))

The expression obtained after applying 1, 2, and 3 will not necessarily have a minimum
number of terms or a minimum number of literals. If it does not and no further simpli�-
cation can be made using 1, 2, and 3, deliberate introduction of redundant terms may be
necessary before further simpli�cation can be made.

4. Adding redundant terms. Redundant terms can be introduced in several ways, such as
adding XX r, multiplying by 1X 1 X r 2 , adding YZ to XY 1 X rZ (consensus theorem),

6 Chapter 1 Review of Logic Design Fundamentals

or adding XY to X. When possible, the terms added should be chosen so that they will
combine with or eliminate other terms. For example,

 WX 1 XY 1 X rZ r 1 WY rZ r 1Add WZ r by the consensus theorem. 2
 5 WX 1 XY 1 X rZ r 1 WY rZ r 1 WZ r 1Eliminate WY rZ r. 2
 5 WX 1 XY 1 X rZ r 1 WZ r 1Eliminate WZ r. 2
 5 WX 1 XY 1 X rZ r

When multiplying out or factoring an expression, in addition to using the ordinary
distributive law (1-12), the second distributive law (1-12D) and theorem (1-20) are par-
ticularly useful. The following is an example of multiplying out to convert from a product
of sums to a sum of products:

 1A 1 B 1 D 2 1A 1 B r 1 C r 2 1A r 1 B 1 D r 2 1A r 1 B 1 C r 2
 5 1A 1 1B 1 D 2 1B r 1 C r 2 2 1A r 1 B 1 C rD r 2 (by (1-12D))

 5 1A 1 BC r 1 B rD 2 1A r 1 B 1 C rD r 2 (by (1-20))

 5 A 1B 1 C rD r 2 1 A r 1BC r 1 B rD 2 (by (1-20))

 5 AB 1 AC rD r 1 A rBC r 1 A rB rD (by (1-12))

Note that the second distributive law (1-12D) and theorem (1-20) were applied before
the ordinary distributive law. Any Boolean expression can be factored by using the two
distributive laws (1-12 and 1-12D) and theorem (1-20). As an example of factoring, read
the steps in the preceding example in the reverse order.

The following theorems apply to exclusive-OR:

 X ! 0 5 X (1-23)

 X ! 1 5 X r (1-24)

 X ! X 5 0 (1-25)

 X ! X r 5 1 (1-26)

 X ! Y 5 Y ! X 1commutative law 2 (1-27)

 1X ! Y 2 ! Z 5 X ! 1Y ! Z 2 5 X ! Y ! Z 1associative law 2 (1-28)

 X 1Y ! Z 2 5 XY ! XZ 1distributive law 2 (1-29)

1X ! Y 2 r 5 X ! Y r 5 X r ! Y 5 XY 1 X rY r (1-30)

The expression for Sum in Equation (1-2) can be rewritten in terms of exclusive-OR by
using Equations (1-1) and (1-30):

Sum 5 X r 1Y rCin 1 YCinr 2 1 X 1Y rCinr 1 YCin 2
5 X r 1Y ! Cin 2 1 X 1Y ! Cin 2 r 5 X ! Y ! Cin

 (1-31)

1.3 Karnaugh Maps 7

The simpli�cation rules that you studied in this section are important when a circuit has
to be optimized to use a smaller number of gates. The existence of equivalent forms also
helps when mapping circuits into particular target devices where only certain types of logic
(e.g., NAND only or NOR only) are available.

 1.3 Karnaugh Maps
Karnaugh maps (K-maps) provide a convenient way to simplify logic functions of three to
�ve variables. Figure 1-3 shows a four-variable Karnaugh map. Each square in the map rep-
resents one of the 16 possible minterms of four variables. A 1 in a square indicates that the
minterm is present in the function, and a 0 (or blank) indicates that the minterm is absent. An
X in a square indicates that you don’t care whether the minterm is present or not. Don’t cares
arise under two conditions: (1) The input combination corresponding to the don’t care can
never occur, and (2) the input combination can occur, but the circuit output is not speci�ed
for this input condition.

FIGURE 1-3:
Four-Variable
Karnaugh Maps

1

1

1

1

1

1

0100 11 10

01

00

11

10

AB
CD

1

X1

X

1

Four corner terms
combine to give B9 D9

C A9BD

F = Sm (0, 2, 3, 5, 6, 7, 8, 10, 11) + Sd (14, 15)
 = C + B9 D9 + A9 BD

0 0

0 0 0

(a) Location of minterms (b) Looping terms

4

6

7

5 13

15

14 10

12

1

3

8

9

11

2

0100 11 10

01

00

11

10

AB
CD

0

The variable values along the edge of the map are ordered so that adjacent squares on
the map differ in only one variable. The �rst and last columns and the top and bottom rows
of the map are considered to be adjacent. Two 1’s in adjacent squares can be combined by
eliminating one variable using xy 1 xy r 5 x. Figure 1-3 shows a four-variable function with
nine minterms and two don’t cares. Minterms A rBC rD and A rBCD differ only in the vari-
able C, so they can be combined to form A rBD, as indicated by a loop on the map. Four 1’s in
a symmetrical pattern can be combined to eliminate two variables. The 1’s in the four corners
of the map can be combined as follows:

1A rB rC rD r 1 AB rC rD r 2 1 1A rB rCD r 1 AB rCD r 2 5 B rC rD r 1 B rCD r 5 B rD r

as indicated by the loop. Similarly, the six 1’s and two X’s in the bottom half of the map
combine to eliminate three variables and form the term C. The resulting simpli�ed function is

F 5 A rBD 1 B rD r 1 C

The minimum sum of products representation of a function consists of a sum of
prime implicants. A group of one, two, four, or eight adjacent 1’s on a map represents a prime

8 Chapter 1 Review of Logic Design Fundamentals

implicant if it cannot be combined with another group of 1’s to eliminate a variable. A prime
implicant is essential if it contains a 1 that is not contained in any other prime implicant.
When �nding a minimum sum of products from a map, essential prime implicants should
be looped �rst, and then a minimum number of prime implicants to cover the remaining
1’s should be looped. The Karnaugh map shown in Figure 1-4 has �ve prime implicants and
three essential prime implicants. A rC r is essential because minterm m1 is not covered by any
other prime implicant. Similarly, ACD is essential because of m11, and A rB rD r is essential
because of m2. After looping the essential prime implicants, all 1’s are covered except m7.
Since m7 can be covered by either prime implicant A rBD or BCD, F has two minimum forms:

F 5 A rC r 1 A rB rD r 1 ACD 1 A rBD

and

F 5 A rC r 1 A rB rD r 1 ACD 1 BCD

When don’t cares (X’s) are present on the map, the don’t cares are treated like 1’s when
forming prime implicants, but the X’s are ignored when �nding a minimum set of prime

FIGURE 1-4: Selection
of Prime Implicants

X

1

1

1

1

1

0100 11 10

01

00

11

10

AB
CD

1

1
A9C9

ACD

A9B9D 9

0

1

3

2 6 14 10

7 15 11

4 12 8

5 13 9

X

Prime implicants: A rC r, ACD, A rB rD r,
A rBD, BCD
Essential prime implicants: A rC r, ACD, A rB rD r

implicants to cover all the 1’s. The following procedure can be used to obtain a minimum sum
of products from a Karnaugh map:

1. Choose a minterm (a 1) that has not yet been covered.
2. Find all 1’s and X’s adjacent to that minterm. (Check the n adjacent squares on an

n-variable map.)
3. If a single term covers the minterm and all the adjacent 1’s and X’s, then that term is an

essential prime implicant, so select that term. (Note that don’t cares are treated like 1’s
in steps 2 and 3 but not in step 1.)

4. Repeat steps 1, 2, and 3 until all essential prime implicants have been chosen.
5. Find a minimum set of prime implicants that cover the remaining 1’s on the map. (If there

is more than one such set, choose a set with a minimum number of literals.)

To �nd a minimum product of sums from a Karnaugh map, loop the 0’s instead of the
1’s. Since the 0’s of F are the 1’s of F r, looping the 0’s in the proper way gives the mini-
mum sum of products for F r, and the complement is the minimum product of sums for F.

1.3 Karnaugh Maps 9

For Figure 1-3, �rst loop the essential prime implicants of F r (BC rD r and B rC rD, indicated
by dashed loops) and then cover the remaining 0 with AB. Thus the minimum sum for F r is

 F r 5 BC rD r 1 B rC rD 1 AB

from which the minimum product of sums for F is

 F 5 1B r 1 C 1 D 2 1B 1 C 1 D r 2 1A r 1 B r 2

1.3.1 Simplification Using Map-Entered Variables
Two four-variable Karnaugh maps can be used to simplify functions with �ve variables. If
functions have more than �ve variables, map-entered variables can be used. Consider a truth
table as in Table 1-2. There are six input variables (A, B, C, D, E, F) and one output vari-
able (G). Only certain rows of the truth table have been speci�ed. To completely specify the
truth table, 64 rows will be required. The input combinations not speci�ed in the truth table
result in an output of 0.

TABLE 1-2: Partial
Truth Table for a
Six-Variable Function

A B C D E F G

0 0 0 0 X X 1

0 0 0 1 X X X

0 0 1 0 X X 1

0 0 1 1 X X 1

0 1 0 1 1 X 1

0 1 1 1 1 X 1

1 0 0 1 X 1 1

1 0 1 0 X X X

1 0 1 1 X X 1

1 1 0 1 X X X

1 1 1 1 X X 1

Karnaugh map techniques can be extended to simplify functions such as this using map-
entered variables. Since E and F are the input variables with the most number of don’t cares
(X), a Karnaugh map can be formed with A, B, C, D and the remaining two variables can be
entered inside the map. Figure 1-5 shows a four-variable map with variables E and F entered
in the squares in the map. When E appears in a square, this means that if E 5 1, the corre-
sponding minterm is present in the function G, and if E 5 0, the minterm is absent. The �fth
and sixth rows in the truth table result in the E in the box corresponding to minterm 5 and
minterm 7. The seventh row results in the F in the box corresponding to minterm 9. Thus, the
map represents the six-variable function

G 1A, B, C, D, E, F 2 5 m0 1 m2 1 m3 1 Em5 1 Em7 1 Fm9 1 m11 1 m15

11 don rt care terms 2

where the minterms are minterms of the variables A, B, C, D. Note that m9 is present in G
only when F 5 1.

10 Chapter 1 Review of Logic Design Fundamentals

Next a general method of simplifying functions using map-entered variables is discussed.
In general, if a variable Pi is placed in square mj of a map of function F, this means that
F 5 1 when Pi 5 1, and the variables are chosen so that mj 5 1. Given a map with variables
P1, P2, c entered into some of the squares, the minimum sum of products form of F can be
found as follows: Find a sum of products expression for F of the form

 F 5 MS0 1 P1MS1 1 P2MS2 1 c (1-32)

where

 ● MS0 is the minimum sum obtained by setting P1 5 P2 5 c5 0.
 ● MS1 is the minimum sum obtained by setting P1 5 1, Pj 5 0 1 j 2 1 2 , and replacing all

1’s on the map with don’t cares.
 ● MS2 is the minimum sum obtained by setting P2 5 1, Pj 5 0 1 j 2 2 2 , and replacing all

1’s on the map with don’t cares.

Corresponding minimum sums can be found in a similar way for any remaining map-entered
variables.

The resulting expression for F will always be a correct representation of F. This expres-
sion will be a minimum sum provided that the values of the map-entered variables can be
assigned independently. On the other hand, the expression will not generally be a minimum
sum if the variables are not independent (for example, if P1 5 P2r).

For the example of Figure 1-5, maps for �nding MS0, MS1, and MS2 are shown, where
E corresponds to P1 and F corresponds to P2. Note that it is not required to draw a map for
E 5 1, F 5 1, because E 5 1 already covers cases with E 5 1, F 5 0 and E 5 1, F 5 1. The
resulting expression is a minimum sum of products for G:

 G 5 A rB r 1 ACD 1 EA rD 1 FAD

After some practice, it should be possible to write the minimum expression directly from
the original map without �rst plotting individual maps for each of the minimum sums.

 1.4 Designing With NA ND and NOR Gates
In many technologies, implementation of NAND gates or NOR gates is easier than that of
AND and OR gates. Figure 1-6 shows the symbols used for NAND and NOR gates. The
bubble at a gate input or output indicates a complement. Any logic function can be realized
using only NAND gates or only NOR gates.

FIGURE 1-5:
Simpli�cation Using
Map-Entered Variables 1

X

1

X

X

1 1

1

0100 11 10

01

00

11

10

AB
CDCD

X

X

X

X

X

X

1

X

X

0100

E = F = 0
MS0 = A9B9 + ACD

E = 1, F = 0
MS1 = A9D

E = 0, F = 1
MS2 = AD

11 10

01

00

11

10

AB
CD

X

1

1 X

X

X

X

X X

X

0100 11 10

01

00

11

10

AB
CD

1

E

E X

1

X

X

1

F

1

1

0100 11 10

01

00

11

10

AB

G

1.4 Designing With NA ND and NOR Gates 11

Conversion from circuits of OR and AND gates to circuits of all NOR gates or all NAND
gates is straightforward. To design a circuit of NOR gates, start with a product-of-sums rep-
resentation of the function (circle 0’s on the Karnaugh map). Then �nd a circuit of OR and
AND gates that has an AND gate at the output. If an AND gate output does not drive an
AND gate input and an OR gate output does not connect to an OR gate input, then con-
version is accomplished by replacing all gates with NOR gates and complementing inputs if
necessary. Figure 1-7 illustrates the conversion procedure for

 Z 5 G 1E 1 F 2 1A 1 B r 1 D 2 1C 1 D 2 5 G 1E 1 F 2 3 1A 1 B r 2C 1 D 4

Conversion to a circuit of NAND gates is similar, except the starting point should be
a sum of products form for the function (circle 1’s on the map), and the output gate of the
AND-OR circuit should be an OR gate.

FIGURE 1-6: NAND
and NOR Gates

NAND:

NOR:

C = (AB)9 = A9 + B9

C = (A + B)9 = A9B 9

C

C

C

C

A
B

A
B

A
B

A
B

;

;

FIGURE 1-7: Conversion to NOR Gates

(a) AND-OR circuit

D
C

A
B9 G

E
F

Z

(b) Equivalent NOR-gate circuit

A

G9D
C9

B9

E
F

Z

Double inversion cancels

Complemented input
cancels inversion

Even if AND and OR gates do not alternate, you can still convert a circuit of AND and
OR gates to a NAND or NOR circuit, but it may be necessary to add extra inverters so that
each added inversion is canceled by another inversion. The following procedure may be used
to convert to a NAND (or NOR) circuit:

1. Convert all AND gates to NAND gates by adding an inversion bubble at the output.
Convert OR gates to NAND gates by adding inversion bubbles at the inputs. (To convert
to NOR, add inversion bubbles at all OR gate outputs and all AND gate inputs.)

2. Whenever an inverted output drives an inverted input, no further action is needed, since
the two inversions cancel.

12 Chapter 1 Review of Logic Design Fundamentals

3. Whenever a noninverted gate output drives an inverted gate input or vice versa, insert an
inverter so that the bubbles will cancel. (Choose an inverter with the bubble at the input
or output, as required.)

4. Whenever a variable drives an inverted input, complement the variable (or add an
inverter) so the complementation cancels the inversion at the input.

In other words, if we always add bubbles (or inversions) in pairs, the function realized
by the circuit will be unchanged. To illustrate the procedure, you convert Figure 1-8(a) to
NANDs. First, add bubbles to change all gates to NAND gates (Figure 1-8(b)). The high-
lighted lines indicate four places where you have added only a single inversion. This is cor-
rected in Figure 1-8(c) by adding two inverters and complementing two variables.

 1.5 Hazards in Combinational Circuits
When the input to a combinational circuit changes, unwanted switching transients may
appear in the output. These transients occur when different paths from input to output have
different propagation delays. If, in response to an input change and for some combination
of propagation delays, a circuit output may momentarily go to 0 when it should remain a
constant 1, it is said that the circuit has a static 1-hazard. Similarly, if the output may momen-
tarily go to 1 when it should remain a 0, it is said that the circuit has a static 0-hazard. If, when
the output is supposed to change from 0 to 1 (or 1 to 0), the output may change three or more
times, the circuit has a dynamic hazard.

Consider the two simple circuits in Figure 1-9. Figure 1-9(a) shows an inverter and an
OR gate implementing the function A 1 A r. Logically, the output of this circuit is expected
to be a 1 always; however, a delay in the inverter gate can cause static hazards in this circuit.
Assume a nonzero delay for the inverter and that the value of A just changed from 1 to 0.
There is a short interval of time until the inverter delay has passed when both inputs of the
OR gate are 0 and hence the output of the circuit may momentarily go to 0. Similarly, in the

FIGURE 1-8: Conversion
of AND-OR Circuit to
NAND Gates

(a) AND-OR circuit

A
B

C
D

E
F

(c) Completed conversion

A
B

C
D9

E9
F

Added inverter
Added inverter

(b) First step in NAND conversion

A
B

C
D

E
F

Bubbles cancel

1.5 Hazards in Combinational Circuits 13

circuit in Figure 1-9(b), the expected output is always 0; however, when A changes from 1
to 0, a momentary 1 appears at the output of the inverter because of the delay. This circuit
hence has a static 0-hazard. The hazard occurs because both A and A r have the same value
for a short duration after A changes.

A static 1-hazard occurs in a sum of product implementation when two minterms dif-
fering by only one input variable are not covered by the same product term. Figure 1-10(a)
illustrates another circuit with a static 1-hazard. If A 5 C 5 1, the output should remain a
constant 1 when B changes from 1 to 0. However, as shown in Figure 1-10(b), if each gate
has a propagation delay of 10 ns, E will go to 0 before D goes to 1, resulting in a momentary
0 (a 1-hazard appearing in the output F). As seen on the Karnaugh map, there is no loop

FIGURE 1-9: Simple
Circuits Containing
Hazards

(a) Simple circuit with static
1-hazard

(b) Simple circuit with static
0-hazard

A A + A9 A (A + A9)9 = A A9

FIGURE 1-10:
Elimination of 1-Hazard

(a) Circuit with 1-hazard

0 1

0

1

10

1

0

10

01

00

11

10

A
BC

1-Hazard

C
E

B
A D

F

F = AB9 + BC

(c) Circuit with hazard removed

0 1

0

1

10

1

0

10

01

00

11

10

A
BCC

B
A

F

A F = AB9 + BC + AC

(b) Timing chart

B

D

E

F

0 ns 10 ns 20 ns 30 ns 40 ns 50 ns 60 ns

14 Chapter 1 Review of Logic Design Fundamentals

that covers both minterm ABC and AB rC. So if A 5 C 5 1 and B changes from 1 to 0, BC
immediately becomes 0, but until an inverter delay passes, AB r does not become a 1. Both
terms can momentarily go to 0, resulting in a glitch in F. If you add a loop corresponding to
the term AC to the map and add the corresponding gate to the circuit (Figure 1-10(c)), this
eliminates the hazard. The term AC remains 1 while B is changing, so no glitch can appear
in the output. In general, nonminimal expressions are required to eliminate static hazards.

To design a circuit that is free of static and dynamic hazards, the following procedure
may be used:

1. Find a sum of products expression 1Ft 2 for the output in which every pair of adjacent 1s is
covered by a 1-term. (The sum of all prime implicants will always satisfy this condition.)
A two-level AND-OR circuit based on this Ft will be free of dynamic, 1-, and 0-hazards.

2. If a different form of circuit is desired, manipulate Ft to the desired form by simple factor-
ing, DeMorgan’s laws, and so on. Treat each xi and xir as independent variables to prevent
introduction of hazards.

Alternatively, you can start with a product-of-sums expression in which every pair of
adjacent 0s is covered by a 0-term.

Given a circuit, one can identify the static hazards in it by writing an expression for the
output in terms of the inputs exactly as it is implemented in the circuit and manipulating it to
a sum of products form, treating xi and xir as independent variables. A Karnaugh map can be
constructed and all implicants corresponding to each term circled. If any pair of adjacent 1’s
is not covered by a single term, a static 1-hazard can occur. Similarly, a static 0-hazard can be
identi�ed by writing a product-of-sums expression for the circuit.

(a) Find all the static hazards in the following circuit. For each hazard, specify the values of the input variables and which
variable is changing when the hazard occurs.

E X A M PLE

a

a
b

d

1

2

3

4
5 F

c

a9

(b) Design a NAND-gate circuit that is free of static hazards to realize the same function.

Answer:

(a) Static-1 hazard: Write an expression for the output as it is implemented

 F 5 1 1ab 2 r # 1a 1 c 2 r 1 1a r 1 d 2 r 2 r
 5 ab 1 1 1a 1 c 2 r 1 1a r 1 d 2 r 2 r Simplify treating a and ar as independent variables

 5 ab 1 1a 1 c 2 1a r 1 d 2
 5 ab 1 aa r 1 ad 1 a rc 1 cd;

1.5 Hazards in Combinational Circuits 15

1-hazard occurs when bcd 5 110, and a changes

ab
cd 00

0 0 1 0

1 0

1 1

1 1

0 0

1 1

1 1

01

01

11

11

10

10

00

When bcd 5 110 and a changes from 1 to 0, then the output of gate 1 changes from 0 to 1 while the output of gate 4
changes from 1 to 0. If the output of gate 1 changes before the output of gate 4 changes, then there is a short period of
time where both inputs to gate 5 are 1, causing the output of gate 1 to go to 0 temporarily, thereby creating a glitch before
the output of gate 4 changes to 0 and restoring the output of gate 5 back to 1. A glitch could also happen when bcd 5 110
and a changes from 0 to 1, but gate 4 changes before gate 1.

Static-0 hazard:

 F 5 ab 1 aa r 1 ad 1 a rc 1 cd Equation derived above

 5 ab 1 a 1a r 1 d 2 1 c 1a r 1 d 2
 5 ab 1 1a 1 c 2 1a r 1 d 2
 5 1ab 1 a 1 c 2 1ab 1 a r 1 d 2 see Table 1-1 for Boolean laws

 5 1a 1 c 2 1a 1 a r 1 d 2 1a r 1 b 1 d 2 a 1 ab 5 a; a r 1 d 1 ab 5 1a r 1 d 1 a 2 1a r 1 d 1 b 2

Circle all these terms of 0’s in the K-map; the arc shows 0’s not in same term.
0-hazard occurs when bcd 5 000, and a changes

(b) We will design a 2-level sum of products circuit because a 2-level sum of products circuit has no 0-hazard as long as an
input and its complement are not connected to the same AND gate. Avoid the 1-hazard by adding product term bc.

Circle all these terms on the K-map; the arc shows nearby 1’s that are not in the same product term, indicating a 1-hazard.

b
c

a
b

a
d

a9
c

c
d

A logic hazard is said to exist in a logic network if some set of delays in the network could
lead to a glitch. It does not mean that the network will necessarily have a glitch. A logic network
can have a logic hazard, but an actual hardware implementation of the logic network may not
show any glitches for its particular set of delay values. If there are two unlinked adjacent boxes
in the K-map, the logic network has a static hazard that may result in a glitch for a transition in

16 Chapter 1 Review of Logic Design Fundamentals

either direction (irrespective of which box is the starting input vector and which box is the end-
ing input vector). The presence or absence of a logic hazard depends only on the K-map and
not on the actual delays in the �nal implementation. The idea is that you cannot easily predict
delays in the �nal layout since it depends on how transistors in the gates are sized, how many
vias a wire goes through, and so on. But if you design the logic network so that it is hazard-
free, then it is guaranteed not to have glitches no matter what the �nal delays in the layout are.

 1.6 Flip-Flops and Latches
Sequential circuits commonly use �ip-�ops as storage devices. There are several types of �ip-
�ops, such as Delay (D) �ip-�ops, J-K �ip-�ops, Toggle (T) �ip-�ops, and so on. Figure 1-11
shows a clocked D �ip-�op. This �ip-�op can change state in response to the rising edge of
the clock input. The next state of the �ip-�op after the rising edge of the clock is equal to
the D input before the rising edge. The characteristic equation of the �ip-�op is therefore
Q1 5 D, where Q1 represents the next state of the Q output after the active edge of the
clock and D is the input before the active edge.

FIGURE 1-11: Clocked
D Flip-Flop with
Rising-Edge Trigger

DFF

CLK D

QQ9

D Q Q+

0 0 0
0 1 0
1 0 1
1 1 1

Figure 1-12 shows a clocked J-K �ip-�op and its truth table. Since there is a bubble at the
clock input, all state changes occur following the falling edge of the clock input. If J 5 K 5 0,
no state change occurs. If J 5 1 and K 5 0, the �ip-�op is set to 1, independent of the pres-
ent state. If J 5 0 and K 5 1, the �ip-�op is always reset to 0. If J 5 K 5 1, the �ip-�op
changes state. The characteristic equation, derived from the truth table in Figure 1-12, using
a Karnaugh map, is

 Q1 5 JQ r 1 K rQ (1-33)

FIGURE 1-12: Clocked
J-K Flip-Flop

CK
FF

Q9 Q

JK

J K Q Q+

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

A clocked T �ip-�op (Figure 1-13) changes state following the active edge of the clock if
T 5 1, and no state change occurs if T 5 0. T �ip-�ops are particularly useful for designing
counters. The characteristic equation for the T �ip-�op is

 Q1 5 QT r 1 Q rT 5 Q ! T (1-34)

vias A via is an
electrical connec-
tion between lay-
ers in an integrated
circuit (IC).

1.6 Flip-Flops and Latches 17

FIGURE 1-13: Clocked T
Flip-Flop

FF

CLK T

QQ 9

T Q Q+

0 0 0
0 1 1
1 0 1
1 1 0

A J-K �ip-�op is easily converted to a T �ip-�op by connecting T to both J and K. Sub-
stituting T for J and K in Equation (1-33) yields Equation (1-34).

Two NOR gates can be connected to form an unclocked S-R (set-reset) �ip-�op, as
shown in Figure 1-14. An unclocked �ip-�op of this type is often referred to as an S-R latch.
If S 5 1 and R 5 0, the Q output becomes 1 and P 5 Q r. If S 5 0 and R 5 1, Q becomes 0
and P 5 Q r. If S 5 R 5 0, no change of state occurs. If R 5 S 5 1, P 5 Q 5 0, which is not
a proper �ip-�op state, since the two outputs should always be complements. If R 5 S 5 1
and these inputs are simultaneously changed to 0, oscillation may occur. For this reason, S
and R are not allowed to be 1 at the same time. For purposes of deriving the characteristic
equation, assume that S 5 R 5 1 never occurs, in which case Q1 5 S 1 R rQ. In this case,
Q1 represents the state after any input changes have propagated to the Q output.

FIGURE 1-14: S-R Latch
S

R

P

Q

S R Q Q+

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 –
1 1 1 –

A gated D latch (Figure 1-15), also called a transparent D latch, behaves as follows: If
the gate signal G 5 1, then the Q output follows the D input 1Q1 5 D 2 . If G 5 0, then the
latch holds the previous value of Q 1Q1 5 Q 2 . Essentially, the device will not respond to
input changes unless G 5 1; it simples “latches” the previous input right before G became
0. Some refer to the D latch as a level-sensitive D �ip-�op. Essentially, if the gate input G is
viewed as a clock, the latch can be considered as a device that operates when the clock level
is high and does not respond to the inputs when the clock level is low. The characteristic
equation for the D latch is Q1 5 GD 1 G rQ. Figure 1-16 shows an implementation of the
D latch using gates. Since the Q1 equation has a 1-hazard, an extra AND gate has been
added to eliminate the hazard.

FIGURE 1-15:
Transparent D Latch

Latch

Q

DG

G D Q Q+

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

18 Chapter 1 Review of Logic Design Fundamentals

 1.7 Mealy Sequential Circuit Design
There are two basic types of sequential circuits: Mealy and Moore. In a Mealy circuit, the out-
puts depend on both the present state and the present inputs. In a Moore circuit, the outputs
depend only on the present state. A general model of a Mealy sequential circuit consists of
a combinational circuit, which generates the outputs and the next state, and a state register,
which holds the present state (see Figure 1-17). The state register normally consists of D �ip-
�ops. The normal sequence of events is (1) the X inputs change to a new value; (2) after a
delay, the corresponding Z outputs and next state appears at the output of the combinational
circuit; and (3) the next state is clocked into the state register and the state changes. The new
state feeds back into the combinational circuit, and the process is repeated.

1.7.1 Mealy Machine Design Example 1: Sequence Detector
To illustrate the design of a clocked Mealy sequential circuit, a sequence detector is pre-
sented. The circuit has the form indicated in the block diagram in Figure 1-18.

FIGURE 1-16:
Implementation of
D Latch

D

D

G

Q Q+
 = DG + G9Q + (DQ)

FIGURE 1-17: General
Model of Mealy
Sequential Machine

Combinational
circuit

State
register

Next state

Inputs (X) Outputs (Z)

Clock

State

FIGURE 1-18: Block
Diagram of a Sequence
Detector

X Z

Clock

The circuit will examine a string of 0’s and 1’s applied to the X input and generate an out-
put Z 5 1 only when the input sequence ends in 1 0 1. The input X can change only between
clock pulses. The output Z 5 1 coincides with the last 1 in 1 0 1. The circuit does not reset
when a 1 output occurs. A typical input sequence and the corresponding output sequence are

 X 5 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 0

 Z 5 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0

1.7 Mealy Sequential Circuit Design 19

Next step is to construct a state graph for this sequence detector. We will start in a reset state
designated S0. If a 0 input is received, we can stay in state S0 as the input sequence desired
does not start with 0. However, if a 1 is received, the circuit should go to a new state. Denote
that state as S1. When in S1, if you receive a 0, the circuit must change to a new state 1S2 2 to
remember that the �rst two inputs of the desired sequence (1 0) have been received. If a 1 is
received in state S2, the desired input sequence is complete and the output should be a 1. The
output will be produced as a Mealy output and will coincide with the last 1 in the detected
sequence. Since you are designing a Mealy circuit, you are not going to go to a new state that
indicates the sequence 101 has been received. When you receive a 1 in S2, you cannot go to
the start state since the circuit is not supposed to reset with every detected sequence. But the
last 1 in a sequence can be the �rst 1 in another sequence; hence, you can go to state S1. The
partial state graph at this point is indicated in Figure 1-19.

When a 0 is received in state S2, there are two 0’s in a row and you must reset the circuit
to state S0. If a 1 is received when you are in S1, stay in S1 because the most recent 1 can be
the �rst 1 of a new sequence to be detected. The �nal state graph is shown in Figure 1-20.
State S0 is the starting state, state S1 indicates that a sequence ending in 1 has been received,
and state S2 indicates that a sequence ending in 10 has been received. Converting the state
graph to a state table yields Table 1-3. In row S2 of the table, an output of 1 is indicated for
input 1.

FIGURE 1-19: Partial
State Graph of the
Sequence Detector

FIGURE 1-20: Mealy
State Graph for
Sequence Detector

TABLE 1-3: State Table
for Sequence Detector Present

State

Next State Present Output

X 5 0 X 5 1 X 5 0 X 5 1

S0 S0 S1 0 0

S1 S2 S1 0 0

S2 S0 S1 0 1

Next, state assignment is performed, whereby speci�c �ip-�op values are associated with
speci�c states. There are two techniques to perform state assignment (1) one-hot state assign-
ment and (2) encoded state assignment. In one-hot state assignment, one �ip-�op is used for
each state. Hence three �ip-�ops will be required if this circuit is to be implemented using

20 Chapter 1 Review of Logic Design Fundamentals

the one-hot approach. In encoded state assignment, just enough �ip-�ops to have a unique
combination for each state are suf�cient. Since you have three states, you need at least two
�ip-�ops to represent all states. Use encoded state assignment in this design. Designate
the two �ip-�ops as A and B. Let the �ip-�op states A 5 0 and B 5 0 correspond to state
S0; A 5 0 and B 5 1 correspond to state S1; and A 5 1 and B 5 0 correspond to state S2.
Now, the transition table of the circuit can be written as in Table 1-4.

From this table, plot the K-maps for the next states and the output Z. The next states are
typically represented by A1 and B1. The three K-maps are shown in Figure 1-21.

The next step is deriving the �ip-�op inputs to obtain the desired next states. If D �ip-
�ops are used, one simply needs to give the expected next state of the �ip-�op to the �ip-�op
input. So, for �ip-�ops A and B, DA 5 A1 and DB 5 B1. The resulting circuit is shown in
Figure 1-22.

TABLE 1-4: Transition
Table for Sequence
Detector AB

A1B1 Z

X 5 0 X 5 1 X 5 0 X 5 1

00 00 01 0 0

01 10 01 0 0

10 00 01 0 1

FIGURE 1-21: K-Maps
for Next States and
Output of Sequence
Detector

ABABAB
X X X

0

00

01

11

10 0 0

0

00

1

X X

0 1

1

10

0

X X

0 1

0

00

0

X X

1 0

00

01

11

10

1 0

00

01

11

10

1

A+
 = X9B B+

 = X Z = XA

FIGURE 1-22: Circuit
for Mealy Sequence
Detector

B9 BA9 A

D

X

D

Z

CKCK

Clock

1.7 Mealy Sequential Circuit Design 21

1.7.2 Mealy Machine Design Example 2: BCD to Excess-3
Code Converter

As an example of a more complex Mealy sequential circuit, design of a serial code converter
that converts an 8-4-2-1 binary-coded-decimal (BCD) digit to an excess-3-coded decimal
digit is presented. The input (X) will arrive serially with the least signi�cant bit (LSB) �rst.
The outputs will be generated serially as well. Table 1-5 lists the desired inputs and outputs
at times t0, t1, t2, and t3. After receiving four inputs, the circuit should reset to its initial state,
ready to receive another BCD digit.

The excess-3 code is formed by adding 0011 to the BCD digit. For example,

0 1 0 0 0 1 0 1
1 0 0 1 1 1 0 0 1 1

0 1 1 1 1 0 0 0

If all of the BCD bits are available simultaneously, this code converter can be imple-
mented as a combinational circuit with four inputs and four outputs. However, here the
bits arrive sequentially, one bit at a time. Hence you must implement this code converter
sequentially.

Now construct a state graph for the code converter (Figure 1-23(a)). Designate the start
state as S0. The �rst bit arrives, and you need to add 1 to this bit, as it is the LSB of 0011, the
number to be added to the BCD digit to obtain the excess-3 code. At t0, add 1 to the least sig-
ni�cant bit, so if X 5 0, Z 5 1 (no carry), and if X 5 1, Z 5 0 1carry 5 1 2 . Use S1 to indicate
no carry after the �rst addition, and S2 to indicate a carry of 1 after the addition to the LSB.

At t1, add 1 to the next bit, so if there is no carry from the �rst addition (state S1), X 5 0
gives Z 5 0 1 1 1 0 5 1 and no carry (state S3), and X 5 1 gives Z 5 1 1 1 1 0 5 0 and
a carry (state S4). If there is a carry from the �rst addition (state S2), then X 5 0 gives
Z 5 0 1 1 1 1 5 0 and a carry 1S4 2 , and X 5 1 gives Z 5 1 1 1 1 1 5 1 and a carry 1S4 2 .

At t2, 0 is added to X, and transitions to S5 (no carry) and S6 are determined in a similar
manner. At t3, 0 is again added to X, and the circuit resets to S0.

TABLE 1-5:
Code Converter

X Input (BCD) Z Output (excess-3)

t3 t2 t1 t0 t3 t2 t1 t0

0 0 0 0 0 0 1 1

0 0 0 1 0 1 0 0

0 0 1 0 0 1 0 1

0 0 1 1 0 1 1 0

0 1 0 0 0 1 1 1

0 1 0 1 1 0 0 0

0 1 1 0 1 0 0 1

0 1 1 1 1 0 1 0

1 0 0 0 1 0 1 1

1 0 0 1 1 1 0 0

22 Chapter 1 Review of Logic Design Fundamentals

Figure 1-23(b) gives the corresponding state table. At this point, verify that the table has
a minimum number of states before proceeding (see Section 1–9). Then state assignment
must be performed. Since this state table has seven states, three �ip-�ops will be required to
realize the table in encoded state assignment. In the one-hot approach, one �ip-�op is used
for each state. Hence seven �ip-�ops will be required if this circuit is to be implemented using
the one-hot approach. The next step is to make a state assignment that relates the �ip-�op
states to the states in the table. In the sequence detector example, we simply did a straight
binary state assignment. Here we are going to look for an optimal assignment. The best state
assignment to use depends on a number of factors. In many cases, try to �nd an assignment
that will reduce the amount of required logic. For some types of programmable logic, a
straight binary state assignment will work just as well as any other. For programmable gate
arrays, a one-hot assignment may be preferred. In recent years, with the abundance of tran-
sistors on silicon chips, the emphasis on optimal state assignment has been reduced.

In order to reduce the amount of logic required, make a state assignment using the fol-
lowing guidelines (see Roth and Kinney, Fundamentals of Logic Design, 7th Ed, Cengage
Learning, 2014 [46] for details):

I. States that have the same next state (NS) for a given input should be given adjacent
assignments (look at the columns of the state table).

 II. States that are the next states of the same state should be given adjacent assignments
(look at the rows).

 III. States that have the same output for a given input should be given adjacent assignments.

FIGURE 1-23: State
Graph and Table for
Code Converter S1

S0

S2

S5

S4S3

S6

0/1

1/00/1

1/0

0/1

0/1

0/0, 1/1 1/0

0/0, 1/1
0/0, 1/1

NC

(a) Mealy state graph

NC

NC C

C

C

t0

t1

t2

t3

NC = no carry
C = carry

(b) State table

PS X = 0 X = 1

NS

S0
S1
S2
S3
S4
S5
S6

S1
S3
S4
S5
S5
S0
S0

S2
S4
S4
S5
S6
S0
–

Z

X = 0 X = 1

1
1
0
0
1
0
1

0
0
1
1
0
1
–

1.7 Mealy Sequential Circuit Design 23

Figure 1-24(a) gives an assignment map, which satis�es the guidelines and the cor-
responding transition table. Since state 001 is not used, the next state and outputs for this
state are don’t cares. The next state and output equations are derived from this table in
Figure 1-25. Figure 1-26 shows the realization of the code converter using NAND gates and
D �ip-�ops.

Using these guidelines tends to clump 1’s together on the Karnaugh maps for the next
state and output functions. The guidelines indicate that the following states should be given
adjacent assignments:

I. (1, 2), (3, 4), (5, 6) (in the X 5 1 column, S1 and S2 both have NS S4; in the X 5 0
column, S3 and S4 have NS S5, and S5 and S6 have NS S0)

II. (1, 2), (3, 4), (5, 6) (S1 and S2 are NS of S0; S3 and S4 are NS of S1; and S5 and S6
are NS of S4)

III. (0, 1, 4, 6), (2, 3, 5)

FIGURE 1-24: State
Assignment for BCD
to Excess-3 Code
Converter

0 1

00

01

11

10

(a) Assignment map (b) Transition table

Q1
Q2Q3

S0 S1

S2

S3S5

S4S6

 Q1Q2Q3 X = 0 X = 1

000
100
101
111
110
011
010
001

100
111
110
011
011
000
000
xxx

101
110
110
011
010
000
xxx
xxx

X = 0 X = 1

1
1
0
0
1
0
1
x

0
0
1
1
0
1
x
x

Q3
+Q2

+Q1
+

Z

FIGURE 1-25: Karnaugh
Maps for Code
Converter 1 1

0

0

1 1

0

0 X

1

X

0

1

X

0

0

0100 11 10

01

00

11

10

XQ1 XQ1

XQ1
XQ1

Q2Q3 Q2Q3

Q2Q3Q2Q3

D1 = Q1 = Q29 D2 = Q2 = Q1

0 1

1

1

1 1

1

1 X

1

X

0

0

X

0

0

0100 11 10

01

00

11

10

0 1

1

1

0 0

1

0 X

0

X

0

1

X

0

0

0100 11 10

01

00

11

10

9 9 9D3 = Q3 = Q1Q2Q3 + X9Q1Q3 + XQ1Q2
+

1 1

1

0

0 1

1

0 X

0

X

0

0

X

1

1

0100 11 10

01

00

11

10

9Z = X9Q3 + XQ3

+ +

24 Chapter 1 Review of Logic Design Fundamentals

If J-K �ip-�ops are used instead of D �ip-�ops, the input equations for the J-K �ip-�ops
can be derived from the next state maps. Given the present state �ip-�op (Q) and the desired
next state 1Q1 2 , the J and K inputs can be determined from Table 1-6, also known as the
excitation table. This table is derived from the truth table in Figure 1-12.

FIGURE 1-26:
Realization of Code
Converter

G5

G6

G7

Q1
Q2
Q3

Q1
Q3

Q1
Q2

X
G3

G2

G1

D Q

Q9

D Q

Q9

D Q

Q9

ZG4
D3

Q1

CLK

Q1

Q1

Q2

Q2

Q3

Q3

X

X9

A1

A2

A3

A5

A6

X9

FF1

FF2

FF3

I1
9

9
9

Q29

9

9

9

TABLE 1-6: Excitation
Table for a J-K
Flip-Flop

Q Q1 J K

0 0 0 X (No change in Q; J must be 0, K may be 1 to reset Q to 0.)

0 1 1 X (Change to Q 5 1; J must be 1 to set or toggle.)

1 0 X 1 (Change to Q 5 0; K must be 1 to reset or toggle.)

1 1 X 0 (No change in Q; K must be 0, J may be 1 to set Q to 1.)

Figure 1-27 shows derivation of J-K �ip-�op input equations for the state table of
 Figure 1-23 using the state assignment of Figure 1-24. First, derive the J-K input equations for
�ip-�op Q1 using the Q1

1 map as the starting point. From the preceding table, whenever Q1 is
0, J 5 Q1

1 and K 5 X. So, �ll in the Q1 5 0 half of the J1 map the same as Q1
1 and the Q1 5 0

half of the K1 map as all X’s. When Q1 is 1, J1 5 X and K1 5 1Q1
1 2 r. So, �ll in the Q1 5 1

half of the J1 map with X’s and the Q1 5 1 half of the K1 map with the complement of the
Q1

1. Since half of every J and K map is don’t cares, avoid drawing separate J and K maps and
read the J’s and K’s directly from the Q1 maps, as illustrated in Figure 1-27(b). This shortcut
method is based on the following: If Q 5 0, then J 5 Q1, so loop the 1’s on the Q 5 0 half
of the map to get J. If Q 5 1, then K 5 1Q1 2 r, so loop the 0’s on the Q 5 1 half of the map
to get K. The J and K equations will be independent of Q, since Q is set to a constant value
(0 or 1) when reading J and K. To make reading the J’s and K’s off the map easier, cross off
the Q values on each map. In effect, using the shortcut method is equivalent to splitting the
four-variable Q1 map into two three-variable maps, one for Q 5 0 and one for Q 5 1.

The following summarizes the steps required to design a sequential circuit:

1. Given the design speci�cations, determine the required relationship between the input
and output sequences. Then �nd a state graph and state table.

2. Reduce the table to a minimum number of states. First eliminate duplicate rows by row
matching; then form an implication table and follow the procedure in Section 1.9.

1.8 Moore Sequential Circuit Design 25

3. If the reduced table has m states 12n21 , m # 2n 2 , n �ip-�ops are required. Assign a
unique combination of �ip-�op states to correspond to each state in the reduced table.
This is the encoded state assignment technique. Alternately, a one-hot assignment with
m �ip-�ops can be used.

4. Form the transition table by substituting the assigned �ip-�op states for each state in the
reduced state tables. The resulting transition table speci�es the next states of the �ip-�ops
and the output in terms of the present states of the �ip-�ops and the input.

5. Plot next-state maps and input maps for each �ip-�op and derive the �ip-�op input equa-
tions. Derive the output functions.

6. Realize the �ip-�op input equations and the output equations using the available logic
gates.

7. Check your design using computer simulation or another method.

Steps 2 through 7 may be carried out using a suitable computer-aided design (CAD)
program.

 1.8 Moore Sequential Circuit Design
In a Moore circuit, the outputs depend only on the present state. Moore machines are typi-
cally easier to design and debug compared to Mealy machines, but they often contain more
states than equivalent Mealy machines. In Moore machines, there are no outputs that happen
during the transition. The outputs are associated entirely to the state.

FIGURE 1-27:
Derivation of J-K Input
Equations 1 1

0

0

1 1

0

0 X

1

X

0

1

X

0

0

0100 11 10

01

00

11

10

(a) Derivation using separate J-K maps

XQ1
Q2 Q3

Q1
+

1 X

X

X

X X

X

X X

X

X

0

1

X

0

0

0100 11 10

01

00

11

10

XQ1
Q2 Q3

J1 = Q2

X 0

1

1

0 0

1

1 X

0

X

X

X

X

X

X

0100 11 10

01

00

11

10

XQ1
Q2 Q3

K1 = Q29

1 1

0

0

1 1

0

0 X

1

X

0

1

X

0

0

0100 11 10

01

00

11

10

XQ1
Q2Q3

0 1

1

1

1 1

1

1 X

1

X

0

0

X

0

0

0100 11 10

01

00

11

10

XQ1
Q2Q3

0 1

1

1

0 0

1

0 X

0

X

0

1

X

0

0

0100 11 10

01

00

11

10

XQ1
Q2Q3

J1

Q1
+

Q2
+ Q3

+

J3

J3

K3

K2

J2

J1 = Q2 K1 = Q2

J2 = Q1

K2 = Q1

(b) Derivation using the shortcut method

J3 = X 9Q1+ XQ1

K3 = Q1+ Q2

J1

9

K19

9 9 9

9

9

9

26 Chapter 1 Review of Logic Design Fundamentals

1.8.1 Moore Machine Design Example 1: Sequence Detector
As an example, let us design the sequence detector of Section 1.7.1 using the Moore Method.
The circuit will examine a string of 0’s and 1’s applied to the X input and generate an output
Z 5 1 only when the input sequence ends in 101. The input X can change only between clock
pulses. The circuit does not reset when a 1 output occurs.

As in the Mealy machine example, start in a reset state designated S0 in Figure 1-28. If a 0
input is received, stay in state S0 as the input sequence you are looking for does not start with
0. However, if a 1 is received, the circuit goes to a new state, S1. When in S1, if you receive
a 0, the circuit must change to a new state 1S2 2 to remember that the �rst two inputs of the
desired sequence (10) have been received. If a 1 is received in state S2, the circuit should go
to a new state to indicate that the desired input sequence is complete. Designate this new
state as S3. In state S3, the output must have a value of 1. The outputs in states S0, S1 and S2
must be 0’s. The sequence 100 resets the circuit to S0. A sequence 1010 takes the circuit back
to S2 because another 1 input should cause Z to become 1 again.

FIGURE 1-28: State
Graph of the Moore
Sequence Detector

The state table corresponding to the circuit is given by Table 1-7. Note that there is a
single column for output because the output is determined by the present state and does
not depend on X. Note that this sequence detector requires one more state than the Mealy
sequence detector in Table 1-3, which detects the same input sequence.

TABLE 1-7: State Table
for Sequence Detector

Next State

Present State X 5 0 X 5 1 Present Output (Z)

S0 S0 S1 0

S1 S2 S1 0

S2 S0 S3 0

S3 S2 S1 1

Because there are four states, two �ip-�ops are required to realize the circuit. Using the
state assignment AB 5 00 for S0, AB 5 01 for S1, AB 5 11 for S2, and AB 5 10 for S3, the
transition table shown in Table 1-8 is obtained.

TABLE 1-8: Transition
Table for Moore
Sequence Detector

A1B1

AB X 5 0 X 5 1 Z

00 00 01 0

01 11 01 0

11 00 10 0

10 11 01 1

1.8 Moore Sequential Circuit Design 27

The output function Z 5 AB r. Note that Z depends only on the �ip-�op states and is
independent of X, while for the corresponding Mealy machine, Z was a function of X. (It was
equal to AX in Figure 1-21.) The transition table can be used to write the next state maps,
and inputs to the �ip-�ops can be derived.

1.8.2 Moore Machine Design Example 2: NRZ to Manchester
Code Converter

As another example of designing a Moore sequential machine, design of a converter for
serial data is presented. Binary data is frequently transmitted between computers as a serial
stream of bits. Figure 1-29 shows three different coding schemes for serial data. The example
shows transmission of the bit sequence 0, 1, 1, 1, 0, 0, 1, 0. With the NRZ (nonreturn-to-zero)
code, each bit is transmitted for one bit time without any change. In contrast, for the RZ
(return-to-zero) code, a 0 is transmitted as 0 for one full bit time, but a 1 is transmitted as
a 1 for the �rst half of the bit time, and then the signal returns to 0 for the second half. For
the Manchester code, a 0 is transmitted as 0 for the �rst half of the bit time and a 1 for the
second half, but a 1 is transmitted as a 1 for the �rst half and a 0 for the second half. Thus,
the Manchester encoded bit always changes in the middle of the bit time.

This section presents the design of a Moore sequential circuit that converts an NRZ-
coded bit stream to a Manchester-coded bit stream (Figure 1-30). In order to do this, use
a clock (CLOCK2) that is twice the frequency of the basic bit clock. If the NRZ bit is 0, it
will be 0 for two CLOCK2 periods, and if it is 1, it will be 1 for two CLOCK2 periods. Thus,
starting in the reset state 1S0 2 , the only two possible input sequences are 00 and 11, and the
corresponding output sequences are 01 and 10. When a 0 is received, the circuit goes to S1
and outputs a 0; when the second 0 is received, it goes to S2 and outputs a 1. Starting in S0,

FIGURE 1-29: Coding
Schemes for Serial Data
Transmission

NRZ

RZ

Manchester

0 1 1 1 0 0 1 0Bit sequence

1 bit
time

FIGURE 1-30: Moore
Circuit for NRZ-to-
Manchester Conversion

Conversion
circuit

XNRZ data

CLOCK2
Z

Manchester data

S0
0

S3
1

S1
0

S2
1

0

1 1

1

00
S0
S1
S2
S3

S1
S2
S1
—

S3
—
S3
S0

X = 0 X = 1
Next State

0
0
1
1

Present
State

Present
Output (Z)

(a) Conversion circuit

(b) State graph (c) State table

28 Chapter 1 Review of Logic Design Fundamentals

if a 1 is received, the circuit goes to S3 and outputs a 1, and when the second 1 is received,
it must go to a state with a 0 output. Going back to S0 is appropriate since S0 has a 0 output
and the circuit is ready to receive another 00 or 11 sequence. When in S2, if a 00 sequence is
received, the circuit can go to S1 and then back to S2. If a 11 sequence is received in S2, the
circuit can go to S3 and then back to S0. The corresponding Moore state table has two don’t
cares, which correspond to input sequences that cannot occur.

Figure 1-31 shows the timing chart for the Moore circuit. Note that the Manchester
output is shifted one clock time with respect to the NRZ input. This shift occurs because a
Moore circuit cannot respond to an input until the active edge of the clock occurs. This is
in contrast to a Mealy circuit, for which the output can change after the input changes and
before the next clock.

FIGURE 1-31: Timing
for Moore Circuit

0 0 1 1 1 1 1 1 0 0 0 0 1 1 0 0X (NRZ)

CLOCK2

State

Z
(Manchester)

S0 S1 S2 S3 S0 S3 S0 S3 S0 S1 S2 S1 S2 S3 S0 S1

0 0 1 1 0 1 0 1 0 0 1 0 1 1 0 0

1 bit
time

1 bit
time

 1.9 Equivalent States and Reduction of State Tables
The concept of equivalent states is important for the design and testing of sequential circuits.
It helps to reduce the hardware consumed by circuits. Two states in a sequential circuit are
said to be equivalent if you cannot tell them apart by observing input and output sequences.
Consider two sequential circuits, N1 and N2 (see Figure 1-32). N1 and N2 could be copies of
the same circuit. N1 is started in state si, and N2 is started in state sj. Apply the same input
sequence, X, to both circuits and observe the output sequences, Z1 and Z2. (The underscore
notation indicates a sequence.) If Z1 and Z2 are the same, reset the circuits to states si and
sj, apply a different input sequence, and observe Z1 and Z2. If the output sequences are the
same for all possible input sequences, it can be said that the states si and sj are equivalent
1si ; sj 2 . Formally, you can de�ne equivalent states as follows: si ; sj if and only if, for every
input sequence X, the output sequences Z1 5 l1 1si, X 2 and Z2 5 l2 1sj, X 2 are the same. This

FIGURE 1-32:
Sequential Circuits Z1 = l1 (si , X)N1si

sj N2 Z2 = l2 (sj , X)

X

1.9 Equivalent States and Reduction of State Tables 29

is not a very practical way to test for state equivalence since, at least in theory, it requires
input sequences of in�nite length. In practice, if you have a bound on number of states, then
you can limit the length of the test sequences.

A more practical way to determine state equivalence uses the state equivalence theorem:
si ; sj if and only if for every single input X, the outputs are the same and the next states
are equivalent. When using the de�nition of equivalence, consider all input sequences, but
any information about the internal state of the system is unnecessary. When using the state
equivalence theorem, look at both the output and next state, but consider only single inputs
rather than input sequences.

The table of Figure 1-33(a) can be reduced by eliminating equivalent states. First,
observe that states a and h have the same next states and outputs when X 5 0 and also when
X 5 1. Therefore, a ; h, so eliminate row h and replace h with a in the table. To determine
if any of the remaining states are equivalent, use the state equivalence theorem. From the
table, since the outputs for states a and b are the same, a ; b if and only if c ; d and e ; f.
Therefore, c-d and e-f are implied pairs for a-b. To keep track of the implied pairs, make an
implication chart, as shown in Figure 1-33(b). Place c-d and e-f in the square at the intersec-
tion of row a and column b to indicate the implication. Since states d and e have different
outputs, place an X in the d-e square to indicate that d [e. After completing the implication
chart in this way, make another pass through the chart. The e-g square contains c-e and b-g.
Since the c-e square has an X, c [e, which implies e [g, so X out the e-g square. Similarly,
since a [g, X out the f-g square. On the next pass through the chart, X out all the squares
that contain e-g or f-g as implied pairs (shown on the chart with dashed x’s). In the next
pass, no additional squares are X’ed out, so the process terminates. Since all the squares
corresponding to non-equivalent states have been X’ed out, the coordinates of the remain-
ing squares indicate equivalent state pairs. From the �rst column, a ; b; from third column,
c ; d; and from the �fth column, e ; f.

The implication table method of determining state equivalence can be summarized as
follows:

1. Construct a chart that contains a square for each pair of states.
2. Compare each pair of rows in the state table. If the outputs associated with states i and

j are different, place an X in square i-j to indicate that i [j. If the outputs are the same,
place the implied pairs in square i-j. (If the next states of i and j are m and n for some
input x, then m-n is an implied pair.) If the outputs and next states are the same (or if i-j
implies only itself), place a check 1U 2 in square i-j to indicate that i ; j.

3. Go through the table square by square. If square i-j contains the implied pair m-n and
square m-n contains an X, then i [j and an X should be placed in square i–j.

4. If any X’s were added in step 3, repeat step 3 until no more X’s are added.
5. For each square i-j that does not contain an X, i ; j.

If desired, row matching can be used to partially reduce the state table before constructing
the implication table. Although we have illustrated this procedure for a Mealy table, the
same procedure applies to a Moore table.

Two sequential circuits are said to be equivalent if every state in the �rst circuit has an
equivalent state in the second circuit, and vice versa.

Optimization techniques such as this are incorporated in CAD tools. The importance of
state minimization has slightly diminished in recent years due to the abundance of transis-
tors on chips; however, it is still important to do obvious state minimizations to reduce the
circuit’s area and power.

30 Chapter 1 Review of Logic Design Fundamentals

 1.10 Sequential Circuit Timing
The correct functioning of sequential circuits involves several timing issues. Propagation
delays of �ip-�ops, gates and wires, setup times and hold times of �ip-�ops, clock synchro-
nization, clock skew, and so on become important issues while designing sequential circuits.
Basics of �ip-�op timing such as setup and hold times are presented here, but a detailed
treatment of sequential circuit timing is presented in Chapter 10. Topics such as static timing
analysis, clock skew, and clock gating are presented in Section 10.2.

FIGURE 1-33: State
Table Reduction

Present
State

Next State Present Output
1X = 0 X = 0 1

a c f 0

b d e 0

c ha g 0

d b g 0

e e b 0

f f a 0

g c g 0

0

0

0

0

1

1

1

h c f 0 0

(a) State table reduction by row matching

c-d

e-f

f-g

b-c

f-g

a-d

e-g

e-g a-b

a-b

c-e

b-g

c- f

a-g

b

d

e

f

g

a b c d e f

c-d

e-f

f-g

b-c

f-g

a-d

e-g

e-g a-b

a-b

c-e

b-g

c-f

a-g

b

c

d

e

f

g

a b c d e f

a ; b iff c ; d and e ; f

(b) Implication chart (�rst pass) (c) After second and third passes

X = 0 1 X = 0 1
a c e 0 0
c a g 0 0
e e a 0 1
g c g 0 1

(d) Final reduced table

c

 1.11 Tristate Logic and Busses 31

1.10.1 Propagation Delays: Setup and Hold Times
There is a certain amount of time, albeit small, that elapses from the time the clock changes to
the time the Q output changes. This time, called propagation delay, is indicated in Figure 1-34.
The propagation delay can depend on whether the output is changing from high to low or vice
versa. In the �gure, the propagation delay for a low-to-high change in Q is denoted by tplh, and
for a high-to-low change it is denoted by tphl.

For an ideal D �ip-�op, if the D input changed at exactly the same time as the active edge
of the clock, the �ip-�op would operate correctly. However, for a real �ip-�op, the D input
must be stable for a certain amount of time before the active edge of the clock. This interval
is called the setup time 1 tsu 2 . Furthermore, D must be stable for a certain amount of time after
the active edge of the clock. This interval is called the hold time 1 th 2 . Figure 1-34 illustrates
setup and hold times for a D �ip-�op that changes state on the rising edge of the clock. D can
change at any time during the shaded region on the diagram, but it must be stable during the
time interval tsu before the active edge and for th after the active edge. If D changes at any
time during the forbidden interval, it cannot be determined whether the �ip-�op will change
state. Even worse, the �ip-�op may malfunction and output a short pulse or even go into
oscillation. Minimum values for tsu and th and maximum values for tplh and tphl can be read
from manufacturers’ data sheets. For a detailed treatment of how setup and hold times affect
designs, how maximum frequencies of circuits are calculated, and various topics on static tim-
ing analysis, readers should go to Section 10.2.

FIGURE 1-34: Setup
and Hold Times for
D Flip-Flop

Clock

D

Q tplh tphl

tsu th

Flip-�ops typically have a setup time of about 3–10 times of the propagation delay of
an inverter (NOT) gate. The hold times are typically 1–2 times of the delay of an inverter.
Minimum values for tsu and tphl can be obtained from manufacturer’s data sheets or ASIC
(Application Speci�c Integrated Circuit) libraries accompanying design tools. More details
on sequential circuit timing appears in Section 10.2.

 1.11 Tristate Logic and Busses
Normally, if you connect the outputs of two gates or �ip-�ops together, the circuit will not
operate properly. It can also cause damage to the circuit. Hence, when you need to connect
multiple gate outputs to the same wire or channel, one way to do that is by using tristate
buffers. Tristate buffers are gates with a high impedance state (hi-Z) in addition to high and
low logic states. The high impedance state is equivalent to an open circuit. In digital systems,
transferring data back and forth between several system components is often necessary.
Tristate busses can be used to facilitate data transfers between registers. When several gates
are connected onto a wire, what to expect is that at any one point, one of the gates is going

32 Chapter 1 Review of Logic Design Fundamentals

to actually drive the wire, and the other gates should behave as if they are not connected to
the wire. The high impedance state achieves this.

Tristate buffers can be inverting or non-inverting. The control input can be active high
or active low. Figure 1-35 shows four kinds of tristate buffers. B is the control input used to
enable or disable the buffer output. When a buffer is enabled, the output (C) is equal to the
input (A) or its complement. However, you can connect two tristate buffer outputs, provided
that only one output is enabled at a time.

FIGURE 1-35: Four
Kinds of Tristate
Buffers

B A C
0 0 Hi-Z
0 1 Hi-Z
1 0 0
1 1 1

A

B

C

(a)

B A C
0 0 Hi-Z
0 1 Hi-Z
1 0 1
1 1 0

A

B

C

(b)

B A C
0 0 0
0 1 1
1 0 Hi-Z
1 1 Hi-Z

A

B

C

(c)

B A C
0 0 1
0 1 0
1 0 Hi-Z
1 1 Hi-Z

A

B

C

(d)

Figure 1-36 shows a system with three registers connected to a tristate bus. Each regis-
ter is 8 bits wide, and the bus consists of 8 wires connected in parallel. Each tristate buffer
symbol in the �gure represents 8 buffers operating in parallel with a common enable input.
Only one group of buffers is enabled at a time. For example, if Enb 5 1, the register B output
is driven onto the bus. The data on the bus is routed to the inputs of register A, register B,
and register C. However, data is loaded into a register only when its load input is 1 and the
register is clocked. Thus, if Enb 5 Ldc 5 1, the data in register B will be copied into register
C when the active edge of the clock occurs. If Eni 5 Lda 5 Ldb 5 1, the input data will be
loaded in registers A and B when the registers are clocked.

FIGURE 1-36: Data
Transfer Using Tristate
Bus

Reg. ALda

Ena

Input
data

Clock

Tristate bus
Eni

Reg. BLdb

Enb

Reg. CLdc

Enc

8

8 8 8

Logic Design with Memristors:

Modern digital chips are CMOS-based designs. CMOS stands for complementary
Metal Oxide Semiconductors and indicates the type of transistor technology that is
used. Other types of transistor technologies used in the past include TTL (Transistor
Transistor Logic), ECL (Emitter Coupled Logic), and so forth. Memristor is the name
for a type of resistive memory cell or Resistive RAM (RRAM) which can be used to
build logic circuits.

 1.11 Tristate Logic and Busses 33

The term memristor was coined from terms memory and resistor, to indicate a type of
device which has resistance and which can remember conditions from the past. The sym-
bol for a memristor is as follows. The polarity is indicated by the thick black line on the left
side. When current �ows into the device (to the left in this �gure), the resistance increases.
When current �ows out (to the right in this �gure), resistance of the device decreases.
Memristors can be used as memory. They can also be used to create logic circuits.

Resistance increases

Resistance decreases

In Out

There are different techniques to create logic circuits with memristors. AND and OR
operations can be accomplished by connecting memristors in the following manner.

A

B

AND

(a)

OR

A

B

(b)

Note that the only difference between the two circuits is the polarity of the memris-
tors. The problem with this type of design is that the NOT function cannot be created.
Hence these types of AND and OR circuits have to be used with a CMOS NOT gate,
necessitating a CMOS-memristor hybrid design.

Another technique to design logic circuits, using memristors, is using what is
called the IMPLY circuit. In this method, the resistance of the memristor represents
the logical state. The ON-resistance (R_ON) is logical 1 and the OFF-resistance
R_OFF is logical 0. The input to the logical gate (logical operation) is the resistance
value. The result is stored into the memory. The IMPLY circuit needs two memris-
tors and a resistor as shown in the �gure. The operation is performed by applying a

Vcond Vset

p q

Rg

p q p IMP q

0 0 1

0 1 1

1 0 0

1 1 1

34 Chapter 1 Review of Logic Design Fundamentals

Problems
1.1 Write out the truth table for the following equation.

F 5 1A ! B 2 # C 1 A r # 1B r ! C 2
1.2 A full subtractor computes the difference of three inputs X, Y, and Bin, where Diff 5 X 2 Y 2 Bin. When

X , 1Y 1 Bin 2 , the borrow output Bout is set. Fill in the truth table for the subtractor and derive the sum of
products and product of sums equations for Diff and Bout.

1.3 Simplify Z using a 4-variable map with map-entered variables. ABCD represents the state of a control circuit.
Assume that the circuit can never be in state 0100, 0001, or 1001.

Z 5 BC rDE 1 ACDF r 1 ABCD rF r 1 ABC rD rG 1 B rCD 1 ABC rD rH r

1.4 For the following functions, �nd the minimum sum of products using four-variable maps with map-entered vari-
ables. In (a) and (b), mi represents a minterm of variables A, B, C, and D.

(a) F 1A, B, C, D, E 2 5 gm 10, 4, 6, 13, 14 2 1 gd 12, 9 2 1 E 1m1 1 m12 2
(b) Z 1A, B, C, D, E, F, G 2 5 gm 12, 5, 6, 9 2 1 gd 11, 3, 4, 13, 14 2 1 E 1m11 1 m12 2 1 F 1m10 2 1 G 1m0 2
(c) H 5 A rB rCDF r 1 A rCD 1 A rB rCD rE 1 BCDF r
(d) G 5 C rE rF 1 DEF 1 AD rE rF r 1 BC rE rF 1 AD rEF r

 Hint: Which variables should be used for the map sides and which variables should be entered into the map?
1.5 Identify the static 1-hazards in the following circuit. State the condition under which each hazard can occur. Draw

a timing diagram (similar to Figure 1-10(b)) that shows the sequence of events when a hazard occurs.

C

A9

D 9

C9

G

H
F

 voltage Vcond to memristor P and a voltage Vset to memristor Q concurrently such
that Vcond , Vset. The driver circuitry to apply the voltages is also part of the circuit.

Once an IMPLY circuit can be realized, other logic operations can be realized as
in the following table.

Operation Implementation

p NAND q 5 p IMP (q IMP 0)

p AND p 5 (p IMP (q IMP 0)) IMP 0

p NOR p 5 ((p IMP 0) IMP q) IMP 0

p OR p 5 (p IMP 0) IMP q

p XOR p 5 (p IMP q) ((IMP q IMP p) IMP 0)

NOT p 5 p IMP 0

1.6 Find all of the 1-hazards in the given circuit. Indicate what changes are necessary to eliminate the hazards.

b9

d9

b

c9

a9
c
d9

F

1.7 (a) Find all the static hazards in the following circuit. For each hazard, specify the values of the input variables and
which variable is changing when the hazard occurs.

a
b
a
c
a9
d

F

1

2

3

4
5

 (b) Design a NAND-gate circuit that is free of static hazards to realize the same function.
1.8 (a) Find all the static hazards in the following circuit. For each hazard, specify the values of the input variables and

which variable is changing when the hazard occurs.

H

A E

F

G

D

C
B

 (b) Design a circuit that is free of static hazards to realize the same function. Leave the circuit as a two-level OR-
AND circuit.

1.9 (a) Find all the static hazards in the following circuit. For each hazard, specify the values of the input variables and
which variable is changing when the hazard occurs.

F

A
B

C

D

 (b) Redesign the circuit as a three-level NOR circuit that is free of static hazards.
1.10 (a) Consider the logic function

F 1A, B, C, D 2 5 gm 10, 2, 5, 6, 7, 8, 9, 12, 13, 15 2
 (b) Find two different minimum AND-OR circuits which implement F. Identify two hazards in each circuit. Then

�nd an AND-OR circuit for F that has no hazards.
 (c) The minimum OR-AND circuit for F has one hazard. Identify it, and then �nd an OR-AND circuit that is

free of static hazards.

Problems 35

36 Chapter 1 Review of Logic Design Fundamentals

1.11 (a) Find all the static hazards in the following circuit. State the condition under which each hazard can occur.
 (b) Redesign the circuit so that it is free of static hazards. Use gates with, at most, three inputs.

d9

a9

a

b

b9

c9

Z

1.14 A synchronous sequential circuit has one input and one output. If the input sequence 0101 or 0110 occurs, an
output of two successive 1’s will occur. The �rst of these 1’s should occur coincident with the last input of the 0101
or 0110 sequence. The circuit should reset when the second 1 output occurs. For example,

 input sequence: X 5 010011101010 101101 c

 output sequence: Z 5 000000000011 000011 c

(a) Derive a Mealy state graph and table with a minimum number of states (6 states).
(b) Try to choose a good state assignment. Realize the circuit using J-K �ip-�ops and NAND gates. Repeat using

NOR gates. (Work this part by hand.)
(c) Check your answer to (b) using the LogicAid program. Also use the program to �nd the NAND solution for

two other state assignments.
1.15 A sequential circuit has one input (X) and two outputs (Z1 and Z2). An output Z1 5 1 occurs every time the

input sequence 010 is completed, provided that the sequence 100 has never occurred. An output Z2 5 1 occurs
every time the input sequence 100 is completed. Note that once a Z2 5 1 output has occurred, Z1 5 1 can never
occur, but not vice versa.
(a) Derive a Mealy state graph and table with a minimum number of states (8 states).
(b) Try to choose a good state assignment. Realize the circuit using J-K �ip-�ops and NAND gates. Repeat using

NOR gates. (Work this part by hand.)
(c) Check your answer to (b) using the LogicAid program. Also use the program to �nd the NAND solution for

two other state assignments.
1.16 A sequential circuit has one input (X) and two outputs (S and V). X represents a 4-bit binary number N, which is

input least signi�cant bit �rst. S represents a 4-bit binary number equal to N 1 2, which is output least signi�cant
bit �rst. At the time the fourth input occurs, V 5 1 if N 1 2 is too large to be represented by 4 bits; otherwise,

CLK

D

Q1

Q2

1.12 (a) Show how you can construct a T �ip-�op, using a J-K �ip-�op.
 (b) Show how you can construct a D �ip-�op using a J-K �ip-�op.
1.13 Construct a clocked D �ip-�op, triggered on the rising edge of CLK, using two transparent D latches and any

necessary gates. Complete the following timing diagram, where Q1 and Q2 are latch outputs. Verify that the �ip-
�op output changes to D after the rising edge of the clock.

V 5 0. The value of S should be the proper value, not a don’t care, in both cases. The circuit always resets after
the fourth bit of X is received.
(a) Derive a Mealy state graph and table with a minimum number of states (6 states).
(b) Try to choose a good state assignment. Realize the circuit using D �ip-�ops and NAND gates. Repeat using

NOR gates. (Work this part by hand.)
(c) Check your answer to (b) using the LogicAid program. Also use the program to �nd the NAND solution for

two other state assignments.
1.17 A sequential circuit has one input (X) and two outputs (D and B). X represents a 4-bit binary number N, which is

input least signi�cant bit �rst. D represents a 4-bit binary number equal to N 2 2, which is output least signi�cant
bit �rst. At the time the fourth input occurs, B 5 1 if N 2 2 is negative; otherwise, B 5 0. The circuit always resets
after the fourth bit of X is received.
(a) Derive a Mealy state graph and table with a minimum number of states (6 states).
(b) Try to choose a good state assignment. Realize the circuit using J-K �ip-�ops and NAND gates. Repeat using

NOR gates. (Work this part by hand.)
(c) Check your answer to (b) using the LogicAid program. Also use the program to �nd the NAND solution for

two other state assignments.
1.18 A Moore sequential circuit has one input and one output. The output goes to 1 when the input sequence 111 has

occurred, and the output goes to 0 if the input sequence 000 occurs. At all other times, the output holds its value.

 Example:
 X 5 0 1 0 1 1 1 0 1 0 0 0 1 1 1 0 0 1 0 0 0

 Z 5 0 0 0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0

 Derive a Moore state graph and table for the circuit.
1.19 Derive the state transition table and �ip-�op input equations for a modulo-6 counter that counts 000 through

101 and then repeats. Use J-K �ip-�ops.
1.20 Derive the state transition table and D �ip-�op input equations for a counter that counts from 1 to 6 and then

repeats.
1.21 Derive the state transition table and �ip-�op input equations for a modulo-7 counter that counts 000 through 110

and then repeats. Use J-K �ip-�ops.
1.22 Derive the state transition table and D �ip-�op input equations for a counter that counts from 1 to 7 (and back

to 1 and continues).
1.23 Derive the state transition table and D �ip-�op input equations for a counter that counts in the sequence 0, 1, 3,

5, 7, 0, 1, 3, 5, 7 and continues.
1.24 Reduce the following state table to a minimum number of states.

Present
State

Next State Output

X 5 0 X 5 1 X 5 0 X 5 1

A B G 0 1

B A D 1 1

C F G 0 1

D H A 0 0

E G C 0 0

F C D 1 1

G G E 0 0

H G D 0 0

Problems 37

38 Chapter 1 Review of Logic Design Fundamentals

1.25 Referring to Figure 1-49, specify the values of Eni, Ena, Enb, Enc, Lda, Ldb, and Ldc so that the data stored in
Reg C will be copied into Reg A and Reg B when the circuit is clocked.

1.26 Draw the diagram of a circuit with 4 eight-bit registers which can perform the following data transfers with appro-
priate tri-state gates and control signals.

Reg A goes to Reg B when LdB is high.
Input Bus goes to Reg A when LdA is high.
Input Bus goes to Reg C when LdC is high.
Reg C goes to Reg D when LdD is high.

No other data transfers will be required to be performed by this circuit. The registers have control signals labeled
Lda, Ldb, Ldc and Ldd. Add the essential number of tri-state gates.

How many tri-state gates are required?

Assume you have to do the following transfers:

Load value AB (hex) into Reg A. Then copy it to Reg B.
Load value CD (hex) into Reg C. Then copy it to Reg D.

What is the minimum number of cycles will be required to perform these transfers? List the control signals in
each cycle.

1.27 Draw the diagram of a circuit with four 8-bit registers and a Bus which can perform the following data transfers
with appropriate tri-state gates and control signals.

Input from Bus to any register

Any register to any other Reg K

Output from any register to bus

How many tri-state gates are required?

Assume you have to do the following transfers:

Load value AB (hex) from BUS into register A. Then copy Register A to Register B. Output Register B to BUS.

Load value CD (hex) from BUS into register C. Then copy Register C to Register D. Output Register D to BUS.

What is the minimum number of cycles will be required to perform these transfers? List the control signals in
each cycle. You can overlap operations that do not con�ict.

39

INTRODUCTION TO VHDL
C H A P T E R

2

As integrated circuit technology has improved to allow more and more components on a
chip, digital systems have continued to grow in complexity. While putting a few transistors
on an integrated circuit (IC) was a miracle when it happened, technology improvements
have advanced the VLSI (very large scale integration) �eld continually. The early integrated
circuits belonged to SSI (small scale integration), MSI (medium scale integration), or LSI
(large scale integration) categories depending on the density of integration. SSI referred to
ICs with 1 to 20 gates, MSI referred to ICs with 20 to 200 gates, and LSI referred to devices
with 200 to a few thousand gates. Many popular building blocks, such as adders, multiplexers,
decoders, registers, and counters, are available as MSI standard parts. When the term VLSI
was coined, devices with 10,000 gates were called VLSI chips. The boundaries between the
different categories are fuzzy today. Many modern microprocessors contain more than 100
million transistors. Compared to what was referred to as VLSI in its initial days, modern
integration capability could be described as ULSI (ultra large scale integration). Despite the
changes in integration ability and the fuzzy de�nition, the term VLSI remains popular, while
terms like LSI are not practically used any more.

As digital systems have become more complex, detailed design of the systems at the
gate and �ip-�op level has become very tedious and time-consuming. Two or three decades
ago, digital systems were created using hand-drawn schematics, bread-boards, and wires that
were connected to the bread-board. Now, hardware design often involves no hands-on tasks
with bread-boards and wires.

This chapter, �rst presents an introduction to computer-aided design, followed by an
introduction to hardware description languages. Basic features of VHDL are presented, and
examples are presented to illustrate how digital hardware is described, simulated, and syn-
thesized using VHDL. Advanced features of VHDL are presented in Chapter 8.

2.1 Computer-Aided Design
Computer-aided design (CAD) tools have advanced signi�cantly in the past decade, and
nowadays, digital design is performed using a variety of software tools. Prototypes or even
�nal designs can be created without discrete components and interconnection wires.

Figure 2-1 illustrates the steps in modern digital system design. Like any engineering
design, the �rst step in the design �ow is formulating the problem, stating the design require-
ments, and arriving at the design speci�cation. The next step is to formulate the design at a
conceptual level, either at a block diagram level or at an algorithmic level.

Design entry is the next step in the design �ow. In olden days, this would have been a
hand-drawn schematic or blueprint. Now with CAD tools, the design conceptualized in the
previous step needs to be entered into the CAD system in an appropriate manner. Designs

40 Chapter 2 Introduction to VHDL

FIGURE 2-1: Design
Flow in Modern Digital
System Design

Requirements

Design speci�cations

Design entry
VHDL, Verilog, schematic capture

Simulation

Logic synthesis

Post synthesis simulation

Mapping, placement, routing

FPGA programming unit

Con�gured FPGAsASIC masks

Design formulation

can be entered in multiple forms. A few years ago, CAD tools used to provide a graphical
method to enter designs. This was called schematic capture. The schematic editors typically
were supplemented with a library of standard digital building blocks like gates, �ip-�ops,
multiplexers, decoders, counters, registers, and so on. ORCAD (a company that produced
design automation tools) provided a very popular schematic editor. Nowadays, hardware
description languages (HDLs) are used to enter designs. Two popular HDLs are VHDL and
Verilog. The acronym VHDL stands for VHSIC hardware description language, and VHSIC
in turn stands for very high speed integrated circuit.

A hardware description language allows a digital system to be designed and debugged
at a higher level of abstraction than schematic capture with gates, �ip-�ops, and standard
MSI building blocks. The details of the gates and �ip-�ops do not need to be handled during
early phases of design. A design can be entered in what is called a behavioral description of
the design. In a behavioral HDL description, one only speci�es the general working of the
design at a �ow-chart or algorithmic level without associating to any speci�c physical parts,
components, or implementations. Another method to enter a design in VHDL, and Verilog
is the structural description entry. In structural design, speci�c components or speci�c imple-
mentations of components are associated with the design. A structural VHDL or Verilog
model of a design can be considered as a textual description of a schematic diagram that you
would have drawn interconnecting speci�c gates and �ip-�ops.

Once the design has been entered, it is important to simulate it to con�rm that the
conceptualized design does function correctly. Initially, one should perform the simulation

2.1 Computer-Aided Design 41

at the high-level behavioral model. This early simulation unveils problems in the initial
design. If problems are discovered, the designer goes back and alters the design to meet the
requirements.

Once the functionality of the design has been veri�ed through simulation, the next step is
synthesis. Synthesis means “conversion of the higher-level abstract description of the design
to actual components at the gate and �ip-�op level.” Use of computer-aided design tools to
do this conversion (a.k.a. synthesis) is becoming widespread. The output of the synthesis
tool, consisting of a list of gates and a list of interconnections specifying how to interconnect
them, is often referred to as a netlist. Synthesis is analogous to writing software programs in a
high-level language such as C and then using a compiler to convert the programs to machine
language. Just like a C compiler can generate optimized or unoptimized machine code, a
synthesis tool can generate optimized or unoptimized hardware. The synthesis software
generates different hardware implementations, depending on algorithms embedded in the
software to perform the translation and optimization techniques incorporated into the tool.
A synthesis tool is nothing but a compiler to convert design descriptions to hardware, and
it is not unusual to name synthesis packages with phrases similar to design compiler, silicon
compiler, and so on.

The next step in the design �ow is post-synthesis simulation. The earlier simulation at a
higher level of abstraction does not take into account speci�c implementations of the hard-
ware components that the design is using. If post-synthesis simulation unveils problems, one
should go back and modify the design to meet timing requirements. Arriving at a proper
design implementation is an iterative process.

Next, a designer moves into speci�c realizations of the design. A design can be imple-
mented in several different target technologies. It could be a completely custom IC or it could
be implemented in a standard part that is easily available from a vendor. The target technolo-
gies that are commonly available now are illustrated in Figure 2-2.

FIGURE 2-2: Spectrum
of Design Technologies

Off-the-shelf
gates, �ip-�ops, and

standard logic
elements

PALs, PLAs, PLDs

Complex PLDS
(CPLDs)

Field
programmable gate

arrays (FPGAs)

Mask
programmable gate

arrays (MPGAs)

Custom ASIC

SoC

C
os

t,
de

si
gn

 ti
m

e,
 a

nd
 s

pe
ed

Density and degree of customization

42 Chapter 2 Introduction to VHDL

At the lowest level of sophistication and density is an old-fashioned printedcircuit board
with off-the-shelf gates, �ip-�ops, and other standard logic building blocks. Slightly higher in
density are programmable logic arrays (PLAs), programmable array logic (PAL), and simple
programmable logic devices (SPLDs). PLDs with higher density and gate count are called
complex programmable logic devices (CPLDs). Then there are the popular �eld program-
mable gate arrays (FPGAs) and mask programmable gate arrays (MPGAs), or simply gate
arrays. The highest level of density and performance is a fully custom application-speci�c
integrated circuit (ASIC) SoC.

Two most common target technologies nowadays are FPGAs and ASICs. The initial
steps in the design �ow are largely the same for either realization. Toward the �nal stages in
the design �ow, different operations are performed, depending on the target technology. This
is indicated in Figure 2-1. The design is mapped into speci�c target technology and placed
into speci�c parts in the target ASIC or FPGA. The paths taken by the connections between
components are decided during the routing. If an ASIC is being designed, the routed design is
used to generate a photomask that will be used in the IC manufacturing process. If a design is
to be implemented in an FPGA, the design is translated to a format, specifying what is to be
done to various programmable points in the FPGA. In modern FPGAs, programming simply
involves writing a sequence of 0’s and 1’s into the programmable cells in the FPGA, and no
speci�c programming unit other than a personal computer (PC) is required.

2.2 Hardware Description Languages
Hardware description languages (HDLs) are a popular mode of design entry. As mentioned
previously, two popular HDLs are VHDL and Verilog. This book uses VHDL for illustrating
principles of modern digital system design.

VHDL is a hardware description language used to describe the behavior and structure of
digital systems. VHDL is a general-purpose HDL that can be used to describe and simulate
the operation of a wide variety of digital systems, ranging in complexity from a few gates to an
interconnection of many complex integrated circuits. VHDL was originally developed under
funding from the Department of Defense (DoD) to allow a uniform method for specifying
digital systems. When VHDL was developed, the main purpose was to have a mechanism
to describe and document hardware unambiguously. Synthesizing hardware from high-level
descriptions was not one of the original purposes. The VHDL language has since become
an IEEE (Institute of Electronic and Electrical Engineers) standard, and it is widely used
in industry. IEEE created a VHDL standard in 1987 (VHDL-87) and later modi�ed the
standard in 1993 (VHDL-93). Further revisions were done to the standard in 2000 and 2002.

VHDL can describe a digital system at several different levels—behavioral, data �ow,
and structural. For example, a binary adder could be described at the behavioral level in
terms of its function of adding two binary numbers without giving any implementation
details. The same adder could be described at the data �ow level by giving the logic equations
for the adder. Finally, the adder could be described at the structural level by specifying the
gates and the interconnections between the gates that comprise the adder.

VHDL leads naturally to a top-down design methodology, in which the system is �rst
speci�ed at a high level and tested using a simulator. After the system is debugged at this
level, the design can gradually be re�ned, eventually leading to a structural description
closely related to the actual hardware implementation. VHDL was designed to be technol-
ogy independent. If a design is described in VHDL and implemented in today’s technology,
the same VHDL description could be used as a starting point for a design in some future

2.2 Hardware Description Languages 43

technology. Although initially conceived as a hardware documentation language, most of
VHDL can now be used for simulation and logic synthesis.

Verilog is another popular HDL. It was developed by the industry at about the same time
the U.S. Department of Defense (DoD) was funding the creation of VHDL. Verilog was
introduced by Gateway Design Automation in 1984 as a proprietary HDL. Synopsis created
synthesis tools for Verilog around 1988. Verilog became an IEEE standard in 1995.

VHDL has its syntactic roots in ADA while Verilog has its syntactic roots in C. ADA was
a general-purpose programming language, also sponsored by the Department of Defense.
Due to the similarity with C, some �nd Verilog easier or less intimidating to learn. Many �nd
VHDL to be excellent for supporting design and documentation of large systems. VHDL
and Verilog enjoy approximately 50/50 market share. Both languages can accomplish most
requirements for digital design rather easily. Often design companies continue to use what
they are used to, and hence, Verilog users continue to use Verilog, and VHDL users continue
to use VHDL. If you know one of these languages, it is not dif�cult to transition to the other.

More recently, there also have been efforts in system design languages such as System C,
Handel-C, and System Verilog. System C is created as an extension to C11, and hence some
who are very comfortable with general-purpose software development �nd it less intimidat-
ing. System Verilog includes Verilog and several additional constructs for functional veri�ca-
tion. These languages are primarily targeted at describing large digital systems at a high level
of abstraction. They are primarily used for veri�cation and validation. When different parts
of a large system are designed by different teams, one team can use a system level behavioral
description of the block being designed by the other team during initial design. Problems
that might otherwise become obvious only during system integration may become evident in
early stages reducing the design cycle for large systems. System-level simulation languages
are used during design of large systems.

2.2.1 Learning a Language
There are several challenges when you learn a new language, whether it be a lan-guage for
common communication (English, Spanish, French, etc.), a computerlanguage like C, or a
special-purpose language such as VHDL. If it is not your �rst language, you typically have a
tendency to compare it to a language you know. In the case of VHDL, if you already know
another hardware description language, it is good to compare it with VHDL, but you should
be careful when comparing it with languages like C. VHDL and Verilog have a very differ-
ent purpose than languages like C, and a comparison with C is not a meaningful activity. We
will be describing the language, assuming it is your �rst HDL; however, we will assume basic
knowledge of computer languages like C and the basic compilation and execution �ow.

When one learns a new language, one needs to study the alphabet of the new language,
its vocabulary, grammar, syntax rules, and semantics of language descriptions. The process of
learning VHDL is not much different. One needs to learn the alphabet, vocabulary or lexical
elements of the language, syntax (grammar and rules), and semantics (meaning of descrip-
tions). VHDL-87 uses the ASCII character set while VHDL-93 allows use of the full ISO
character set. The ISO character set includes the ASCII characters and additionally includes
accented characters. The ASCII character set only includes the �rst 128 characters of the ISO
character set. The lexical elements of the language include various identi�ers, reserved words,
special symbols, and literals. We have listed these in Appendix A. The syntax or grammar
determines what combinations of lexical elements can be combined to make valid VHDL
descriptions. These are the rules that govern the use of different VHDL constructs. Then
one needs to understand the semantics or meaning of VHDL descriptions. It is here that one

44 Chapter 2 Introduction to VHDL

understands what descriptions represent combinational hardware versus sequential hardware.
And just like �uency in a natural language comes by speaking, reading, and writing the lan-
guage, mastery of VHDL comes by repeated use of the language to create models for various
digital systems.

Since VHDL is a hardware description language, it differs from an ordinary programming
language in several ways. Most importantly, VHDL has statements that execute concurrently
since they must model real hardware in which the components are all in operation at the same
time. VHDL is popularly used for the purposes of describing, documenting, simulating, and
automatically generating hardware. Hence, its constructs are tailored for these purposes. We
will present the various methods to model different kinds of digital hardware, using examples
in the following sections.

Common Abbreviations

VHDL: VHSIC hardware description language
VHSIC: Very high speed integrated circuit
HDL: Hardware description language
CAD: Computer-aided design
EDA: Electronic design automation
LSI: Large scale integration
MSI: Medium scale integration
SSI: Small scale integration
VLSI: Very large scale integration
ULSI: Ultra large scale integration
ASCII: American standard code for information interchange
ISO: International Standards Organization
ASIC: Application-speci�c integrated circuit
FPGA: Field programmable gate array
PLA: Programmable logic array
PAL: Programmable array logic
PLD: Programmable logic device
CPLD: Complex programmable logic device

2.3 VHDL Description of Combinational Circuits
The biggest dif�culty in modeling hardware, using a general-purpose computer language, is
representing concurrently operating hardware. Computer programs that you are normally
accustomed to are sequences of instructions with a well-de�ned order. At any point of time
during execution, the program is at a speci�c point in its �ow, and it encounters and executes
different parts of the program sequentially. In order to model combinational circuits, which
have several gates (all of which are working simultaneously), one needs to be able to “simu-
late” the execution of several parts of the circuit at the same time.

VHDL models combinational circuits by what are called concurrent statements. Concur-
rent statements are statements which are always ready to execute. These are statements,
which get evaluated any time and every time a signal on the right side of the statement
changes.

2.3 VHDL Description of Combinational Circuits 45

We will start by describing a simple gate circuit in VHDL. If each gate in the circuit of
Figure 2-3 has a 5-ns propagation delay, the circuit can be described by two VHDL state-
ments as shown, where A, B, C, D, and E are signals. A signal in VHDL usually corresponds
to a signal in a physical system. The symbol “,5” is the signal assignment operator, which
indicates that the value computed on the right side is assigned to the signal on the left side.
When the statements in Figure 2-3 are simulated, the �rst statement will be evaluated any-
time A or B changes, and the second statement will be evaluated anytime C or D changes.
Suppose that initially A 5 1 and B 5 C 5 D 5 E 5 0. If B changes to 1 at time 0, C will
change to 1 at time 5 5 ns. Then E will change to 1 at time 5 10 ns.

VHDL signal assignment statements, like the ones in the preceding example, are
 examples of concurrent statements. The VHDL simulator monitors the right side of each
concurrent statement, and anytime a signal changes, the expression on the right side is
immediately re-evaluated. The new value is assigned to the signal on the left side after an
appropriate delay. This is exactly the way the hardware works. Anytime a gate input changes,
the gate output is recomputed by the hardware, and the output changes after the gate delay.
The location of the concurrent statement in the program is not important.

When we initially describe a circuit, we may not be concerned about propagation delays.
If we write

C <= A and B;
E <= C or D;

this implies that the propagation delays are 0 ns. In this case, the simulator will assume an in�n-
itesimal delay referred to as D (delta). Assume that initially A 5 1 and B 5 C 5 D 5 E 5 0.
If B is changed to 1 at time 5 1 ns, then C will change at time 1 1 D and E will change at
time 1 1 2D.

Unlike a sequential program, the order of the preceding concurrent statements is
 unimportant. If we write

E <= C or D;
C <= A and B;

the simulation results would be exactly the same as before.
In general, a signal assignment statement has the form

signal_name <= expression [after delay];

The expression is evaluated when the statement is executed, and the signal on the left
side is scheduled to change after delay. The square brackets indicate that after delay
is optional; they are not part of the statement. If after delay is omitted, then the signal
is scheduled to be updated after a delta delay. Note that the time at which the statement
executes and the time at which the signal is updated are not the same.

Even if a VHDL program has no explicit loops, concurrent statements may execute
repeatedly as if they were in a loop. Figure 2-4 shows an inverter with the output connected
back to the input. If the output is '0', then this '0' feeds back to the input, and the inverter out-
put changes to '1' after the inverter delay, assumed to be 10 ns. Then the '1' feeds back to the

FIGURE 2-3: A Simple
Gate Circuit

A
B

C

D
E C <= A and B after 5 ns;

E <= C or D after 5 ns;

46 Chapter 2 Introduction to VHDL

input and the output changes to '0' after the inverter delay. The signal CLK will continue to
oscillate between '0' and '1' as shown in the waveform. The corresponding concurrent VHDL
statement will produce the same result. If CLK is initialized to '0', the statement executes
and CLK changes to '1' after 10 ns. Since CLK has changed, the statement executes again,
and CLK will change back to '0' after another 10 ns. This process will continue inde�nitely.

The statement in Figure 2-4 generates a clock waveform with a half period of 10 ns. On
the other hand, the concurrent statement

CLK <= not CLK;

will cause a run-time error during simulation. Since there is 0 delay, the value of CLK will
change at times 0 1 D, 0 1 2D, 0 1 3D, and so on. Since D is an in�nitesimal time, time will
never advance to 1 ns.

In general, VHDL is not case sensitive; that is, uppercase and lowercase letters are
treated the same by the compiler and by the simulator. Thus, the statements

Clk <= NOT clk After 10 ns;

and

CLK <= not CLK after 10 ns;

would be treated exactly the same. Signal names and other VHDL identi�ers may contain
letters, numbers, and the underscore character (_). An identi�er must start with a letter, and
it cannot end with an underscore. Thus C123 and ab_23 are legal identi�ers, but 1ABC and
ABC_ are not. Every VHDL statement must be terminated with a semicolon. Spaces, tabs,
and carriage returns are treated in the same way. This means that a VHDL statement can
be continued over several lines, or several statements can be placed on one line. In a line of
VHDL code, anything following a double dash (——) is treated as a comment. Words such
as and, or, and after are reserved words (or keywords) which have a special meaning to the
VHDL compiler. In this text, we will put all reserved words in boldface type.

Figure 2-5 shows three gates that have the signal A as a common input and the corre-
sponding VHDL code. The three concurrent statements execute simultaneously whenever A

FIGURE 2-4: Inverter
with Feedback

CLK

10 20 30 40 50 60

CLK

CLK <= not CLK after 10 ns;

FIGURE 2-5: Three
Gates with a Common
Input and Different
Delays

B

C

D

EA

F

-- when A changes, these concurrent
-- statements all execute at the
-- same time
 D <= A and B after 2 ns;
 E <= not A after 1 ns;
 F <= A or C after 3 ns;

2.4 VHDL Modules 47

changes, just as the three gates start processing the signal change at the same time. However,
if the gates have different delays, the gate outputs can change at different times. If the gates
have delays of 2 ns, 1 ns, and 3 ns, respectively, and A changes at time 5 ns, then the gate
outputs D, E, and F can change at times 7 ns, 6 ns, and 8 ns, respectively. The VHDL state-
ments work in the same way. Even though the statements execute simultaneously, the signals
D, E, and F are updated at times 7 ns, 6 ns, and 8 ns. However, if no delays were speci�ed,
then D, E, and F would all be updated at time 5 1 D.

In the preceding examples, every signal is of type bit, which means it can have a value of
'0' or '1'. (Bit values in VHDL are enclosed in single quotes to distinguish them from integer
values.)

In digital design, we often need to perform the same operation on a group of signals. A
one-dimensional array of bit signals is referred to as a bit-vector. If a 4-bit vector named B
has an index range 0 through 3, then the four elements of the bit-vector are designated B(0),
B(1), B(2), and B(3). One can declare a bit-vector using a statement such as:

B: in bit_vector(3 downto 0);

The statement B <= "1100" assigns '1' to B(3), '1' to B(2), '0' to B(1), and '0' to B(0).
Figure 2-6 shows an array of four AND gates. The inputs are represented by bit-vectors

A and B, and the output by bit-vector C. Although we can write four VHDL statements to
represent the four gates, it is much more ef�cient to write a single VHDL statement that
performs the and operation on the bit-vectors A and B. When applied to bit-vectors, the and
operator performs the and operation on corresponding pairs of elements.

FIGURE 2-6: Array of
AND Gates

A(3)
B(3)

A(2)
B(2)

A(1)
B(1)

A(0)
B(0)

C(3)

C(2)

C(1)

C(0)

-- the hard way
C(3) <= A(3) and B(3);
C(2) <= A(2) and B(2);
C(1) <= A(1) and B(1);
C(0) <= A(0) and B(0);

-- the easy way assuming C, A and
-- B are 4-bit bit-vectors

C <= A and B;

2.4 VHDL Modules
The general structure of a VHDL module is an entity description and an architecture
description. The entity description declares the input and output signals, and the architec-
ture description speci�es the internal operation of the module. As an example, consider
 Figure 2-7. The entity declaration gives the name two_gates to the module. The port decla-
ration speci�es the inputs and outputs to the module. A, B, and D are input signals of type
bit, and E is an output signal of type bit. The architecture is named gates. The signal C is

48 Chapter 2 Introduction to VHDL

declared within the architecture since it is an internal signal. The two concurrent statements
that describe the gates are placed between the keywords begin and end.

The entity description can be considered as the black box picture of the module being
designed and its external interface (i.e., it represents the interconnections from this module
to the external world, as in Figure 2-8).

FIGURE 2-7: VHDL
Module with Two Gates C

D

A

B E
entity two_gates is
 port(A, B, D: in bit; E: out bit);
end two_gates;

architecture gates of two_gates is
signal C: bit;
begin
 C <= A and B; -- concurrent
 E <= C or D; -- statements
end gates;

FIGURE 2-8: Black Box
View of the Two-Gate
Module

A

B

D

E

Just as in the preceding simple example, when we describe a system in VHDL, we must
specify an entity and architecture at the top level and also specify an entity and architecture
for each of the component modules that are part of the system (see Figure 2-9). Each entity
declaration includes a list of interface signals that can be used to connect to other modules
or to the outside world. We will use entity declarations of the form

entity entity-name is
 [port(interface-signal-declaration);]
end [entity] [entity-name];

The items enclosed in square brackets are optional. The interface-signal-
declaration normally has the following form:

list-of-interface-signals: mode type [:= initial-value]
{; list-of-interface-signals: mode type [:= initial-value]};

The curly brackets indicate zero or more repetitions of the enclosed clause. Mode indi-
cates the direction of information; whether information is �owing into the port or out of
it. Input port signals are of mode in, output port signals are of mode out, and bidirectional
signals are of mode inout. Type speci�es the data type or kind of information that can be
communicated. So far, we have only used type bit and bit-vector; other types are described in
Section 2.10. The optional initial-value is used to initialize the signals on the associated

2.4 VHDL Modules 49

list; otherwise, the default initial value is used for the speci�ed type. For example, the port
declaration

port(A, B: in integer := 2; C, D: out bit);

indicates that A and B are input signals of type integer that are initially set to 2, and C and
D are output signals of type bit that are initialized by default to '0'. These initial values are
signi�cant only for simulation and not for synthesis.

In addition to in, out, and inout modes, there are two other modes: buffer and linkage.
The buffer mode is similar to inout mode, in that it can be read and written into in the entity.
The buffer mode is useful if a signal is truly an output, but we would like to read the ports
internally as well. A linkage port is useful when VHDL entities are connected to non-VHDL
entities. Both of these modes involve several restrictions, and we generally restrict ourselves
to in, out, and inout modes.

Associated with each entity is one or more architecture declarations of the form

architecture architecture-name of entity-name is
 [declarations]
begin
 architecture body
end [architecture] [architecture-name];

In the declarations section, we can declare signals and components that are used
within the architecture. The architecture body contains statements that describe the opera-
tion of the module.

Next, we will write the entity and architecture for a full adder module. A full adder adds
2 bits and a carry input to generate a sum bit and a carry output bit. The entity speci�es the
inputs and outputs of the adder module as shown in Figure 2-10. The port declaration speci-
�es that X, Y, and Cin are input signals of type bit, and that Cout and Sum are output signals
of type bit.

FIGURE 2-9: VHDL
Program Structure Entity

Architecture

Entity
Architecture

Module 1

Entity
Architecture

Module 2

Entity
Architecture

Module N

...

FIGURE 2-10: Entity
Declaration for a Full
Adder Module

 Full
adder

X

Y

Cin

Cout

Sum

entity FullAdder is
 port(X, Y, Cin: in bit; --Inputs
 Cout, Sum: out bit); --Outputs
end FullAdder;

50 Chapter 2 Introduction to VHDL

The operation of the full adder is speci�ed by an architecture declaration:

architecture Equations of FullAdder is
begin -- concurrent assignment statements
 Sum <= X xor Y xor Cin after 10 ns;
 Cout <= (X and Y) or (X and Cin) or (Y and Cin) after 10 ns;
end Equations;

In this example, the architecture name (Equations) is arbitrary, but the entity name
(FullAdder) must match the name used in the associated entity declaration. The VHDL
assignment statements for Sum and Cout represent the logic equations for the full adder.
Several other architectural descriptions, such as a truth table or an interconnection of gates,
could have been used instead. In the Cout equation, parentheses are required around (X and
Y) since VHDL does not specify an order of precedence for the logic operators except the
NOT operator.

2.4.1 Four-Bit Full Adder
Next, we will show how to use the FullAdder module de�ned above as a component in
a system, which consists of four full adders connected to form a 4-bit binary adder (see
Figure 2-11). We �rst declare the 4-bit adder as an entity (see Figure 2-12). Since the inputs
and the sum output are 4 bits wide, we declare them as bit-vectors which are dimensioned
3 downto 0. (We could have used a range 1 to 4 instead).

FIGURE 2-11: Four-Bit
Binary Adder

Full
adder

Full
adder

CiCo
C1C2C3

S3 S2 S1 S0

B0A0B1A1B2A2A3 B3

Full
adder

Full
adder

Next, we specify the FullAdder as a component within the architecture of Adder4
(Figure 2-12). The component speci�cation is very similar to the entity declaration for the
full adder, and the input and output port signals correspond to those declared for the full
adder. Any time a module created in one part of the code has to be used in another part, a
component declaration needs to be used. The component declaration does not need to be in
the same �le where you are using the component. It can be where the component entity and
architecture are de�ned. It is typical to create libraries of components for reuse in code, and
typically the component declarations are placed in the library �le.

Following the component statement, we declare a 3-bit internal carry signal C. In the
body of the architecture, we create several instances of the FullAdder component. (In

2.4 VHDL Modules 51

CAD jargon, we “instantiate” four copies of the FullAdder.) Each copy of FullAdder has
a name (such as FA0) and a port map. The signal names following the port map correspond
one-to-one with the signals in the component port. Thus, A(0), B(0), and Ci correspond to
the inputs X, Y, and Cin, respectively. C(1) and S(0) correspond to the Cout and Sum outputs.
Note that the order of the signals in the port map must be the same as the order of the signals
in the port of the component declaration.

FIGURE 2-12: Structural Description of a 4-Bit Adder

entity Adder4 is
 port(A, B: in bit_vector(3 downto 0); Ci: in bit; -- Inputs
 S: out bit_vector(3 downto 0); Co: out bit); -- Outputs
end Adder4;
architecture Structure of Adder4 is
component FullAdder
 port (X, Y, Cin: in bit; -- Inputs
 Cout, Sum: out bit); -- Outputs
end component;
signal C: bit_vector(3 downto 1); -- C is an internal signal
begin --instantiate four copies of the FullAdder
 FA0: FullAdder port map (A(0), B(0), Ci, C(1), S(0));
 FA1: FullAdder port map (A(1), B(1), C(1), C(2), S(1));
 FA2: FullAdder port map (A(2), B(2), C(2), C(3), S(2));
 FA3: FullAdder port map (A(3), B(3), C(3), Co, S(3));
end Structure;

In preparation for simulation, we can place the entity and architecture for the
 FullAdder and for Adder4 together in one �le and compile. Alternatively, we could
compile the FullAdder separately and place the resulting code in a library which is linked
in when we compile Adder4.

All of the simulation examples in this text use the ModelSim VHDL simulator from
Mentor Graphics. Most other VHDL simulators use similar command �les and can produce
output in a similar format. We will use the following simulator commands to test Adder4:

add list A B Co C Ci S -- put these signals on the output list
force A 1111 -- set the A inputs to 1111
force B 0001 -- set the B inputs to 0001
force Ci 1 -- set Ci to 1
run 50 ns -- run the simulation for 50 ns
force Ci 0
force A 0101
force B 1110
run 50 ns

52 Chapter 2 Introduction to VHDL

The listing shows how the carry propagates one position every 10 ns. The full adder
inputs change at time 5 D:

FA3 FA2 FA1

0 0 0

FA0

0

1 0 1 0 1 0 1 1

10000

Time = D

ns delta a b co c ci s

0 +0 0000 0000 0 000 0 0000

0 +1 1111 0001 0 000 1 0000

10 +0 1111 0001 0 001 1 1111

20 +0 1111 0001 0 011 1 1101

30 +0 1111 0001 0 111 1 1001

40 +0 1111 0001 1 111 1 0001

50 +0 0101 1110 1 111 0 0001

60 +0 0101 1110 1 110 0 0101

70 +0 0101 1110 1 100 0 0111

80 +0 0101 1110 1 100 0 0011

We have chosen to run the simulation for 50 ns since this is more than enough time for
the carry to propagate through all of the full adders. The simulation results for the preceding
command list are as follows:

The sum and carry are computed by each FA and appear at the FA outputs 10 ns later:

FA3 FA2 FA1 FA0

1 1 1 1

1 0 1 0 1 0 1 1

1100
Time = 10

0

Since the inputs to FA1 have changed, the outputs change 10 ns later:

FA3 FA2 FA1 FA0

1 1 0 1

1 0 1 0 1 0 1 1

1110
Time = 20

0

The �nal simulation results are

 1111 1 0001 1 1 5 0001 with a carry of 1 1at time 5 40 ns 2 and

 0101 1 1110 1 0 5 0011 with a carry of 1 1at time 5 80 ns 2
The simulation stops at 80 ns since no further changes occur after that time.

2.4 VHDL Modules 53

In this section we have shown how to construct a VHDL module using an entity-
architecture pair. The 4-bit adder module demonstrates the use of VHDL components to
write structural VHDL code. Components used within the architecture are declared at the
start of the architecture using a component declaration of the form

component component-name
 port(list-of-interface-signals-and-their-types);
end component;

The port clause used in the component declaration has the same form as the port clause
used in an entity declaration. The connections to each component used in a circuit are speci-
�ed using a component instantiation statement of the form

label: component-name port map (list-of-actual-signals);

The list of actual signals must correspond one-to-one to the list of interface signals speci�ed
in the component declaration.

2.4.2 Use of “Buffer” Mode
Let us consider the example in Figure 2-13. Assume that all variables are 0 at 0 ns, but A
changes to 1 at 10 ns.

FIGURE 2-13: VHDL Code That Will Not Compile

entity gates is
 port(A, B, C: in bit; D, E: out bit);
end gates;

architecture example of gates is
begin
 D <= A or B after 5 ns; -- statement 1
 E <= C or D after 5 ns; -- statement 2
end example;

The code in Figure 2-13 will not actually compile, simulate, or synthesize in most tools
because D is declared only as an output. Statement 2 uses D on the right side of the assignment.
Hence, D should be either inout or buffer mode as in Figure 2-14. Use of inout mode results in
the synthesis tools creating a truly bidirectional signal. In actuality, D is not an external input to

FIGURE 2-14: VHDL Code Illustrating Use of Mode Buffer

entity gates is
 port(A, B, C: in bit; D: buffer bit; E: out bit);
end gates;

architecture example of gates is
begin
 D <= A or B after 5 ns; -- statement 1
 E <= C or D after 5 ns; -- statement 2
end example;

54 Chapter 2 Introduction to VHDL

the circuit, and hence the mode buffer is more appropriate. The mode buffer indicates a signal
that is an output to the external world; however, its value can also be read inside the entity's
architecture. The following code uses buffer mode for signal D instead of out mode.

All signals remain at '0' until time 10 ns. The change in A at 10 ns results in statement
1 reevaluating. The value of D becomes '1' at time equal to 15 ns. The change in D at time
15 ns results in statement 2 reevaluating. Signal E changes to '1' at time 20 ns. The description
represents two gates, each with a delay of 5 ns.

2.5 Sequential Statements and VHDL Processes
The concurrent statements from the previous section are useful in modeling combinational
logic. Combinational logic constantly reacts to input changes. In contrast, synchronous
sequential logic responds to changes dependent on the clock. Many input changes might be
ignored since output and state changes occur only at valid conditions of the clock. Model-
ing sequential logic requires primitives to model selective activity conditional on clock,
edge- triggered devices, sequence of operations, and so on. In this unit, we will learn VHDL
processes which help to model sequential logic.

A VHDL process has the following basic form:

process(sensitivity-list)
begin
 sequential-statements
end process;

When a process is used, the statements between the begin and the end are executed
sequentially. The expression in parentheses after the word process is called a sensitivity list,
and the process executes whenever any signal in the sensitivity list changes. For example, if
the process begins with process (A, B, C), then the process executes whenever any
one of A, B, or C changes. Whenever one of the signals in the sensitivity list changes, the
sequential statements in the process body are executed in sequence one time. When a process
�nishes executing, it goes back to the beginning and waits for a signal on the sensitivity list
to change again.

When the concurrent statements

C <= A and B; -- concurrent
E <= C or D; -- statements

are used in a process, they become sequential statements executed in the order in which
they appear in the process. Remember that when they were concurrent statements outside a
process, their sequence did not matter. But, if they are in a process, the sequence determines
the order of execution.

process(A, B, C, D)
begin
 C <= A and B; -- sequential
 E <= C or D; -- statements
end process;

The process executes once when any of the signals A, B, C, or D changes. If C changes
when the process executes, then the process will execute a second time because C is on the
sensitivity list.

2.6 Modeling Flip-Flops Using VHDL Processes 55

VHDL processes can be used for modeling combinational logic and sequential logic;
however, processes are not necessary for modeling combinational logic. They are, however,
required for modeling sequential logic. One should be very careful when using processes to
represent combinational logic. Consider the code in Figure 2-15, where a process is used. One
may write this code thinking of two cascaded gates; however, it does not actually represent
such a circuit.

The sensitivity list of the process only includes A, B, and C, the only external inputs to
the circuit. Let us assume that all variables are '0' at 0 ns. Then A changes to '1' at 10 ns. That
causes the process to execute. Both statements inside the process execute once sequentially,
but the change in D does not happen right at execution. Hence, execution of statement 2 is
with the value of D at the beginning of the process. D becomes '1' at 15 ns, but E stays at '0'.
Since the change in D does not propagate to signal E, this VHDL model is not equivalent to
two gates. If D was included in the sensitivity list of the process, the process would execute
again making E change at 20 ns. This would result in simulation outputs matching a circuitry
with cascaded gates, but it is preferable to realize gates using concurrent statements.

Understanding sequential statements and operation of processes will take several more
examples. In the next section, we explain how simple �ip-�ops can be modeled using pro-
cesses, and then we explain the basics of the VHDL simulation process. After that, we pres-
ent more examples illustrating the working of processes and the simulation process.

2.6 Modeling Flip-Flops Using VHDL Processes
A �ip-�op can change state either on the rising or on the falling edge of the clock input. This
type of behavior is modeled in VHDL by a process. For a simple D �ip-�op with a Q output
that changes on the rising edge of CLK, the corresponding process is given in Figure 2-16.

In Figure 2-16, whenever CLK changes, the process executes once through and then waits
at the start of the process until CLK changes again. The if statement tests for a rising edge
of the clock, and Q is set equal to D when a rising edge occurs. The expression CLK'event
is used to accomplish the functionality of an edge-triggered device. The expression 'event

FIGURE 2-15: VHDL Code with a Process

entity nogates is
 port(A, B, C: in bit;
 D: buffer bit;
 E: out bit);
end nogates;

architecture behave of nogates is
begin
 process(A, B, C)
 begin
 D <= A or B after 5 ns; -- statement 1
 E <= C or D after 5 ns; -- statement 2
 end process;
end behave;

56 Chapter 2 Introduction to VHDL

is a prede�ned attribute for any signal. There are two types of signal attributes in VHDL,
those that return values and those that return signals. The 'event attribute returns a value.
The expression CLK'event (read as “clock tick event”) is TRUE whenever the signal CLK
changes. If CLK = '1' is also TRUE, this means that the change was from '0' to '1', which
is a rising edge.

If VHDL is used only for simulation purposes, one might use a statement such as

if CLK = '1'
 ...

and obtain action corresponding to rising edge. However, when VHDL code is used to syn-
thesize hardware, this statement will result in latches, whereas the expression CLK'event
results in edge-triggered devices.

If the �ip-�op has a delay of 5 ns between the rising edge of the clock and the change in
the Q output, replace the statement Q <= D; with Q <= D after 5 ns; in the preceding
process.

The statements between begin and end in a process operate as sequential statements. In
the preceding process, Q <= D; is a sequential statement that only executes following the
rising edge of CLK. In contrast, the concurrent statement Q <= D; executes whenever D
changes. If one synthesizes the above process, the synthesizer infers that Q must be a �ip-�op
since it only changes on the rising edge of CLK. If one synthesizes the concurrent statement
Q <= D;, the synthesizer will simply connect D to Q with a wire or a buffer.

In Figure 2-16, note that D is not on the sensitivity list because changing D will not cause
the �ip-�op to change state. Figure 2-17 shows a transparent latch and its VHDL represen-
tation. Both G and D are on the sensitivity list since if G 5 '1', a change in D causes Q to
change. If G changes to '0', the process executes, but Q does not change.

FIGURE 2-16: VHDL
Code for a Simple D
Flip-Flop

Q

DCLK

DFF

process(CLK)
begin
 if CLK'event and CLK = '1' -- rising edge of CLK
 then Q <= D;
 end if;
end process;

FIGURE 2-17: VHDL
Code for a Transparent
Latch

QD

G

process(G, D)
begin
 if G = '1' then Q <= D; end if;
end process;

If a �ip-�op has an active-low asynchronous clear input (ClrN) that resets the �ip-�op
independently of the clock, then we must modify the process of Figure 2-16 so that it executes
when either CLK or ClrN changes. To do this, we add ClrN to the sensitivity list. The VHDL

2.6 Modeling Flip-Flops Using VHDL Processes 57

code for a D �ip-�op with asynchronous clear is given in Figure 2-18. Since the asynchronous
ClrN signal overrides CLK, ClrN is tested �rst, and the �ip-�op is cleared if ClrN is '0'. Oth-
erwise, CLK is tested, and Q is updated if a rising edge has occurred.

In the preceding examples, we have used two types of sequential statements—signal
assignment statements and if statements. The basic if statement has the form

if condition then
 sequential statements1
else sequential statements2
end if;

The condition is a Boolean expression which evaluates to TRUE or FALSE. If it is
TRUE, sequential statements1 are executed; otherwise, sequential state-
ments2 are executed.

VHDL if statements are sequential statements that can be used within a process, but
they cannot be used as concurrent statements outside of a process.

The most general form of the if statement is

if condition then
 sequential statements
{elsif condition then
 sequential statements}
 -- 0 or more elsif clauses may be included
[else sequential statements]
end if;

The curly brackets indicate that any number of elsif clauses may be included, and the
square brackets indicate that the else clause is optional. The example of Figure 2-19 shows
how a �ow chart can be represented using nested ifs or the equivalent using elsifs. In this
example, C1, C2, and C3 represent conditions that can be true or false, and S1, S2, …, S8
represent sequential statements. Each if requires a corresponding end if, but elsifs
do not.

Next, write a VHDL module for a J-K �ip-�op (Figure 2-20). This �ip-�op has active-
low asynchronous preset (SN) and clear (RN) inputs. State changes related to J and K occur
on the falling edge of the clock. In this chapter, we use a suf�x N to indicate an active-low
(negative-logic) signal. For simplicity, we will assume that the condition SN 5 RN 5 0 does
not occur.

FIGURE 2-18: VHDL
Code for a D Flip-Flop
with Asynchronous
Clear

Q

DCLK

ClrNDFF

process(CLK, ClrN)
begin
 if CLRn 5 '0' then Q <= '0';
 else if CLK'event and CLK = '1'
 then Q <= D;
 end if;
 end if;
end process;

58 Chapter 2 Introduction to VHDL

The VHDL code for the J-K �ip-�op is given in Figure 2-21. The port declaration in the
entity de�nes the input and output signals. Within the architecture we de�ne a signal Qint that
represents the state of the �ip-�op internal to the module. The two concurrent statements
after begin transmit this internal signal to the Q and QN outputs of the �ip-�op. We do
it this way because an output signal in a port cannot appear on the right side of an assign-
ment statement within the architecture. This is another solution to the problem presented
in Figure 2-13. The �ip-�op can change state in response to changes in SN, RN, and CLK,
so these three signals are in the sensitivity list of the process. Since RN and SN reset and set
the �ip-�op independently of the clock, they are tested �rst. If RN and SN are both '1', then

FIGURE 2-19:
Equivalent
Representations of
a Flow Chart Using
Nested Ifs and Elsifs

S1; S2;

S5; S6; S7; S8;

S3; S4;

C1

C3

C2

T F

T F

T F

if (C1) then S1; S2;
 else if (C2) then S3; S4;
 else if (C3) then S5; S6;
 else S7; S8;
 end if;
 end if;
end if;

if (C1) then S1; S2;
 elsif (C2) then S3; S4;
 elsif (C3) then S5; S6;
 else S7; S8;
end if;

FIGURE 2-20: J-K
Flip-Flop

JKFFRN SN

QN Q

JK CLK

2.7 Processes Using Wait Statements 59

we test for the falling edge of the clock. The condition (CLK'event and CLK = '0') is
TRUE only if CLK has just changed from '1' to '0'. The next state of the �ip-�op is deter-
mined by its characteristic equation:

Q1 5 JQ r 1 K rQ

FIGURE 2-21: J-K Flip-Flop Model

entity JKFF is
 port(SN, RN, J, K, CLK: in bit; -- inputs
 Q, QN: out bit);
end JKFF;

architecture JKFF1 of JKFF is
signal Qint: bit; -- Qint can be used as input or output
begin
 Q <= Qint; -- output Q and QN to port
 QN <= not Qint; -- combinational output
 -- outside process
 process(SN, RN, CLK)
 begin
 if RN = '0' then Qint <= '0' after 8 ns; -- RN = '0' will clear the FF
 elsif SN = '0' then Qint <= '1' after 8 ns; -- SN='0' will set the FF
 elsif CLK'event and CLK = '0' then -- falling edge of CLK
 Qint <= (J and not Qint) or (not K and Qint) after 10 ns;
 end if;
 end process;
end JKFF1;

The 8-ns delay represents the time it takes to set or clear the �ip-�op output after SN
or RN changes to '0'. The 10-ns delay represents the time it takes for Q to change after the
falling edge of the clock.

2.7 Processes Using Wait Statements
An alternative form for a process uses wait statements instead of a sensitivity list. A process
cannot have both wait statements and a sensitivity list. A process with wait statements may
have the form

process
begin
 sequential-statements
 wait-statement
 sequential-statements
 wait-statement
 . . .
end process;

60 Chapter 2 Introduction to VHDL

This process will execute the sequential-statements until a wait statement is
encountered. Then it will wait until the speci�ed wait condition is satis�ed. It will then
execute the next set of sequential-statements until another wait is encountered. It will
continue in this manner until the end of the process is reached. Then it will start over again
at the beginning of the process.

Wait statements can be of three different forms:

wait on sensitivity-list;
wait for time-expression;
wait until Boolean-expression;

The �rst form waits until one of the signals on the sensitivity-list changes. For example,
wait on A, B, C; waits until A, B, or C changes and then execution proceeds. The
second form waits until the time speci�ed by time-expression has lapsed. If wait for
5 ns is used, the process waits for 5 ns before continuing. If wait for 0 ns is used, the
wait is for one delta time. Wait statements of the form wait for xxx ns are useful for
writing VHDL code for simulation; however, they should not be used when writing VHDL
code for synthesis since they are not synthesizable. For the third form of wait statement, the
Boolean-expression is evaluated whenever one of the signals in the expression changes,
and the process continues execution when the expression evaluates to TRUE. For example,

wait until A = B;

will wait until either A or B changes. Then A = B is evaluated and if the result is TRUE,
the process will continue; otherwise, the process will continue to wait until A or B changes
again and A = B is TRUE.

A process cannot have both wait statements and a sensitivity list. It is not acceptable to
have some of the signals to be in a sensitivity list and others in wait statements.

After a VHDL simulator is initialized, it executes each process with a sensitivity list one
time through, and then waits at the beginning of the process for a change in one of the signals
on the sensitivity list. If a process has a wait statement, it will initially execute until a wait
statement is encountered. The following two processes are equivalent:

process(A, B, C, D) process
begin begin
 C <= A and B after 5 ns; C <= A and B after 5 ns;
 E <= C or D after 5 ns; E <= C or D after 5 ns;
end process; wait on A, B, C, D;
 end process;

The wait statement at the end of the process replaces the sensitivity list at the beginning.
In this way, both processes will initially execute the sequential statements one time and then
wait until A, B, C, or D changes.

The order in which sequential statements execute in a process is not necessarily the order
in which the signals are updated. Consider the following example:

process
begin
 wait until clk'event and clk = '1';
 A <= E after 10 ns; -- (1)
 B <= F after 5 ns; -- (2)

2.7 Processes Using Wait Statements 61

 C <= G; -- (3)
 D <= H after 5 ns; -- (4)
end process;

This process waits for a rising clock edge. Suppose the clock rises at time 5 20 ns. State-
ments (1), (2), (3), (4) immediately execute in sequence. A is scheduled to change to E at
time 5 30 ns; B is scheduled to change to F at time 5 25 ns; C is scheduled to change to G at
time 5 20 1 delta; and D is scheduled to change to H at time 25 ns. As the simulated time
advances, �rst C changes. Then B and D change at time 5 25 ns, and �nally A changes at
time 30 ns. When clk changes to '0', the wait statement is reevaluated, but it keeps waiting
until clk changes to '1', and then the remaining statements execute again.

If several VHDL statements in a process update the same signal at a given time, the last
value overrides. For example,

process(CLK)
begin
 if CLK'event and CLK = '0' then
 Q <= A; Q <= B; Q <= C;
 end if;
end process;

Every time CLK changes from '1' to '0', after delta time, Q will change to C.
A process must have either a sensitivity list or wait statements. The VHDL code in

 Figure 2-22 will not simulate because there is no sensitivity list or wait statement.

FIGURE 2-22: Example of VHDL Code That Will Not Simulate

entity gates is
 port(A, B, C: in bit; D, E: out bit);
end gates;

architecture exam of gates is
begin
 process
 begin
 D <= A or B after 2 ns;
 E <= not C and A;
 end process;
end exam;

In this section, we have introduced processes with sensitivity lists and processes with wait
statements. The statements within a process are called sequential statements because they
execute in sequence, in contrast with concurrent statements that execute only when a signal
on the right-hand-side changes. Signal assignment statements can be either concurrent or
sequential. However, if statements are always sequential.

62 Chapter 2 Introduction to VHDL

2.8 Two Types of VHDL Delays: Transport
and Inertial Delays
In one of the initial examples in this chapter, we used the statement

C <= A and B after 5 ns;

to model an AND gate with a propagation delay of 5 ns. The preceding statement will model
the AND gate’s delay; however, it also introduces some complication, which many readers
will not normally expect. If you simulate this AND gate with inputs that change very often
in comparison to the gate delay (e.g., at 1 ns, 2 ns, 3 ns, etc.), the simulation output will not
show the changes. This is due to how VHDL delays work.

VHDL provides two types of delays—transport delays and inertial delays. The default
delay is inertial delay; hence, the after clause in the preceding statement represents an inertial
delay. Inertial delays are slightly different from simple delays that readers normally assume.

Inertial delay is intended to model gates and other devices that do not propagate short
pulses from the input to the output. If a gate has an ideal inertial delay T, in addition to delay-
ing the input signals by time T, any pulse with a width less than T is rejected. For example,
if a gate has an inertial delay of 5 ns, a pulse of width 5 ns would pass through, but a pulse
of width 4.999 ns would be rejected. Real devices do not behave in this way. Perhaps they
would reject very narrow spurious pulses, but it might be unreasonable to assume that all
pulses narrower than the delay duration will be rejected. VHDL does allow one to model
devices which reject only very narrow pulses. Rejection of pulses of any arbitrary duration
up to the speci�ed inertial delay can be modeled by adding a reject clause to the assignment
statement. A statement of the form

signal_name <= reject pulse-width inertial expression after
 delay-time

evaluates the expression, rejects any pulses whose width is less than pulse-width, and then
sets the signal equal to the result after a delay of delay-time. In statements of this type, the
rejection pulse width must be less than the delay time.

The second type of VHDL delay is transport delay, which is intended to model the
delay introduced by wiring, simply delays an input signal by the speci�ed delay time. In
order to model this delay, the key word transport must be speci�ed in the code. Figure 2-23
 illustrates the difference between transport and inertial delays. Consider the following
VHDL statements:

Z1 <= transport X after 10 ns; -- transport delay
Z2 <= X after 10 ns; -- inertial delay
Z3 <= reject 4 ns inertial X after 10 ns;
 -- inertial delay with specified rejection pulse width

Z1 is the same as X, except that it is shifted 10 ns in time. Z2 is similar to Z1, except the
pulses in X shorter than 10 ns are �ltered out and do not appear in Z2. Z3 is the same as Z2,
except that only the pulses of width less than 4 ns have been rejected.

In general, using reject is equivalent to using a combination of an inertial delay and
a transport delay. The statement for Z3 given here could be replaced with the concurrent
statements:

Zm <= X after 4 ns; -- inertial delay rejects short pulses
Z3 <= transport Zm after 6 ns; -- total delay is 10 ns

2.9 Compilation, Simulation, and Synthesis of VHDL Code 63

Note that these delays are relevant only for simulation. Understanding how inertial delay
works can remove a lot of frustration in your initial experience with VHDL simulation. The
pulse rejection associated with inertial delay can inhibit many output changes. In simulations
with basic gates and simple circuits, one should make sure that test sequences you apply are
wider than the inertial delays of the modeled devices.

2.9 Compilation, Simulation, and Synthesis of VHDL Code
After describing a digital system in VHDL, simulation of the VHDL code is important for
two reasons. The �rst is to verify the VHDL code correctly implements the intended design
and second, to verify that the design meets its speci�cations. We �rst simulate the design
and then synthesize it to the target technology (e.g., FPGA or custom ASIC). This section,
�rst describes steps in simulation and then introduce synthesis. As illustrated in Figure 2-24,
there are three phases in the simulation of VHDL code: analysis (compilation), elaboration,
and simulation.

FIGURE 2-23: Transport
and Inertial Delays

Z1

0 10 20 30 40 50

X

Z2

Z3

10 ns

10 ns

5 ns

2 ns

3 ns

FIGURE 2-24:
Compilation,
Elaboration, and
Simulation of VHDL
Code SimulationCompiler

(analyzer)
Working
library

SimulatorElaborator

Simulator
commands

Simulator
output

Intermediate
VHDL
source

Resource
libraries

code code Data
structure

Before the VHDL model of a digital system can be simulated, the VHDL code must �rst
be compiled. The VHDL compiler, also called an analyzer, �rst checks the VHDL source code
to see that it conforms to the syntax and semantic rules of VHDL. If there is a syntax error,
such as a missing semicolon, or if there is a semantic error, such as trying to add two signals
of incompatible types, the compiler will output an error message. The compiler also checks to
see that references to libraries are correct. If the VHDL code conforms to all of the rules, the
compiler generates intermediate code, which can be used by a simulator or by a synthesizer.

64 Chapter 2 Introduction to VHDL

In preparation for simulation, the VHDL intermediate code must be converted to a form
which can be used by the simulator. This step is referred to as elaboration. During elabora-
tion, a driver is created for each signal. Each driver holds the current value of a signal and a
queue of future signal values. Each time a signal is scheduled to change in the future, the new
value is placed in the queue along with the time at which the change is scheduled. In addi-
tion, ports are created for each instance of a component; memory storage is allocated for the
required signals; the interconnections among the port signals are speci�ed; and a mechanism
is established for executing the VHDL statements in the proper sequence. The resulting data
structure represents the digital system being simulated.

The simulation process consists of an initialization phase and actual simulation. The
simulator accepts simulation commands, which control the simulation of the digital system
and which specify the desired simulator output. VHDL simulation uses what is known as
discrete event simulation. The passage of time is simulated in discrete steps in this method of
simulation. The initialization phase is used to give an initial value to the signal. During simu-
lation, the VHDL statements are executed and corresponding actions are scheduled. These
actions are called transactions, and the process is called scheduling a transaction. The sched-
uled action happens, not necessarily when the statement executes, but when the scheduled
time has been reached. A transaction does not mean that there is a change in the value of a
signal. The new value for the signal after the transaction may be the same as the old value. If
a change in the value occurs, we say that an event has taken place.

To facilitate correct initialization, the initial value can be speci�ed in the VHDL model.
In the absence of any speci�cations of the initial values, some simulator packages will assign
an initial value, depending on the type of the signal. Please note that this initialization is only
for simulation and not for synthesis. During initialization, simulation time is set to zero and
each process is activated. The process “executes,” scheduling corresponding transactions;
however, the scheduled transactions do not happen until one reaches the time at which the
scheduled transaction is to occur. Execution of a process happens once, and then the process
waits for a signal in the sensitivity list to change.

Understanding the role of the delta 1D 2 time delays is important when interpreting
output from a VHDL simulator. Although the delta delays do not show up on waveform
outputs from the simulator, they show up on listing outputs. The simulator uses delta delays
to make sure that signals are processed in the proper sequence. Basically, the simulator
works as follows: Whenever a component input changes, the output is scheduled to change
after the speci�ed delay, or after D if no delay is speci�ed. When all input changes have been
processed, simulated time is advanced to the next time at which an output change is speci-
�ed. When time is advanced by a �nite amount (1 ns for example), the D counter is reset and
simulation resumes. Real time does not advance again until all D delays associated with the
current simulation time have been processed.

The following example illustrates how the simulator works for the circuit of Figure 2-25.
Suppose that A changes at time 5 3 ns. Statement 1 executes and B is scheduled to change at

FIGURE 2-25:
Illustration of Delta
Delays during
Simulation of
Concurrent Statements

A B C D

1 B <= not A;
2 C <= not B;
3 D <= not C after 5 ns;

 ns delta A B C D
 0 10 0 1 0 1
 3 10 1 1 0 1
 3 11 1 0 0 1
 3 12 1 0 1 1
 8 10 1 0 1 0

2.9 Compilation, Simulation, and Synthesis of VHDL Code 65

time 3 1 D. Then time advances to 3 1 D, and statement 2 executes. C is scheduled to change
at time 3 1 2D. Time advances to 3 1 2D, and statement 3 executes. D is then scheduled to
change at 8 ns. You might think the change should occur at 13 1 2D 1 5 2 ns. However, when
time advances a �nite amount (as opposed to D, which is in�nitesimal), the D counter is reset.
For this reason, when events are scheduled a �nite time in the future, the Ds are ignored.
Since no further changes are scheduled after 8 ns, the simulator goes to an idle mode and
waits for another input change. The table gives the simulator output listing.

2.9.1 Simulation with Multiple Processes
If a model contains more than one process, all processes execute concurrently with other pro-
cesses. If there are concurrent statements outside processes, they also execute concurrently.
Statements inside of each process execute sequentially. A process takes no time to execute
unless it has wait statements in it. (Examples: wait for 10 ns, wait for 0 ns, and
wait on E.) Signals take delta time to update when no delay is speci�ed.

As an example of simulation of multiple processes, we trace execution of the VHDL code
shown in Figure 2-26. The keyword transport speci�es the type of delay as transport delay.

FIGURE 2-26: VHDL Code to Illustrate Process Simulation

entity simulation_example is
end simulation_example;

architecture test1 of simulation_example is
signal A,B: bit;
begin
 P1: process(B)
 begin
 A <= '1';
 A <= transport '0' after 5 ns;
 end process P1;

 P2: process(A)
 begin
 if A = '1' then B <= not B after 10 ns; end if;
 end process P2;
end test1;

Figure 2-27 shows the drivers for the signals A and B as the simulation progresses. After
elaboration is �nished, each driver holds '0', since this is the default initial value for a bit.
When simulation begins, initialization takes place. Both processes are executed simultane-
ously one time through, and then the processes wait until a signal on the sensitivity list
changes. When process P1 executes at zero time, two changes in A are scheduled (A changes
to '1' at time D and back to '0' at time 5 5 ns). Meanwhile, process P2 executes at zero time,
but no change in B occurs, since A is still '0' during execution at time 0 ns. Time advances to
D, and A changes to '1'. The change in A causes process P2 to execute, and since A 5 '1', B
is scheduled to change to '1' at time 10 ns. The next scheduled change occurs at time 5 5 ns,
when A changes to '0'. This change causes P2 to execute, but B does not change. B changes to
'1' at time 5 10 ns. The change in B causes P1 to execute, and 2 changes in A are scheduled.

66 Chapter 2 Introduction to VHDL

When A changes to '1' at time 10 1 D, process P2 executes, and B is scheduled to change at
time 20 ns. Then A changes at time 15 ns, and the simulation continues in this manner until
the run-time limit is reached. It should be understood that A changes at 15 ns and not at
15 1 D. The D delay comes into the picture only when no time delay is speci�ed.

VHDL simulators use event-driven simulation, as illustrated in the preceding example.
A change in a signal is referred to as an event. Each time an event occurs, any processes that
have been waiting on the event are executed in zero time, and any resulting signal changes
are queued up to occur at some future time. When all the active processes are �nished
executing, simulation time is advanced to the time for which the next event is scheduled,

FIGURE 2-27: Signal
Drivers for Simulation
Example

A

B

'0'

'0'

After elaboration:
time = 0

After initialization:
time = 0

A

B

'1' @ D'0' @ 5 '0'

'0'

A

B

'0' @ 5 '1'

'0''1' @ 10

Simulation step:
time = D

A

B'1' @ 10

'0'

'0'
time = 5

A

B

'1' @ 10 + D'0' @ 15 '0'

'1'
time = 10

A

B

B

'0' @ 15 '1'

'1'
time = 10 + D

'0' @ 20

A'0'

'1''0' @ 20
time = 15

Current
value

Queued
values

2.10 VHDL Data Types and Operators 67

and the simulator processes that event. This continues until either no more events have been
scheduled or the simulation time limit is reached.

When VHDL was originally created, simulation was the primary purpose; however,
nowadays, one of the most important uses of VHDL is to synthesize or automatically cre-
ate hardware from a VHDL description. The synthesis software for VHDL translates the
VHDL code to a circuit description that speci�es the needed components and the connec-
tions between the components. The initial steps (analysis and elaboration) in Figure 2-24 are
common whether VHDL is used for simulation or synthesis. The simulation and synthesis
processes are shown in Figure 2-28.

FIGURE 2-28:
Compilation,
Simulation, and
Synthesis of VHDL
Code

Compiler
VHDL
code

VHDL
libraries

Intermediate
code

Simulator
commands

Simulator
output

Simulator

Synthesizer Implementer Hardware

Although synthesis can be done in parallel to simulation, synthesis follows simulation
because designers would normally want to catch errors before attempting to synthesize.
After the VHDL code for a digital system has been simulated to verify that it works cor-
rectly, the VHDL code can be synthesized to produce a list of required components and their
interconnections. The synthesizer output can then be used to implement the digital system
using speci�c hardware, such as a CPLD, a FPGA, or an ASIC. The CAD software used for
implementation generates the necessary information to program the CPLD or FPGA hard-
ware. In the case of an ASIC, it generates the mask required to create the ASIC. Synthesis
and implementation of digital logic from VHDL code is discussed in more detail later.

2.10 VHDL Data Types and Operators
2.10.1 Data Types
VHDL has several prede�ned data types. Signals can have these prede�ned data types, or
they can have a user-de�ned type. Some of the prede�ned types are as follows:

bit '0' or '1'
boolean FALSE or TRUE
integer an integer in the range −(231 − 1) to +(231 − 1) (some implementa-

tions support a wider range)
real floating-point number in the range −1.0E38 to +1.0E38
character any legal VHDL character including upper and lowercase letters,

digits, and special characters (each printable character must be
enclosed in single quotes; e.g., 'd', '7', '+')

time an integer with units fs, ps, ns, us, ms, sec, min, or hr

68 Chapter 2 Introduction to VHDL

Note that the integer range for VHDL is symmetrical, even though the range for a 32-bit
2’s complement integer is 2231 to 1 1231 2 1 2 .

Users can de�ne and create their own data types. A common user-de�ned type is the
enumeration type in which all of the values are enumerated. For example, the declarations

type state_type is (S0, S1, S2, S3, S4, S5);
signal state: state_type := S1;

de�ne a signal called state that can have any one of the values S0, S1, S2, S3, S4, or S5 and is
initialized to S1. If no initialization is given, the default initialization is the leftmost element
in the enumeration list, S0 in this example.

VHDL is a strongly typed language, so signals and variables of different types generally
cannot be mixed in the same assignment statement, and no automatic type conversion is
performed. Thus, the statement

A <= B or C;

is valid only if A, B, and C all have the same type or closely related types. If types do not
match, explicit type conversions should be performed, or “overloaded operators” should be
created. Operator overloading is described in Sections 2.13 and 8.4. The overloaded opera-
tors in the IEEE packages are presented in Section 2.13.

2.10.2 VHDL Operators
Prede�ned VHDL operators can be grouped into seven classes:

1. Binary logical operators: and or nand nor xor xnor
2. Relational operators: 5 / 5 , , 5 . . 5

3. Shift operators: sll srl sla sra rol ror
4. Adding operators: 1 2 & (concatenation)
5. Unary sign operators: 1 2
6. Multiplying operators: * / mod rem
7. Miscellaneous operators: not abs **

When parentheses are not used, operators in class 7 have highest precedence and are
applied �rst, followed by class 6, then class 5, and so on. Class 1 operators have lowest pre-
cedence and are applied last. Operators in the same class have the same precedence and are
applied from left to right in an expression. The precedence order can be changed by using
parentheses. Consider the following expression, where A, B, C, and D are bit_vectors:

(A & not B or C ror 2 and D) = "110010"

Note that this is a relational expression performing an equality test; it is not an assign-
ment statement.

To evaluate the expression, the operators are applied in the order

not, &, ror, or, and, =

If A 5 ''110'', B 5 ''111'', C 5 ''011000'', and D 5 ''111011'', the computation proceeds
as follows:

not B = "000" (bit-by-bit complement)
A & not B = "110000" (concatenation)

2.11 Simple Synthesis Examples 69

C ror 2 = "000110" (rotate right 2 places)
(A & not B) or (C ror 2) = "110110" (bit-by-bit or)
(A & not B or C ror 2) and D = "110010" (bit-by-bit and)
[(A & not B or C ror 2 and D) = "110010"] = TRUE (the parentheses
force the equality test to be done last and the result is TRUE)

The binary logical operators (class 1) as well as not can be applied to bits, booleans,
bit_vectors, and boolean_vectors. The class 1 operators require 2 operands of the same type,
and the result is of that type.

The result of applying a relational operator (class 2) is always a Boolean (FALSE or
TRUE). Equals 15 2 and not equals 1 /5 2 can be applied to almost any type. The other rela-
tional operators can be applied to any numeric or enumerated type as well as to some array
types. For example, if A 5 5, B 5 4, and C 5 3, the expression (A <= B) and (B <= C)
evaluates to FALSE.

The shift operators can be applied to any bit_vector or boolean_vector. In the following
examples, A is a bit_vector equal to "10010101":

A sll 2 is "01010100" (shift left logical, filled with '0')
A srl 3 is "00010010" (shift right logical, filled with '0')
A sla 3 is "10101111" (shift left arithmetic, filled with

right bit)
A sra 2 is "11100101" (shift right arithmetic, filled with

left bit)
A rol 3 is "10101100" (rotate left)
A ror 5 is "10101100" (rotate right)

The 1 and 2 operators can be applied to integer or real numeric operands. The 1 and 2
operators are not de�ned for bits or bit-vectors. That is why one has to make a full adder by
speci�cally creating carry and sum bits for each bit (Figure 2-12). However, several standard
libraries do provide functions for 1 and 2 that can work on bit-vectors. If you use such a
library, you can perform addition using the statement C , 5 A 1 B. Some of the popular
libraries are described in Section 2.13.

The & operator can be used to concatenate two vectors (or an element and a vector, or
two elements) to form a longer vector. For example, “010” & '1' is “0101” and “ABC” &
“DEF” is “ABCDEF”.

The * and / operators perform multiplication and division on integer or �oating-point
operands. The rem and mod operators calculate the remainder and modulus for integer
operands. The ** operator raises an integer or �oating-point number to an integer power,
and abs �nds the absolute value of a numeric operand.

2.11 Simple Synthesis Examples
Synthesis tools try to infer the hardware components needed by “looking” at the VHDL
code. In order for code to synthesize correctly, certain conventions must be followed. When
writing VHDL code, you should always keep in mind that you are designing hardware,
not simply writing a computer program. Each VHDL statement implies certain hardware
requirements. So, poorly written VHDL code may result in poorly designed hardware. Even
if VHDL code gives the correct result when simulated, it may not result in hardware that
works correctly when synthesized. Timing problems may prevent the hardware from working
properly even though the simulation results are correct.

70 Chapter 2 Introduction to VHDL

Consider the VHDL code in Figure 2-29. (Note that B is missing from the process
 sensitivity list.) This code will simulate as follows: Whenever A changes, it will cause the
process to execute once. The value of C will re�ect the values of A and B when the process
began. If B changes now, that will not cause the process to execute.

FIGURE 2-29: VHDL Code Example where Simulation and Synthesis Results in Different Outputs

entity Q1 is
 port(A, B: in bit;
 C: out bit);
end Q1;

architecture circuit of Q1 is
begin
 process(A)
 begin
 C <= A or B after 5 ns;
 end process;
end circuit;

If this code is synthesized, most synthesizers will output an OR gate as in Figure 2-30.
The synthesizer will warn you that B is missing from the sensitivity list, but will go ahead and
synthesize the code properly. The synthesizer will also ignore the 5-ns delay on the above
statement. If you want to model an exact 5-ns delay, you will have to use counters. The simu-
lator output will not match the synthesizer’s output since the process will not execute when
B changes. This is an example of where the synthesizer guessed a little more than what you
wrote; it assumed that you probably meant an OR gate and created that circuit (accompanied
by a warning). But this circuit functions differently from what simulated before synthesis. It
is important that you always check for synthesizer warnings of missing signals in the sensi-
tivity list. Perhaps the synthesizer helped you; perhaps it created hardware that you did not
intend to.

FIGURE 2-30:
Synthesizer Output for
Code in Figure 2-29 A

C

OR2

B

Now, consider the VHDL code in Figure 2-31. What hardware will you get if you
 synthesized this code?

Let us think about the block diagram of the circuit represented by this code without wor-
rying about the details inside. The block diagram is as shown in Figure 2-32. The ability to
hide details and use abstractions is an important part of good system design.

Note that C is an internal signal, and therefore it does not show up in the block diagram.
Now, let us think about the details of the circuit inside this block. This circuit is not two

cascaded gates; the signal assignment statements are in a process. An edge-triggered clock
is implied by the use of clk'event in the clock statement preceding the signal assignment.

2.11 Simple Synthesis Examples 71

Since the values of C and G need to be retained after the clock edge, �ip-�ops are required
for both C and G. Please note that a change in the value of C from statement 1 will not be
considered during the execution of statement 2 in that pass of the process. It will be consid-
ered only in the next pass, and the �ip-�op for C makes this happen in the hardware also.
Hence the code implies hardware shown in Figure 2-33.

FIGURE 2-31: Example VHDL Code

entity Q3 is
 port(A,B,F, CLK: in bit;
 G: out bit);
end Q3;

architecture circuit of Q3 is
signal C: bit;
begin
 process(Clk)
 begin
 if (Clk = '1' and Clk'event) then
 C <= A and B; -- statement 1
 G <= C or F; -- statement 2
 end if;
 end process;
end circuit;

FIGURE 2-32: Block
Diagram for VHDL
Code in Figure 2-31

A

B

G

F

CLK

FIGURE 2-33: Hardware
Corresponding to
VHDL Code in Figure
2-31

DFF

CLK

D Q

DFF

D Q

A
B

F
G

C

We saw earlier that the following code represents a D-latch:

process(G, D)
begin
 if G = '1' then Q <= D; end if;
end process;

72 Chapter 2 Introduction to VHDL

Let us understand why this code does not represent an AND gate with G and D as inputs.
If G 5 '1', an AND gate will result in the correct output to match the if statement. How-
ever, what happens if currently Q 5 '1' and then G changes to '0'? When G changes to '0',
an AND gate would propagate that to the output; however, the device we have modeled here
should not. It is expected to make no changes to the output if G is not equal to '1'. Hence, it
is clear that this device has to be a D-latch and not an AND gate.

In order to infer �ip-�ops or registers that change state on the rising edge of a clock
signal, an if-clause of the form

if clock'event and clock = '1' then . . . end if;

is required by most synthesizers. For every assignment statement between then and end if
above, a signal on the left side of the assignment will cause creation of a register or �ip-�op.
The moral to this story is, if you don’t want to create unnecessary �ip-�ops, don't put the
signal assignments in a clocked process. If clock'event is omitted, the synthesizer may
produce latches instead of �ip-�ops.

Now consider the VHDL code in Figure 2-34. If you attempt to synthesize this code, the
synthesizer will generate an empty block diagram. This is because D, the output of the above
block, is never assigned. It will generate warnings that

Input <CLK> is never used.
Input <A> is never used.
Input is never used.
Output <D> is never assigned.

FIGURE 2-34: Example VHDL Code That Will Not Synthesize

entity no_syn is
 port(A,B, CLK: in bit;
 D: out bit);
end no_syn;

architecture no_synthesis of no_syn is
 signal C: bit;
begin
 process(Clk)
 begin
 if (Clk='1' and Clk'event) then
 C <= A and B;
 end if;
 end process;
end no_synthesis;

2.12 VHDL Models for Multiplexers
A multiplexer is a combinational circuit and can be modeled using concurrent statements
only or using processes. A conditional signal assignment statement such as when or a
selective signal assignment statement using with select can be used to model a multiplexer

2.12 VHDL Models for Multiplexers 73

without processes. A case statement within a process can also be used to make a model for
a multiplexer.

2.12 Using Concurrent Statements
Figure 2-35 shows a 2-to-1 multiplexer (MUX) with two data inputs and one control input.
The MUX output is F 5 A r. I0 1 A # I1. The corresponding VHDL statement is

F <= (not A and I0) or (A and I1);

Here, the MUX can be modeled as a single concurrent signal assignment statement.
Alternatively, we can represent the MUX by a conditional signal assignment statement as
shown in Figure 2-35. This statement executes whenever A, I0, or I1 changes. The MUX out-
put is I0 when A 5 '0', and otherwise it is I1. In the conditional statement, I0, I1, and F can
either be bits or bit-vectors.

The general form of a conditional signal assignment statement is

signal_name <= expression1 when condition1
 else expression2 when condition2
 [else expressionN];

This concurrent statement is executed whenever a change occurs in a signal used in one
of the expressions or conditions. If condition1 is true, signal_name is set equal to the
value of expression1, otherwise if condition2 is true, signal_name is set equal to the
value of expression2, and so on. The line in square brackets is optional. Figure 2-36 shows
how two cascaded MUXes can be represented by a conditional signal assignment statement.
The output MUX selects A when E 5 '1'; otherwise, it selects the output of the �rst MUX,
which is B when D 5 '1', or it is C.

FIGURE 2-35: 2-to-1
Multiplexer

F

A

I0

I1

0

1

-- conditional signal assignment statement

 F <= I0 when A = '0' else I1;

FIGURE 2-36: Cascaded
2-to-1 MUXes

0

1

0

1

C

B

D

A

E

F

F <= A when E = '1'
 else B when D = '1'
 else C;

74 Chapter 2 Introduction to VHDL

Figure 2-37 shows a 4-to-1 multiplexer (MUX) with four data inputs and two control
inputs, A and B. The control inputs select which one of the data inputs is transmitted to the
output. The logic equation for the 4-to-1 MUX is

F 5 A rB rI0 1 A rBI1 1 AB rI2 1 A B I3

Thus, one way to model the MUX is with the VHDL statement

F <= (not A and not B and I0) or (not A and B and I1) or
 (A and not B and I2) or (A and B and I3);

Another way to model the 4-to-1 MUX is to use a conditional assignment statement:

F <= I0 when A&B = "00"
else I1 when A&B = "01"
else I2 when A&B = "10"
else I3;

The expression A&B means that A is concatenated with B; that is, the two bits A and B are
merged together to form a 2-bit vector. This bit-vector is tested and the appropriate MUX
input is selected. For example, if A 5 '1' and B 5 '0', A&B="10" and I2 is selected. Instead
of concatenating A and B, we could use a more complex condition:

F <= I0 when A = '0' and B = '0'
else I1 when A = '0' and B = '1'
else I2 when A = '1' and B = '0'
else I3;

A third way to model the MUX is to use a selected signal assignment statement, as shown
in Figure 2-37. A&B cannot be used in this type of statement, so we concatenate A and B to
create sel. The value of sel then selects the MUX input that is assigned to F.

FIGURE 2-37: 4-to-1
Multiplexer I0

I3

I2

I1
F

A B

MUX

sel <= A&B;
--selected signal assignment statement
with sel select
 F <= I0 when "00",
 I1 when "01",
 I2 when "10",
 I3 when "11",

The general form of a selected signal assignment statement is

with expression_s select
 signal_s <= expression1 [after delay-time] when choice1,
 expression2 [after delay-time] when choice2,
 …
 [expression_n [after delay-time] when others];

2.13 VHDL Libraries 75

This concurrent statement executes whenever a signal changes in any of the expres-
sions. First, expression_s is evaluated. If it equals choice1, signal_s is set equal to
expression1; if it equals choice2, signal_s is set equal to expression2; and so on.
If all possible choices for the value of expression_s are given, the last line should be omit-
ted; otherwise, the last line is required. When it is present, if expression_s is not equal to
any of the enumerated choices, signal_s is set equal to expression_n. Then signal_s
is updated after the speci�ed delay-time, or after D if the after delay-time is omitted.

2.12.2 Using Processes
If a MUX model is used inside a process, a concurrent statement cannot be used. As an
alternative, the MUX can be modeled using a case statement:

case Sel is
 when 0 => F <= I0;
 when 1 => F <= I1;
 when 2 => F <= I2;
 when 3 => F <= I3;
end case;

The case statement has the general form

case expression is
 when choice1 => sequential statements1
 when choice2 => sequential statements2
 . . .
 [when others => sequential statements]
end case;

The expression is evaluated �rst. If it is equal to choice1, then sequential
statements1 are executed; if it is equal to choice2, then sequential statements2
are executed; and so on. All possible values of the expression must be included in the choices.
If all values are not explicitly given, a when others clause is required in the case statement.

One might notice that combinational circuits can be described using concurrent or
sequential statements. Sequential circuits generally require a process statement. Process
statements can be used to make sequential or combinational circuits.

2.13 VHDL Libraries
VHDL libraries and packages are used to extend the functionality of VHDL by de�ning
types, functions, components, and overloaded operators. In standard VHDL, some opera-
tions are valid only for certain data types. If those operations are desired for other data types,
one has to use function “overloading” to create an “overloaded” operator. The concept of
“function overloading” exists in many general-purpose languages. It means that two or more
functions may have the same name, so long as the parameter types are suf�ciently different
enough to distinguish which function is actually intended. Overloaded functions can also be
created to handle operations involving heterogeneous data types.

In the initial days of CAD, every tool vendor used to create its own libraries and packages.
Porting designs from one environment to another became a problem under those conditions.
The IEEE has developed standard libraries and packages to make design portability easier.

76 Chapter 2 Introduction to VHDL

The original VHDL standard only de�nes 2-valued logic (bits and bit-vectors). One of the
earliest extensions was to de�ne multivalued logic as an IEEE standard. The package IEEE.
std_logic_1164 de�nes a std_logic type that has nine values, including '0', '1', 'X' (unknown),
and 'Z' (high impedance). The package also de�nes std_logic_vectors, which are vectors of
the std_logic type. This standard de�nes logic operations and other functions for working
with std_logic and std_logic_vectors, but it does not provide for arithmetic operations. The
std_logic_1164 package and its use for simulation and synthesis will be described in more
detail in Chapter 8.

When VHDL became more widely used for synthesis, the IEEE introduced two pack-
ages to facilitate writing synthesizable code: IEEE.numeric_bit and IEEE.numeric_std. The
former uses bit_vectors to represent unsigned and signed binary numbers, and the latter
uses std_logic_vectors. Both packages de�ne overloaded logic and arithmetic operators for
unsigned and signed numbers. Prior to Chapter 8, we will use the numeric_bit package and
unsigned numbers for arithmetic operations.

To access functions and components from a library, you need a library statement and a
use statement. The statement

library IEEE;

allows your design to access all packages in the IEEE library. The statement

use IEEE.numeric_bit.all;

allows your design to use the entire numeric_bit package, which is found in the IEEE library.
Whenever a package is used in a module, the library and use statements must be placed
before the entity in that module period.

The numeric_bit package de�nes unsigned and signed types as unconstrained arrays of bits:

type unsigned is array (natural range <>) of bit;
type signed is array (natural range <>) of bit;

Signed numbers are represented in 2’s complement form. The package contains over-
loaded operators for arithmetic, relational, logical, and shifting operations on unsigned and
signed numbers.

Unsigned and signed types are basically bit-vectors. However, overloaded operators are
de�ned for these types and not for bit-vectors. The statement

C <= A + B;

will cause a compiler error if A, B, and C are bit_vectors. If these signals are of type unsigned
or signed, the compiler will invoke the appropriate overloaded operator to carry out the
addition.

The numeric_bit package de�nes the following overloaded operators:

arithmetic: +, −, *, /, rem, mod
relational:: =, /=, >, <, >=, <=
logical: not, and, or, nand, nor, xor, xnor
shifting: shift_left, shift_right, rotate_left, rotate_right,
sll, srl, rol, ror

The arithmetic, relational, and logical operators (except not) each require a left operand
and a right operand. For arithmetic and relational operators, the following left and right

2.13 VHDL Libraries 77

operand pairs are acceptable: unsigned and unsigned, unsigned and natural, natural and
unsigned, signed and signed, signed and integer, integer and signed. For logical operators
(except not), left and right operands must either both be unsigned or both signed. When the
1 and 2 operators are used with unsigned operands of different lengths, the shortest oper-
and will be extended by �ling in 0’s on the left. Any carry is discarded so that the result has
the same number of bits as the longest operand. For example, when working with unsigned
numbers

"1011" + "110" = "1011" + "0110" = "0001" and the carry is
discarded.

The numeric_bit package provides an overloaded operator to add an integer to an
unsigned, but not to add a bit to an unsigned type. Thus, if A and B are unsigned, A + B + 1
is allowed, but a statement of the form

Sum <= A + B + carry;

is not allowed when carry is of type bit. The carry must be converted to unsigned before it
can be added to the unsigned vector A + B. The notation unsigned’(0 => carry) will
accomplish the necessary conversion.

Figure 2-38 shows behavioral VHDL code that uses overloaded operators from the
numeric_bit package to describe a 4-bit adder with a carry input. The entity declaration is the
same as in Figure 2-12, except type unsigned is used instead of bit_vector. Because adding
two 4-bit numbers produces a 5-bit sum, a 5-bit signal (Sum5) is declared within the architec-
ture. If you compute A 1 B, the result is only 4 bits. Since you want a 5-bit result, you must
extend A to 5 bits by concatenating '0' and A. (B will automatically be extended to match.)
After Sum5 is calculated using the overloaded operators from the numeric_bit package, it is
split into a 4-bit sum (S) and a carry 1Co 2 . Most synthesis tools will implement the code of
Figure 2-38 as an adder with a carry input and output. One version of the Xilinx synthesizer
produces the result shown in Figure 2-39.

FIGURE 2-38: VHDL Code for 4-Bit Adder Using Unsigned Vectors

library IEEE;
use IEEE.numeric_bit.all;
entity Adder4 is
 port(A, B: in unsigned(3 downto 0); Ci: in bit; -- Inputs
 S: out unsigned(3 downto 0); Co: out bit); -- Outputs
end Adder4;

architecture overload of Adder4 is
signal Sum5: unsigned(4 downto 0);
begin
 Sum5 <= '0' & A + B + unsigned'(0=>Ci); -- adder
 S <= Sum5(3 downto 0);
 Co <= Sum5(4);
end overload;

78 Chapter 2 Introduction to VHDL

Useful conversion functions found in the numeric_bit package include the following:

TO_INTEGER(A): converts an unsigned vector A to an integer
TO_UNSIGNED(B, N): converts an integer to an unsigned vector of length N
UNSIGNED(A): causes the compiler to treat a bit_vector A as an unsigned vector
BIT_VECTOR(B): causes the compiler to treat an unsigned vector B as a bit_vector

If multivalued logic is desired, one can use the IEEE standard numeric_std package
instead of the numeric_bit package. The numeric_std package de�nes unsigned and signed
types as std_logic vectors instead of bit_vectors. Three statements are required to use this
package:

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

This package de�nes the same set of overloaded operators and functions on unsigned and
signed numbers as the numeric_bit package.

Another popular VHDL package used for simulation and synthesis with multivalued
logic is the std_logic_arith package developed by Synopsis. This package de�nes unsigned
and signed types and overloaded operators similarly to the IEEE numeric_std package; how-
ever, the conversion functions have different names and there are some other differences.
A major de�ciency of the std_logic_arith package is that it does not de�ne logic operations
for unsigned or signed vectors. This package is not an IEEE standard even though it is com-
monly placed in the IEEE library.

Yet another option is to use the std_logic_unsigned package, also developed by Syn-
opsis. This package does not de�ne unsigned types, but instead it de�nes some overloaded
arithmetic operators for std_logic_vectors. These operators treat std_logic_vectors as if
they were unsigned numbers. When used in conjunction with the std_logic_1164 pack-
age, both arithmetic and logic operations can be performed on std_logic_vectors because
the 1164 package de�nes the logic operations. The std_logic_unsigned package is not an
IEEE standard even though it is commonly placed in the IEEE library. The VHDL code
for the 4-bit adder of Figure 2-38 is rewritten in Figure 2-40 using the std_logic_unsigned
package. Because the package provides an overloaded operator to add a std_logic bit to a
std_logic_vector, type conversion is not needed. The result of synthesizing this code is the
same as that for Figure 2-38.

FIGURE 2-39:
Synthesizer Output
for VHDL Code of
Figure 2-38

A <3:0>

B <3:0>

+S <3:0>

CI

CO

A(3:0)

B(3:0)

Ci

S(3:0)

Co

2.14 Modeling Registers and Counters Using VHDL Processes 79

This section, has discussed four different packages, which provide overloaded opera-
tors for arithmetic and relational operations. You will initially use the numeric_bit package
because it is easiest to use and it is an IEEE standard. Starting in Chapter 8, you will use the
IEEE numeric_std package because it is an IEEE standard, provides multivalued signals,
and is similar in functionality to the numeric_bit package. The std_logic_arith and std_logic_
unsigned packages are not used because they are not IEEE standards and they have less
functionality than the IEEE numeric_std package.

2.14 Modeling Registers and Counters Using VHDL Processes
When several �ip-�ops change state on the same clock edge, statements representing these
�ip-�ops can be placed in the same clocked process. Figure 2-41 shows three �ip-�ops con-
nected as a cyclic shift register. These �ip-�ops all change state following the rising edge of
the clock. We have assumed a 5-ns propagation delay between the clock edge and the output
change. Immediately following the clock edge, the three statements in the process execute in

FIGURE 2-40: VHDL Code for 4-Bit Adder Using the std_logic_unsigned Package

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
entity Adder4 is
 port(A, B: in std_logic_vector(3 downto 0); Ci: in std_logic; --Inputs
 S: out std_logic_vector(3 downto 0); Co: out std_logic); --Outputs
end Adder4;

architecture overload of Adder4 is
signal Sum5: std_logic_vector(4 downto 0);
begin
 Sum5 <= '0' & A + B + Ci; --adder
 S <= Sum5(3 downto 0);
 Co <= Sum5(4);
end overload;

FIGURE 2-41: Cyclic
Shift Register D Q1

D Q2

D Q3

CLK

process(CLK)
begin
 if CLK'event and CLK = '1' then
 Q1 <= Q3 after 5 ns;
 Q2 <= Q1 after 5 ns;
 Q3 <= Q2 after 5 ns;
 end if;
end process;

80 Chapter 2 Introduction to VHDL

sequence with no delay. The new values of the Q’s are then scheduled to change after 5 ns.
If we omit the delay and replace the sequential statements with

Q1 <= Q3; Q2 <= Q1; Q3 <= Q2;

the operation is basically the same. The three statements execute in sequence in zero time,
and then the Q’s values change after a delta delay. In both cases, the old values of Q1, Q2,
and Q3 are used to compute the new values. This may seem strange at �rst, but that is the
way the hardware works. At the rising edge of the clock, all of the D inputs are loaded into
the �ip-�ops, but the state change does not occur until after a propagation delay.

Figure 2-42 shows a simple register that can be loaded or cleared on the rising edge of
the clock. If CLR 5 '1', the register is cleared, and if Ld 5 '1', the D inputs are loaded into
the register. This register is fully synchronous so that the Q outputs only change in response
to the clock edge and not in response to a change in Ld or CLR. In the VHDL code for the
register, Q and D are bit-vectors dimensioned 3 downto 0. Since the register outputs can
only change on the rising edge of the clock, CLR is not on the sensitivity list. It is tested after
the rising edge of the clock. If CLR 5 Ld 5 '0', no change of Q occurs. Since CLR is tested
before Ld, if CLR 5 '1', the elsif prevents Ld from being tested and CLR overrides Ld.

FIGURE 2-42: Register
with Synchronous Clear
and Load

Q3 Q2 Q1 Q0
Ld

CLR

CLKD3 D2 D1 D0

Register

process(CLK)
begin
 if CLK'event and CLK = '1' then
 if CLR = '1' then Q <= "0000";
 elsif Ld = '1' then Q <= D;
 end if;
 end if;
end process;

Next, we will model a left shift register using a VHDL process. The register in Figure 2-43
is similar to that in Figure 2-42, except that a left shift control input (LS) has been added. When
LS is '1', the contents of the register are shifted left and the rightmost bit is set equal to Rin.
The shifting is accomplished by taking the rightmost 3 bits of Q, Q(2 downto 0), and con-
catenating them with Rin. For example, if Q 5 ''1101'' and Rin 5 '0', then Q(2 downto 0) &

FIGURE 2-43: Left Shift Register with Synchronous Clear and Load

CLK

LS
Ld

CLR Left SR

Q3 Q2 Q1 Q0

D3 D2 D1 D0

Rin

process(CLK)
begin
 if CLK'event and CLK = '1' then
 if CLR = '1' then Q <= "0000";
 elsif Ld = '1' then Q <= D;
 elsif LS = '1' then Q <= Q(2 downto 0) & Rin;
 end if;
 end if;
end process;

2.14 Modeling Registers and Counters Using VHDL Processes 81

Rin = "1010", and this value is loaded back into the Q register on the rising edge of CLK.
The code implies that if CLR 5 Ld 5 LS 5 '0', then Q remains unchanged.

Figure 2-44 shows a simple synchronous counter. On the rising edge of the clock, the
counter is cleared when ClrN 5 '0', and it is incremented when ClrN 5 En 5 '1'. In this
example, the signal Q represents the 4-bit value stored in the counter. Since addition is
not de�ned for bit-vectors, we have declared Q to be of type unsigned. Then we can incre-
ment the counter using the overloaded “+” operator that is de�ned in the ieee.numeric_bit
 package. The statement Q <= Q+1; increments the counter. When the counter is in state
“1111,” the next increment takes it back to state “0000.”

Now, let us create a VHDL model for a generic counter, the 74163. It is a 4-bit fully
synchronous binary counter, which is available in both TTL and CMOS logic families.
Although rarely used in new designs at present, it represents a general type of counter that
is found in many CAD design libraries. In addition to performing the counting function, it
can be cleared or loaded in parallel. All operations are synchronized by the clock, and all
state changes take place following the rising edge of the clock input. A block diagram of the
counter is provided in Figure 2-45.

FIGURE 2-44: VHDL Code for a Simple Synchronous Counter

Q3 Q2 Q1 Q0

Counter

En

CLR

CLK

Q

ClrN

signal Q: unsigned (3 downto 0);

process (CLK)
begin
 if CLK'event and CLK = '1' then
 if ClrN = '0' then Q <= "0000";
 elsif En = '1' then Q <= Q + 1;
 end if;
 end if;
end process;

FIGURE 2-45: 74163
Counter Operation

LdN
ClrN

P
T

Clk

74163

Q3 Q2 Q1

D2 D1 D0

Q0

D3

Cout P
T
Ld
Clr

Control Signals Next State
ClrN + Q2

+ Q1
+ Q0

+

D3
Q3

present state + 1

0 X X
LdN PT Q3

D2 D1 D0 (parallel load)
Q2 Q1 Q0 (no change)

(clear)
X1

11

1

1

1 0
0

0 0 0 0

(increment count)

82 Chapter 2 Introduction to VHDL

This counter has four control inputs—ClrN, LdN, P, and T. P and T are used to enable
the counting function. Operation of the counter is as follows:

1. If ClrN 5 '0', all �ip-�ops are set to '0' following the rising clock edge.
2. If ClrN 5 '1' and LdN 5 '0', the D inputs are transferred in parallel to the �ip-�ops fol-

lowing the rising clock edge.
3. If ClrN 5 LdN 5 '1' and P 5 T 5 '1', the count is enabled and the counter state will be

incremented by 1 following the rising clock edge.

If T 5 '1', the counter generates a carry 1Cout 2 in state 15, so

Cout 5 Q3 Q2 Q1 Q0 T

The truth table in Figure 2-45 summarizes the operation of the counter. Note that ClrN
overrides the load and count functions in the sense that when ClrN 5 '0', clearing occurs
regardless of the values of LdN, P, and T. Similarly, LdN overrides the count function. The
ClrN input on the 74163 is referred to as a synchronous clear input because it clears the coun-
ter in synchronization with the clock, and no clearing can occur if no clock pulse is present.

The VHDL description of the counter is shown in Figure 2-46. Q represents the four �ip-
�ops that comprise the counter. The counter output, Qout, changes when- ever Q changes.
The carry output is computed whenever Q or T changes. The �rst if statement in the process
tests for a rising edge of Clk. Since clear overrides load and count, the next if statement tests
ClrN �rst. Since load overrides count, LdN is tested next. Finally, the counter is incremented
if both P and T are '1'. Since Q is of type unsigned, we can use the overloaded "+" operator

FIGURE 2-46: 74163 Counter Model

-- 74163 FULLY SYNCHRONOUS COUNTER

library IEEE;
use IEEE.numeric_bit.all;
entity c74163 is
 port(LdN, ClrN, P, T, Clk: in bit;
 D: in unsigned(3 downto 0);
 Cout: out bit; Qout: out unsigned(3 downto 0));
end c74163;

architecture b74163 of c74163 is
signal Q: unsigned(3 downto 0); -- Q is the counter register
begin
 Qout <= Q;
 Cout <= Q(3) and Q(2) and Q(1) and Q(0) and T;
 process(Clk)
 begin
 if Clk'event and Clk = '1' then -- change state on rising edge
 if ClrN = '0' then Q <= "0000";
 elsif LdN = '0' then Q <= D;
 elsif (P and T) = '1' then Q <= Q + 1;
 end if;
 end if;
 end process;
end b74163;

2.14 Modeling Registers and Counters Using VHDL Processes 83

from the IEEE.numeric_bit package to add 1 to increment the counter. The expression Q11
would not be legal if Q were a bit-vector since addition is not de�ned for bit-vectors.

To test the counter, we have cascaded two 74163’s to form an 8-bit counter (Figure 2-47).
When the counter on the right is in state 1111 and T1 5 '1', Carry1 5 '1'. Then for the left
counter, PT 5 '1' if P 5 '1'. If PT 5 '1', on the next clock the right counter is incremented to
0000 at the same time the left counter is incremented.

Figure 2-48 shows the VHDL code for the 8-bit counter. In this code we have used the c74163
model as a component and instantiated two copies of it. For convenience in reading the out-
put, we have de�ned a signal Count, which is the integer equivalent of the 8-bit counter value.
The function to_integer converts an unsigned vector to an integer.

FIGURE 2-47: Two
74163 Counters
Cascaded to Form an
8-Bit Counter

74163

Q3 Q2 Q1

D2 D1 D0

Q0

D3

Cout

Ld
Clr

Qout2

Din2

Carry2

LdN
ClrN

P P
T1

Qout1

Din1
Clk

74163

Q3 Q2 Q1

D2 D1 D0

Q0

D3

Cout

P
T

P

T

Ld
Clr

LdN
ClrN

Carry1

FIGURE 2-48: VHDL for 8-Bit Counter

--Test module for 74163 counter

library IEEE;
use IEEE.numeric_bit.ALL;

entity eight_bit_counter is
 port(ClrN, LdN, P, T1, Clk: in bit;
 Din1, Din2: in unsigned(3 downto 0);
 Count: out integer range 0 to 255;
 Carry2: out bit);
end eight_bit_counter;

architecture cascaded_counter of eight_bit_counter is
component c74163
 port(LdN, ClrN, P, T, Clk: in bit;
 D: in unsigned(3 downto 0);
 Cout: out bit; Qout: out unsigned(3 downto 0));
end component;

signal Carry1: bit;
signal Qout1, Qout2: unsigned(3 downto 0);
begin
 ct1: c74163 port map (LdN, ClrN, P, T1, Clk, Din1, Carry1, Qout1);
 ct2: c74163 port map (LdN, ClrN, P, Carry1, Clk, Din2, Carry2, Qout2);
 Count <= to_integer(Qout2 & Qout1);
end cascaded_counter;

84 Chapter 2 Introduction to VHDL

FIGURE 2-49: Synthesis
of VHDL Code for Left
Shift Register from
Figure 2-43

CE D

Q3

CE D

Q2

CLK CLKClr

Ld

Ls

Clr' Ld D3 Clr' Ld' Ls Q2 D2 Q1Clr' Ld Clr' Ld' Ls

Let us now synthesize the VHDL code for a left shift register (Figure 2-43). Before
synthesis is started, we must specify a target device (e.g., a particular FPGA or CPLD) so
that the synthesizer knows what components are available. Let us assume that the target is a
CPLD or FPGA that has D �ip-�ops with clock enable (D-CE �ip-�ops). Q and D are 4-bit
vectors. Because updates to Q follow "CLK'event and CLK = '1' then", this infers
that Q must be a register composed of four �ip-�ops, which we will label Q3, Q2, Q1, and Q0.
Since the �ip-�ops can change state when Clr, Ld, or Ls is '1', we connect the clock enables to
an OR gate whose output is Clr 1 Ld 1 Ls. Then we connect gates to the D inputs to select
the data to be loaded into the �ip-�ops. If Clr 5 '0' and Ld 5 '1', D is loaded into the reg-
ister on the rising clock edge. If Clr 5 Ld 5 '0' and Ls 5 '1', then Q2 is loaded into Q3, Q1
is loaded into Q2, and so on. Figure 2-49 shows the logic circuit for the �rst two �ip-�ops. If
Clr 5 '1', the D �ip-�op inputs are '0' and the register is cleared.

A VHDL synthesizer cannot synthesize delays. Clauses of the form "after time-
expression" will be ignored by most synthesizers, but some synthesizers require that after
clauses be removed. Although initial values for signals may be speci�ed in port and signal
declarations, these initial values are ignored by the synthesizer. A reset signal should be
provided if the hardware must be set to a speci�c initial state. Otherwise, the initial state of
the hardware may be unknown and the hardware may malfunction. When an integer signal
is synthesized, the integer is represented in hardware by its binary equivalent. If the range of
an integer is not speci�ed, the synthesizer will assume the maximum number of bits, usually
32. Thus

signal count: integer range 0 to 7;

would result in a 3-bit counter, but

signal count: integer;

could result in a 32-bit counter.
VHDL signals retain their current values until they are changed. This can result in

 creation of unwanted latches when the code is synthesized. For example, in a combinational
process, the statement

if X = '1' then B <= 1; end if;

2.15 Behavioral and Structural VHDL 85

would create latches to hold the value of B when X changes to '0'. To avoid creation of
unwanted latches in a combinational process, always include an else clause in every if
 statement. For example,

if X = '1' then B <= 1 else B <= 0; end if;

would create a MUX to switch the value of B from 1 to 0.

2.15 Behavioral and Structural VHDL
Any circuit or device can be represented in multiple forms of abstraction. Consider the
 different representations for a NAND gate, as illustrated in Figure 2-50. When hearing
the term NAND, different designers, depending on the domain of their design level, think of
these different representations of the same NAND device. Some would think of just a block

FIGURE 2-50: Different
Levels of Abstraction of
a NAND Device

1

&

&

&

2
4
5
12
13
9
10

3

6

11

8

&

Behavior

Logic

Transistor

Layout

NOT AND

C <= not(A and B)

 SSI Gates

 (a)

(b)

(c)

(d)

(e)

CMOS 7400

A

B
C

A

B

Vdd

A B

C

86 Chapter 2 Introduction to VHDL

representing the behavior of a NAND operator, as illustrated in Figure 2-50(a). Some others
might think of the four gates in a CMOS 7400 chip, as in Figure 2-50(b). For designers who
work at the logic level, they think of the logic symbol for a NAND gate, as in Figure 2-50(c).
Transistor-level circuit designers think of the transistor-level circuit to achieve the NAND
functionality, as in Figure 2-50(d). What passes through the mind of a physical level designer
is the layout of a NAND gate, as in Figure 2-50(e). All of the �gures represent the same
device, but they differ in the amount of detail provided in the description.

Just as a NAND gate can be described in different ways, any logic circuit can be described
with different levels of detail. Figure 2-51 indicates a behavioral level representation of the
logic function F 5 ab 1 bc, whereas Figure 2-52 represents 2 equivalent structural represen-
tations. The functionality speci�ed in the abstract description in Figure 2-51 can be achieved
in different ways, two examples of which are by using two AND gates and one OR gate or
three NAND gates. A structural description gives different descriptions for Figures 2-52(a)
and 2-52(b), whereas the same behavioral description could result in either of these two
representations. A structural description speci�es more details, whereas the behavioral level
description only speci�es the behavior at a higher level of abstraction.

FIGURE 2-51: A Block
Diagram with A,
B, C as Inputs and
F 5 AB 1 BC as
Output

A

B

C

F = AB + BC

FIGURE 2-52: Two
Implementations of
F 5 AB 1 BC

(a) using AND-OR

A
B

C

(b) using NAND

A
B

C

You noticed that the same circuit can be described in different ways. Similarly, VHDL
allows you to create design descriptions at multiple levels of abstraction. The most com-
mon ones are behavioral models, data�ow (register transfer language [RTL]) models, and
structural models. Behavioral VHDL models describe the circuit or system at a high level of
abstraction without implying any particular structure or technology. Only the overall behav-
ior is speci�ed. In contrast, in structural models, the components used and the structure of
the interconnection between the components are clearly speci�ed. Structural models may be
detailed enough to specify use of particular gates and �ip-�ops from speci�c libraries/pack-
ages. The structural VHDL model is at a low level of abstraction. VHDL code can be written
at an intermediate level of abstraction, at the data�ow level, or RTL level, in addition to pure
behavioral level or structural level. Register transfer languages have been used for decades to
describe the behavior of synchronous systems where a system is viewed as registers plus con-
trol logic required to perform loading and manipulation of registers. In the data�ow model,
data path and control signals are speci�ed. The working of the system is described in terms
of the data transfer between registers.

2.15 Behavioral and Structural VHDL 87

If designs are speci�ed at higher levels of abstraction, they need to get converted to the
lower levels in order to get implemented. In the early days of design automation, there were
not enough automatic software tools to perform this conversion; hence, designs needed to be
speci�ed at the lower levels of abstraction. Designs were entered using schematic capture or
lower levels of abstraction. Nowadays, synthesis tools perform very ef�cient conversion of
behavioral level designs into target technologies.

Behavioral and structural design techniques are often combined. Different parts of the
design are often done with different techniques. State-of-the-art design automation tools
generate ef�cient hardware for logic and arithmetic circuits; hence, a large part of those
designs is done at the behavioral level. However, memory structures often need manual
optimizations and are done by custom design, as opposed to automatic synthesis.

2.15.1 Modeling a Sequential Machine
In this section, we discuss several ways of writing VHDL descriptions for sequential
machines. Let us assume that we have to write a behavioral model for a Mealy sequential
circuit represented by the state table in Figure 2-53 (note that this is the BCD to excess-3
code converter designed in Chapter 1). A block diagram of this state machine is also shown
in Figure 2-53. This view of the circuit can be used to write its entity description. Please note
that the current state and next state are not visible externally.

FIGURE 2-53: State
Table and Block
Diagram of Sequential
Machine

PS
NS Z

X = 0 X = 1

S0 0S1 S2 1
S1 0S3 S4 1
S2 1S4 S4 0
S3 1S5 S5 0
S4 0S5 S6 1
S5 1S0 S0 0
S6 —S0 — 1

X = 0 X = 1 X

CLK

Combinational
circuit

State
register

NS
Z

PS

There are several ways to model this sequential machine. One approach would be to use
two processes to represent the two parts of the circuit. One process models the combinational
part of the circuit and generates the next state information and outputs. The other process
models the state register and updates the state at the appropriate edge of the clock. Figure
2-54 illustrates such a model for this Mealy machine. The �rst process represents the com-
binational circuit. At the behavioral level, we will represent the state and next state of the
circuit by integer signals initialized to 0. Please remember that this initialization is meaningful
only for simulations. Since the circuit outputs, Z and Nextstate, can change when either the
State or X changes, the sensitivity list includes both State and X. The case statement tests the
value of State, and depending on the value of X, Z and Nextstate are assigned new values. The
second process represents the state register. Whenever the rising edge of the clock occurs,
State is updated to the value of Nextstate, so CLK appears in the sensitivity list. The second
process will simulate correctly if written as

process(CLK) -- State Register
begin
 if CLK = '1' then -- rising edge of clock (simulation)
 State <= Nextstate;
 end if;
end process;

88 Chapter 2 Introduction to VHDL

FIGURE 2-54: Behavioral Model for Excess-3 Code Converter

-- This is a behavioral model of a Mealy state machine (Figure 2-53)
-- based on its state table. The output (Z) and next state are
-- computed before the active edge of the clock. The state change
-- occurs on the rising edge of the clock.

entity Code_Converter is
 port(X, CLK: in bit;
 Z: out bit);
end Code_Converter;

architecture Behavioral of Code_Converter is
signal State, Nextstate: integer range 0 to 6;
begin
 process(State, X) -- Combinational Circuit
 begin
 case State is
 when 0 =>
 if X = '0' then Z <= '1'; Nextstate <= 1;
 else Z <= '0'; Nextstate <= 2; end if;
 when 1 =>
 if X = '0' then Z <= '1'; Nextstate <= 3;
 else Z <= '0'; Nextstate <= 4; end if;
 when 2 =>
 if X = '0' then Z <= '0'; Nextstate <= 4;
 else Z <= '1'; Nextstate <= 4; end if;
 when 3 =>
 if X = '0' then Z <= '0'; Nextstate <= 5;
 else Z <= '1'; Nextstate <= 5; end if;
 when 4 =>
 if X = '0' then Z <= '1'; Nextstate <= 5;
 else Z <= '0'; Nextstate <= 6; end if;
 when 5 =>
 if X = '0' then Z <= '0'; Nextstate <= 0;
 else Z <= '1'; Nextstate <= 0; end if;
 when 6 =>
 if X = '0' then Z <= '1'; Nextstate <= 0;
 else Z <= '0'; Nextstate <= 0; end if;
 when others => null; -- should not occur
 end case;
 end process;

 process(CLK) -- State Register
 begin
 if CLK'EVENT and CLK = '1' then -- rising edge of clock
 State <= Nextstate;
 end if;
 end process;
end Behavioral;

2.15 Behavioral and Structural VHDL 89

but in order to synthesize with edge-triggered �ip-�ops, the clk'event attribute must be
used, as in

process(CLK) -- State Register
begin -- (synthesis)
 if CLK'event and CLK = '1' then -- rising edge of clock
 State <= Nextstate;
 end if;
end process;

In Figure 2-54, State is an integer with range 0 to 6. The statement when others =>
null is not actually needed here because the outputs and next states of all possible values of
State are explicitly speci�ed; however, it should be included whenever the else clause of any
if statement is omitted or when actions for all possible values of State are not speci�ed. The
null implies no action, which is appropriate since the other values of State should never occur.
If else clauses are omitted or actions for any conditions are unspeci�ed, synthesis typically
results in creation of latches.

A simulator command �le that can be used to test Figure 2-54 is as follows:

add wave CLK X State NextState Z
force CLK 0 0, 1 100 -repeat 200
force X 0 0, 1 350, 0 550, 1 750, 0 950, 1 1350
run 1600

The �rst command speci�es the signals that are to be included in the waveform output.
The next command de�nes a clock with a period of 200 ns. CLK is '0' at time 0 ns, is '1' at
time 100 ns, and repeats every 200 ns. In a command of the form

force signal_name v1 t1, v2 t2, . . .

signal_name gets the value v1 at time t1, the value v2 at time t2, and so on. X is '0' at
time 0 ns, changes to '1' at time 350 ns, changes to '0' at time 550 ns, and so on. The X input
corresponds to the sequence 0010 1001, and only the times at which X changes are speci�ed.
Execution of the preceding command �le produces the waveforms shown in Figure 2-55.

FIGURE 2-55: Simulator
Output for Excess-3
Code Converter

/clk

/x

/state

/nextstate

/z

0

1

1

3

3

5

5

0

0

1 2

2

4

4

5

5

0

0

2

0 500 1000 1500

In Chapter 1, we manually designed this state machine (Figure 1-26). This circuitry con-
tained three �ip-�ops, four 3-input NAND gates, two 3-input NAND gates, and one inverter.
The behavioral model of Figure 2-54 may not result in exactly that circuit. In fact, when we
synthesized it using Xilinx ISE tools, we got a circuit that contains seven D-�ip-�ops, �fteen
2-input AND gates, three 2-input OR gates, and one 7-input OR gate. Apparently, the Xilinx
synthesis tool may be using one-hot design by default, instead of encoded design. One-hot
design is a popular approach for FPGAs, where �ip-�ops are abundant.

90 Chapter 2 Introduction to VHDL

Figure 2-56 shows an alternative behavioral model for the code converter that uses a
single process instead of two processes. The next state is not computed explicitly, but instead
the state register is updated directly to the proper next state value on the rising edge of the
clock. Since Z can change whenever State or X changes, Z should not be computed in the
clocked process. Instead, we have used a conditional assignment statement to compute Z. If

FIGURE 2-56: Behavioral Model for Code Converter Using a Single Process

-- This is a behavioral model of the Mealy state machine for BCD to
-- Excess-3 Code Converter based on its state table. The state change
-- occurs on the rising edge of the clock. The output is computed by a
-- conditional assignment statement whenever State or Z changes.

entity Code_Converter is
 port(X, CLK: in bit;
 Z: out bit);
end Code_Converter;

architecture one_process of Code_Converter is
signal State: integer range 0 to 6 := 0;
begin
 process(CLK)
 begin
 if CLK'event and CLK = '1' then
 case State is
 when 0 =>
 if X = '0' then State <= 1; else State <= 2; end if;
 when 1 =>
 if X = '0' then State <= 3; else State <= 4; end if;
 when 2 =>
 State <= 4;
 when 3 =>
 State <= 5;
 when 4 =>
 if X = '0' then State <= 5; else State <= 6; end if;
 when 5 =>
 State <= 0;
 when 6 =>
 State <= 0;
 end case;
 end if;
 end process;
 Z <= '1' when (State = 0 and X = '0') or (State = 1 and X = '0')
 or (State = 2 and X = '1') or (State = 3 and X = '1')
 or (State = 4 and X = '0') or (State = 5 and X = '1')
 or State = 6
 else '0';
end one_process;

2.15 Behavioral and Structural VHDL 91

Z were updated in the clocked process, then a �ip-�op would be created to store Z, and Z
would be updated at the wrong time. In general, the two-process model for a state machine
is preferable to the one-process model, since the former corresponds more closely to the
hardware implementation which uses a combinational circuit and a state register.

Another way to model this Mealy machine is using the data�ow approach (i.e., using
equations). The data�ow VHDL model of Figure 2-57 is based on the next state and output
equations, which are derived in Chapter 1 (Figure 1-25). The �ip-�ops are updated in a pro-
cess that is sensitive to CLK. When the rising edge of the clock occurs, Q1, Q2, and Q3 are all
assigned new values. A 10-ns delay is included to represent the propagation delay between
the active edge of the clock and the change of the �ip-�op outputs. Even though the assign-
ment statements in the process are executed sequentially, Q1, Q2, and Q3 are all scheduled to
be updated at the same time, T 1 D, where T is the time at which the rising edge of the clock
occurred. Thus, the old value of Q1 is used to compute Q2

1, and the old values of Q1, Q2,
and Q3 are used to compute Q3

1. The concurrent assignment statement for Z causes Z to be
updated whenever a change in X or Q3 occurs. The 20-ns delay represents two gate delays.
Note that in order to do VHDL modeling at this level, we need to perform state assignments,
derive next state equations, and so on. In contrast, at the behavioral level, the state table was
suf�cient to create the VHDL model.

Yet another approach to creating a VHDL model of the aforementioned Mealy machine
is to create a structural model describing the gates and �ip-�ops in the circuit. Figure 2-58
shows a structural VHDL representation of the circuit of Figure 1-26. Note that the designer

FIGURE 2-57: Sequential Machine Model Using Equations

-- The following is a description of the sequential machine of
-- the BCD to Excess-3 code converter in terms of its next state
-- equations. The following state assignment was used:
-- S0-->0; S1-->4; S2-->5; S3-->7; S4-->6; S5-->3; S6-->2

entity Code_Converter is
 port(X, CLK: in bit;
 Z: out bit);
end Code_Converter;

architecture Equations of Code_Converter is
signal Q1, Q2, Q3: bit;
begin
 process(CLK)
 begin
 if CLK = '1' and CLK'event then -- rising edge of clock
 Q1 <= not Q2 after 10 ns;
 Q2 <= Q1 after 10 ns;
 Q3 <= (Q1 and Q2 and Q3) or (not X and Q1 and not Q3) or
 (X and not Q1 and not Q2) after 10 ns;
 end if;
 end process;
 Z <= (not X and not Q3) or (X and Q3) after 20 ns;
end Equations;

92 Chapter 2 Introduction to VHDL

FIGURE 2-58: Structural Model of Sequential Machine

-- The following is a STRUCTURAL VHDL description of
-- the circuit to realize the BCD to Excess-3 code Converter.
-- This circuit was illustrated in Figure 1-26.
-- Uses components NAND3, NAND2, INVERTER and DFF
-- The component modules can be included in the same file
-- or they can be inserted as separate files.

entity Code_Converter is
 port(X,CLK: in bit;
 Z: out bit);
end Code_Converter;

architecture Structure of Code_Converter is
component DFF
 port(D, CLK: in bit; Q: out bit; QN: out bit := '1');
end component;
component Nand2
 port(A1, A2: in bit; Z: out bit);
end component;
component Nand3
 port(A1, A2, A3: in bit; Z: out bit);
end component;
component Inverter
 port(A: in bit; Z: out bit);
end component;
signal A1, A2, A3, A5, A6, D3: bit;
signal Q1, Q2, Q3: bit;
signal Q1N, Q2N, Q3N, XN: bit;
begin
 I1: Inverter port map (X, XN);
 G1: Nand3 port map (Q1, Q2, Q3, A1);
 G2: Nand3 port map (Q1, Q3N, XN, A2);
 G3: Nand3 port map (X, Q1N, Q2N, A3);
 G4: Nand3 port map (A1, A2, A3, D3);
 FF1: DFF port map (Q2N, CLK, Q1, Q1N);
 FF2: DFF port map (Q1, CLK, Q2, Q2N);
 FF3: DFF port map (D3, CLK, Q3, Q3N);
 G5: Nand2 port map (X, Q3, A5);
 G6: Nand2 port map (XN, Q3N, A6);
 G7: Nand2 port map (A5, A6, Z);
end Structure;

had to manually perform the design and obtain the gate level circuitry here in order to create
a model as in Figure 2-58. Seven NAND gates, three D �ip-�ops, and one inverter are used
in the design presented in Chapter 1. When primitive components like gates and �ip-�ops are
required, each of these components can be de�ned in a separate VHDL module. Depending

2.15 Behavioral and Structural VHDL 93

on which CAD tools are used, the component modules can be included in the same �le as the
main VHDL description, or they be inserted as separate �les in a VHDL project. The code
in Figure 2-58 requires component modules DFF, Nand3, Nand2, and Inverter. CAD tools
might include packages with similar components. If such packages are used, one should use
the exact component names and port-map statements that match the input-output signals of
the component in the package. The DFF module is as follows:

--D Flip-Flop
entity DFF is
 port(D, CLK: in bit;
 Q: out bit; QN: out bit := '1');
-- initialize QN to '1' since bit signals are defaulted to '0'
end DFF;
architecture SIMPLE of DFF is
begin
 process(CLK) -- process is executed when CLK changes
 begin
 if CLK'event and CLK = '1' then -- rising edge of clock
 Q <= D after 10 ns;
 QN <= not D after 10 ns;
 end if;
 end process;
end SIMPLE;

The Nand3 module is as follows:

--3 input NAND gate
entity Nand3 is
 port(A1, A2, A3: in bit; Z: out bit);
end Nand3;
architecture concur of Nand3 is
begin
 Z <= not (A1 and A2 and A3) after 10 ns;
end concur;

The Nand2 and Inverter modules are similar except for the number of inputs. We have
assumed a 10-ns delay in each component, and this can easily be changed to re�ect the actual
delays in the hardware being used.

Since Q1, Q2, and Q3 are initialized to '0', the complementary �ip-�op outputs
(Q1N, Q2N, and Q3N) are initialized to '1'. G1 is a three-input NAND gate with inputs
Q1, Q2, Q3, and output A1. FF1 is a D �ip-�op with the D input connected to Q2N. Execut-
ing the simulator command �le given next produces the waveforms of Figure 2-59, which are
very similar to Figure 1-39.

add wave CLK X Q1 Q2 Q3 Z
force CLK 0 0, 1 100 -repeat 200
force X 0 0, 1 350, 0 550, 1 750, 0 950, 1 1350
run 1600

If we synthesized this structural description, we would get exactly the same circuit that
we had in mind. Now the circuit includes only three D-�ip-�ops, three 2-input NAND gates,

94 Chapter 2 Introduction to VHDL

FIGURE 2-59:
Waveforms for Code
Converter

/clk
/x
/q1
/q2
/q3
/z

0 500 1000 1500

and four 3-input NAND gates. Compare it against the seven D-�ip-�ops, �fteen 2-input
AND gates, three 2-input OR gates, and one 7-input OR gate generated when Figure 2-54
was synthesized. When the designer speci�ed all components and their interconnections, the
synthesizer tool did not have to infer or “guess.”

Those who have developed C code with assembly inlining may feel some similarity to the
phenomenon occurring here. By inlining the assembly code, you can precisely describe what
microprocessor instruction sequence you want to be used, and the compiler gives you that. In
a similar way, the synthesizer does not actually have to translate any structural descriptions
that the designer wrote; it simply gives the hardware that the designer speci�ed in a structural
fashion. Some optimizing tools are capable of optimizing imperfect circuits that you might
have speci�ed. In general, you have more control of the generated circuitry when you use
structural coding. However, it takes a lot more effort to produce a structural model because
one needs to perform state assignments, derive next-state equations, and so on. Time-to-
market is an important criterion for success in the IC market, and hence designers often use
behavioral design in order to achieve quick time-to-market. Additionally, CAD tools have
matured signi�cantly during the past decade, and most synthesis tools are capable of produc-
ing ef�cient hardware for arithmetic and logic circuits.

2.16 Variables, Signals, and Constants
So far, we have used only signals in the VHDL code and have not used variables. VHDL
also provides variables as in other general-purpose high-level languages. Variables may be
used for local storage in processes. They can also be used in procedures and functions (which
are yet to be introduced). A large part of what is described in this section is relevant only
for simulation.

A variable declaration has the form

variable list_of_variable_names: type_name [:= initial_value];

Variables must be declared within the process in which they are used and are local to
that process. (An exception to this rule is shared variables, which are not discussed in this
text.) Signals, on the other hand, must be declared outside of a process. Signals declared at
the start of an architecture can be used anywhere within that architecture. A signal declara-
tion has the form

signal list_of_signal_names: type_name [:= initial_value];

Variables are updated using a variable assignment statement of the form

variable_name := expression;

When this statement is executed, the variable is instantaneously updated with no delay,
not even a delta delay. In contrast, consider a signal assignment of the form

signal_name <= expression [after delay];

2.16 Variables, Signals, and Constants 95

The expression is evaluated when this statement is executed, and the signal is scheduled
to change after delay. If no delay is speci�ed, then the signal is scheduled to be updated after
a delta delay.

It is incorrect to use

variable_name <= expression [after delay];

The examples in Figures 2-60 and 2-61 illustrate the difference between using variables
and signals in a process. The variables must be declared and initialized inside the process,
whereas the signals must be declared and initialized outside the process. In Figure 2-60,
if trigger changes at time 5 10 ns, Var1, Var2, and Var3 are computed sequentially and
updated instantly, and then Sum is computed using the new variable values. The sequence
is Var1 5 2 1 3 5 5, Var2 5 5, Var3 5 5. Then Sum 5 5 1 5 1 5 is computed. Since Sum
is a signal, it is updated D time later, so Sum 5 15 at time 5 10 1 D. In summary, variables
work just as variables you are used to in another language, whereas signals get updated
with time delays. In Figure 2-61, if trigger changes at time 5 10 ns, signals Sig1, Sig2,
Sig3, and Sum are all computed at time 10 ns, but the signals are not updated until time
10 1 D. The old values of Sig1 and Sig2 are used to compute Sig2 and Sig3. Therefore, at
time 5 10 1 D, Sig1 5 5, Sig2 5 1, Sig3 5 2, and Sum 5 6.

When to Use a Signal versus a Variable: If whatever you are modeling actually cor-
responds to some physical signal in your circuit, you should use a signal. If whatever
you are modeling is simply a temporary value that you are using for convenience of
programming, a variable will be suf�cient. Values represented using variables will not
appear on any physical wire in the implied circuit. If you would like them to appear,
you should use signals.

Simulation Output of 2-60

 ns delta trigger Var1 Var2 Var3 Sum
 0 10 0 1 2 3 0
 0 11 0 1 2 3 0
 10 10 1 5 5 5 0
 10 11 1 5 5 5 15

FIGURE 2-60: Process Using Variables and Corresponding Simulation Output

entity dummy is
end dummy;

architecture var of dummy is
signal trigger, sum: integer:=0;
begin
 process
 variable var1: integer:=1;
 variable var2: integer:=2;
 variable var3: integer:=3;
 begin
 wait on trigger;
 var1 := var2 + var3;
 var2 := var1;
 var3 := var2;
 sum <= var1 + var2 + var3;
 end process;
end var;

96 Chapter 2 Introduction to VHDL

During simulation, initialization makes the process execute once, and it stops when wait
statements are encountered. Hence, simulation outputs can vary depending on whether the
wait statements are put at the beginning of the process, end of the process, or whether a sen-
sitivity list is used. Figures 2-62 and 2-63 illustrate various possibilities. Please remember that
these differences are not important when VHDL is used for synthesis of hardware. These are
subtle differences that only affect simulation of behavioral VHDL.

FIGURE 2-61: Process Using Signals and Corresponding Simulation Output

entity dummy is
end dummy;
architecture sig of dummy is
signal trigger, sum: integer:=0;
signal sig1: integer:=1;
signal sig2: integer:=2;
signal sig3: integer:=3;
begin
 process
 begin
 wait on trigger;
 sig1 <= sig2 + sig3;
 sig2 <= sig1;
 sig3 <= sig2;
 sum <= sig1 + sig2 + sig3;
 end process;
end sig;

Simulation Output of 2-61

 ns delta trigger Sig1 Sig2 Sig3 Sum
 0 10 0 1 2 3 0
 0 11 0 1 2 3 0
 10 10 1 1 2 3 0
 10 11 1 5 1 2 6

FIGURE 2-62: Process Using Variables and Corresponding Simulation Output

entity dummy is
end dummy;

architecture var of dummy is
signal trigger, sum: integer:=0;
begin
 process(trigger)
 variable var1: integer:=1;
 variable var2: integer:=2;
 variable var3: integer:=3;
 begin
 var1 := var2 + var3;
 var2 := var1;
 var3 := var2;
 sum <= var1 + var2 + var3;
 end process;
end var;

Simulation Output of 2-62

 ns delta trigger Var1 Var2 Var3 Sum
 0 10 0 1 2 3 0
 0 11 0 5 5 5 15
 10 10 1 10 10 10 15
 10 11 1 10 10 10 30

2.17 Arrays 97

2.16.1 Constants
Like variables, constants are also used for convenience of programming.

A common form of constant declaration is

constant constant_name: type_name := constant_value;

A constant delay1 of type time, having the value of 5 ns, can be de�ned as

constant delay1: time := 5 ns;

Constants declared at the start of an architecture can be used anywhere within that archi-
tecture, but constants declared within a process are local to that process.

Variables, signals, and constants can have any one of the prede�ned VHDL types, or
they can have a user-de�ned type.

2.17 Arrays
Digital systems often use memory arrays. VHDL arrays can be used to specify the values to
be stored in these arrays. A key feature of VLSI circuits is the repeated use of similar struc-
tures. Arrays in VHDL can be used while modeling the repetition.

In order to use an array in VHDL, we must �rst declare an array type and then declare
an array object. For example, the following declaration de�nes a one-dimensional array type
named SHORT_WORD:

type SHORT_WORD is array (15 downto 0) of bit;

An array of this type has an integer index with a range from 15 downto 0, and each
element of the array is of type bit. SHORT_WORD is the name of the newly created data type.
We may note that SHORT_WORD is nothing but a bit_vector of size 16.

FIGURE 2-63: Process Using Signals and Corresponding Simulation Output

entity dummy is
end dummy;

architecture sig of dummy is
signal trigger, sum: integer:=0;
signal sig1: integer:=1;
signal sig2: integer:=2;
signal sig3: integer:=3;
begin
 process(trigger)
 begin
 sig1 <= sig2 + sig3;
 sig2 <= sig1;
 sig3 <= sig2;
 sum <= sig1 + sig2 + sig3;
 end process;
end sig;

Simulation Output of 2-63

 ns delta trigger Sig1 Sig2 Sig3 Sum
 0 10 0 1 2 3 0
 0 11 0 5 1 2 6
 10 10 1 5 1 2 6
 10 11 1 3 5 1 8

98 Chapter 2 Introduction to VHDL

Now, we can declare array objects of type SHORT_WORD as follows:

signal DATA_WORD: SHORT_WORD;
variable ALT_WORD: SHORT_WORD := "0101010101010101";
constant ONE_WORD: SHORT_WORD := (others => '1');

Three different arrays are de�ned by the preceding statements. DATA_WORD is a signal
array of 16 bits, indexed 15 downto 0, which is initialized (by default) to all '0' bits. ALT_
WORD is a variable array of 16 bits, which is initialized to alternating 0’s and 1’s. ONE_WORD is
a constant array of 16 bits; all bits are set to 1 by (others => '1').

We can reference individual elements of the de�ned array by specifying an index value.
For example, ALT_WORD(0) accesses the rightmost bit of ALT_WORD. We can also specify
a portion of the array by specifying an index range: ALT_WORD(5 downto 0) accesses the
low-order 6 bits of ALT_WORD, which have an initial value of “010101.”

The array type and array object declarations illustrated here have the general forms

type array_type_name is array index_range of element_type;
signal array_name: array_type_name [:= initial_values];

In the preceding declaration, signal may be replaced with variable or constant.

2.17.1 Matrices
Multidimensional array types may also be de�ned with two or more dimensions. The follow-
ing example de�nes a two-dimensional array variable, which is a matrix of integers with four
rows and three columns:

type matrix4x3 is array (1 to 4, 1 to 3) of integer;
variable matrixA: matrix4x3 := ((1, 2, 3), (4, 5, 6), (7, 8, 9),
 (10, 11, 12));

The variable matrixA will be initialized to

1 2 3
4 5 6
7 8 9
10 11 12

The array element matrixA(3, 2) references the element in the third row and second column,
which has a value of 8.

When an array type is declared, the dimensions of the array may be left unde�ned. This
is referred to as an unconstrained array type. For example,

type intvec is array (natural range <>) of integer;

declares intvec as an array type that de�nes a one-dimensional array of integers with an
unconstrained index range of natural numbers. The default type for array indices is integer,
but another type may be speci�ed. Since the index range is not speci�ed in the unconstrained
array type, the range must be speci�ed when the array object is declared. For example,

signal intvec5: intvec(1 to 5) := (3, 2, 6, 8, 1);

2.17 Arrays 99

de�nes a signal array named intvec5 with an index range of 1 to 5 that is initialized to 3, 2, 6,
8, 1. The following declaration de�nes matrix as a two-dimensional array type with uncon-
strained row and column index ranges:

type matrix is array (natural range <>, natural range <>) of
 integer;

Parity bits are often used in digital communication for error detection and correction. The simplest of these involve trans-
mitting one additional bit with the data, a parity bit. Use VHDL arrays to represent a parity generator that generates a
5-bit-odd-parity generation for a 4-bit input number using the look-up table (LUT) method.

Answer:

The input word is a 4-bit binary number. A 5-bit odd-parity representation will contain exactly an odd number of 1’s
in the output word. This can be accomplished by the read-only memory (ROM) method using a look-up table of size
16 entries × 5 bits. The look-up table is indicated in Figure 2-64.

E X A M PLE

FIGURE 2-64: LUT
Contents for a Parity
Code Generator

Input (LUT Address) Output (LUT Data)

A B C D P Q R S T

0 0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 1 0

0 0 1 0 0 0 1 0 0

0 0 1 1 0 0 1 1 1

0 1 0 0 0 1 0 0 0

0 1 0 1 0 1 0 1 1

0 1 1 0 0 1 1 0 1

0 1 1 1 0 1 1 1 0

1 0 0 0 1 0 0 0 0

1 0 0 1 1 0 0 1 1

1 0 1 0 1 0 1 0 1

1 0 1 1 1 0 1 1 0

1 1 0 0 1 1 0 0 1

1 1 0 1 1 1 0 1 0

1 1 1 0 1 1 1 0 0

1 1 1 1 1 1 1 1 1

The VHDL code for the parity generator is illustrated in Figure 2-65. The IEEE numeric
bit package is used here. X and Y are de�ned to be unsigned vectors. The �rst four bits of
the output are identical to the input. Hence, instead of storing all �ve bits of the output, we

100 Chapter 2 Introduction to VHDL

might store only the parity bit and then concatenate it to the input bits. In the VHDL code
(Figure 2-65), a new data type OutTable is de�ned to be an array of 16 bits. A constant table
of type OutTable is de�ned using the following statement:

type OutTable is array(0 to 15) of bit;

The index of this array is an integer in the range 0 to 15. Hence, unsigned vector X needs
to be converted to an integer �rst, which can be done using the to_integer function
de�ned in the library.

FIGURE 2-65: Parity Code Generator Using the LUT Method

library IEEE;
use IEEE.numeric_bit.all;

entity parity_gen is
 port(X: in unsigned(3 downto 0);
 Y: out unsigned(4 downto 0));
end parity_gen;

architecture Table of parity_gen is
type OutTable is array(0 to 15) of bit;
signal ParityBit: bit;
constant OT: OutTable := ('1','0','0','1','0','1','1','0',
 '0','1','1','0','1','0','0','1');
begin
 ParityBit <= OT(to_integer(X));
 Y <= X & ParityBit;
end Table;

Prede�ned unconstrained array types in VHDL include bit_vector and string, which are
de�ned as follows:

type bit_vector is array (natural range <>) of bit;
type string is array (positive range <>) of character;

The characters in a string literal must be enclosed in double quotes. For example, “This
is a string.” is a string literal. The following example declares a constant string1 of type string:

constant string1: string(1 to 29) :=
 "This string is 29 characters."

A bit_vector literal may be written either as a list of bits separated by commas or as
a string. For example, ('1','0','1','1','0') and “10110” are equivalent forms. The following
declares a constant A that is a bit_vector with a range 0 to 5:

constant A: bit_vector(0 to 5) := "101011";

2.18 Loops in VHDL 101

After a type has been declared, a related subtype can be declared to include a subset of
the values speci�ed by the type. For example, the type SHORT_WORD, which was de�ned at
the start of this section, could have been de�ned as a subtype of bit_vector:

subtype SHORT_WORD is bit_vector (15 downto 0);

Two prede�ned subtypes of type integer are POSITIVE, which includes all positive integers,
and NATURAL, which includes all positive integers and 0.

2.18 Loops in VHDL
Often, we encounter systems where some activity is happening in a repetitive fashion. VHDL
loop statements can be used to express this behavior. A loop statement is a sequential state-
ment. VHDL has several kinds of loop statements including for loops and while loops.

1. in�nite loop

In�nite loops are undesirable in common computer languages, but they can be useful in
hardware modeling where a device works continuously and continues to work until the
power is off.
The general form for an in�nite loop is

[loop-label:] loop
 sequential statements

end loop [loop-label];

An exit statement of the form

exit; or exit when condition;

may be included in the loop. The loop will terminate when the exit statement is executed,
provided that the condition is TRUE.

2. for loop

One way to augment the basic loop is the for loop, where the number of invocations of
the loop can be speci�ed.

The general form of a for loop is

[loop-label:] for loop-index in range loop
 sequential statements
end loop [loop-label];

The loop-index is automatically de�ned when the loop is entered, and it should
not explicitly be declared. It is initialized to the �rst value in the range and then the
 sequential statements are executed. The range is speci�ed, for example as 0
to n, where n can be a constant or variable. The loop-index can be used within the
sequential statements inside the loop, but it cannot be changed within the loop.
When the end of the loop is reached, the loop-index is set to the next value in the
range and the sequential statements are executed again. This process continues
until the loop has been executed for every value in the range, and then the loop termi-
nates. After the loop terminates, the loop-index is no longer available.

102 Chapter 2 Introduction to VHDL

We could use this type of a loop in behavioral models. The following excerpt models
a 4-bit adder. The loop index (i) will be initialized to 0 when the for loop is entered, and
the sequential statements will be executed. Execution will be repeated for i 5 1, i 5 2,
and i 5 3; then the loop will terminate. The carry out from one iteration (cout) is copied
to the carry in (cin) before the end of the loop. Since variables are used for the sum and
carry bits, the update of carry out happens instantaneously. Code like this often appears
in VHDL functions and procedures (described in Chapter 8):

loop1: for i in 0 to 3 loop
 cout := (A(i) and B(i)) or (A(i) and cin) or (B(i) and cin);
 sum(i) := A(i) xor B(i) xor cin;
 cin := cout;
end loop loop1;

You could also use the for loop construct to create multiple copies of a basic cell.
When the preceding code is synthesized, the synthesizer typically provides four copies of
a 1-bit adder connected in a ripple carry fashion.

3. while loop

In the for loop, the loop index cannot be changed by the programmer. However, in the
while loop, the loop index can be manipulated by the programmer. So incrementing the
loop index by 2 can be done in the while loop. As in while loops in most languages, a
condition is tested before each iteration. The loop is terminated if the condition is false.
The general form of a while loop is

[loop-label:] while condition loop
 sequential statements
end loop [loop-label];

This construct is primarily for simulation.
Figure 2-66 illustrates a while loop that models a down counter. Use the while

 statement to continue the decrementing process until the stop is encountered or the
counter reaches 0. The counter is decremented on every rising edge of clk until either
the count is 0 or stop is 1.

FIGURE 2-66: Use of While Loop

while stop = '0' and count /= 0 loop
 wait until clk'event and clk = '1';
 count <= count - 1 ;
 wait for 0 ns;
end loop;

2.19 Assert and Report Statements
Once a VHDL model for a system is made, the next step is to test it. A model must be tested
and validated before it can be successfully used. VHDL provides some special statements,
such as assert, report, and severity, to aid in the testing and validation process.

2.19 Assert and Report Statements 103

The assert statement checks to see if a certain condition is true, and, if not, it causes an
error message to be displayed. One form of the assert statement is

assert boolean-expression
 report string-expression
 [severity severity-level];

The assert statement speci�es a Boolean expression which indicates the condition to
be met. If the condition has not been met, an assertion violation has occurred. This gen-
eral methodology of creating assertions (or conditions to be met by a working circuit) and
 checking for violations is called a assertion-based testing and is used in functional veri�cation.
If an assertion violation occurs during simulation, the simulator reports it with the string-
expression provided in the report clause. If the boolean-expression is false, then the
string-expression is displayed on the monitor along with the severity-level. If the
boolean-expression is true, no message is displayed.

There are four possible severity-levels: note, warning, error, and failure. We can
include one of these to indicate the degree to which the violation of the particular assertion
affects the operation of the model. For instance, a serious violation may have to be �agged
as a failure, whereas some minor violation only needs to be �agged as a note or warning. The
action taken for these severity-levels depends on the simulator. The severity-level is optional.

If the assert clause is omitted, then the report is always made. Thus, the statement

report "ALL IS WELL";

will display the message “ALL IS WELL” whenever the statement is executed.
Assert and report statements are very useful for creation of test benches. A test bench

is a piece of VHDL code that can provide input combinations to test a VHDL model for
the system under test. It provides stimuli to the system/circuit under test. Test benches are
frequently used during simulation to provide sequences of inputs to the circuit/VHDL model
under test. Figure 2-67 shows a test bench for testing the 4-bit binary adder that we created
earlier in this chapter. The adder we are testing will be treated as a component and embed-
ded in the test bench program. The signals generated within the test bench are interfaced to
the adder, as shown in Figure 2-67. The test bench code in Figure 2-68 uses constant arrays to
de�ne the test inputs for the adder and the expected outputs. It uses a for loop to select the
inputs from the arrays. It uses assert and report statements to check the outputs and report
whether the output matched the expected output for the particular combination of inputs.
The assert statement is meaningful only for simulation. During synthesis, the synthesizer may
simply assume that the assertion violation does not exist.

The report statement can only take a string expression as its argument. Hence one cannot
use the loop index i or the input operands to give an indication of where the error occurred
because they are not strings. However, VHDL provides a prede�ned attribute to convert
other data types to strings. It is the 'image attribute. So far you have come across only one
attribute, the 'event in CLK'event. More attributes are discussed in Chapter 8.

FIGURE 2-67:
Interfacing of Signals
while Using a Test
Bench to Test a 4-Bit
Adder

4-Bit
adder

Addend

Carry out

Sum

Carry inTest
bench

Augend
A

B

Ci

S

Co

104 Chapter 2 Introduction to VHDL

FIGURE 2-68: Test Bench for 4-Bit Adder

-- entity TestAdder is
-- end TestAdder;

-- architecture test1 of TestAdder is
-- component Adder4
-- port(A, B: in bit_vector(3 downto 0); Ci: in bit;
 S: out bit_vector(3 downto 0); Co: out bit);
-- end component;
-- constant N: integer := 11;
-- type bv_arr is array(1 to N) of bit_vector(3 downto 0);
-- type bit_arr is array(1 to N) of bit;
-- constant addend_array: bv_arr := ("0111", "1101", "0101", "1101",
-- "0111", "1000", "0111", "1000", "0000", "1111", "0000");
-- constant augend_array: bv_arr := ("0101", "0101", "1101", "1101",
-- "0111", "0111", "1000", "1000", "1101", "1111", "0000");
-- constant cin_array: bit_arr := ('0', '0', '0', '0', '1', '0', '0',
-- '0', '1', '1', '0');
-- constant sum_array: bv_arr := ("0000", "0101", "0010", "1010",
-- "1111", "1111", "1111", "0000", "1110", "1111", "0000");
-- constant cout_array: bit_arr := ('0', '1', '1', '1', '0', '0', '0',
-- '1', '0', '1', '0');
-- signal addend, augend, sum: bit_vector(3 downto 0);
-- signal cin, cout: bit;
-- begin
-- process
-- begin
-- for i in 1 to N loop
-- addend <= addend_array(i);
-- augend <= augend_array(i);
-- cin <= cin_array(i);
-- wait for 40 ns;
-- report integer'image(i); assert (sum = sum_array(i) and cout = cout_array(i))
-- report "Wrong answer when adding iteration"
-- & integer'image(i)
-- severity error;
-- end loop;
-- report "Test Finished";
-- end process;
-- add1: adder4 port map (addend, augend, cin, sum, cout);
-- end test1;

2.19 Assert and Report Statements 105

The general format of the 'image attribute is

T'image(X)

where X is of type T.

We can add a statement

report integer'image(i);

which will print the loop index each time the statement is encountered. The loop index is of
type integer. This statement is outside the assert statement, hence it prints for all iterations.
We can add a statement of the form

report "Wrong Answer when adding Iteration " & integer 'image(i);

inside the assert statement, but then it will result in an output only when the assertion fails.

In order to check the report statement during assertion violation, we have left some incorrect
answers in the sum_array, which results in the following messages:

Error: Wrong answer when adding Iteration 1
Error: Wrong answer when adding Iteration 2

We will provide another example to illustrate how a waveform input can be provided in
a test bench. In earlier examples in this chapter, we used simulator commands to test VHDL
models. Figure 2-69 illustrates a piece of VHDL code that accomplishes exactly the same

FIGURE 2-69: Generating a Test Sequence for Testing VHDL Model for Code Converter

entity test_code_conv is
end test_code_conv;

architecture tester of test_code_conv is
signal X, CLK, Z: bit;
component Code_Converter is
 port(X, CLK: in bit;
 Z: out bit);
end component;
begin
 clk <= not clk after 100 ns;
 X <= '0', '1' after 350 ns, '0' after 550 ns, '1' after
 750 ns, '0' after 950 ns, '1' after 1350 ns;
 CC: Code_Converter port map (X, clk, Z);
end tester;

106 Chapter 2 Introduction to VHDL

testing that was done using simulator commands in Figure 2-55. A time-varying signal is
provided to input X using the statement

X <= '0', '1' after 350 ns, '0' after 550ns, '1' after 750 ns, '0'
 after 950 ns, '1' after 1350 ns;

Another method to generate the same stimuli is illustrated below:

example_test_seq: process
begin
X <= '0';
wait for 350 ns;
X <= '1';
wait for 200 ns;
X <= '0';
wait for 200 ns;
X <= '1';
wait for 200 ns;
X <= '0';
wait for 400 ns;
X <= '1';
end process example_test_seq;

Yet another method of generating test stimuli is using constant arrays and loops. If there
are several inputs to be fed to the circuit, the input values can be embedded in arrays and
streamed out to the DUV, using loop statements. The same stimuli pattern above is gener-
ated, using an array in a loop below. A better example for the use of arrays and loops can be
found in the next section.

constant N: integer := 6;
type X_arr is array(0 to N) of bit;
constant X_array: X_arr := ('0', '1', '0', '1', '0', '0', '1');
signal X: bit;
begin
 process
 begin
 X <= '0';
 wait for 350 ns;
 for i in 1 to N loop
 X <= X_array(i);
 wait for 200 ns;
end loop;

2.20 Tips for Debugging VHDL Code
Students often struggle with testing and debugging code. While this is not a VHDL-speci�c
issue, understanding speci�cs about VHDL can help students to minimize the amount of
time spent in debugging. In this section, several code examples are provided with testing and
debugging tips.

2.20 Tips for Debugging Vhdl Code 107

In order to get 2 gates, one student wrote the following code

E X A M PLE

FIGURE 2-70: Example gates code

entity gates is
 port(A, B, C: in bit; D, E: out bit);
end gates;

architecture ckt of gates is
begin
 process (A,B,C)
 begin
 D <= A or B after 5 ns;
 E <= not C and A after 5 ns;
 end process;
end ckt;

It was tested with the following simulator sequence.

add wave A B C D E
force A 0 0, 1 1 –repeat 2 ns
force B 0
force C 0 0, 1 2 -repeat 4 ns
run 40 ns

It was expected that D would be 1 whenever A is 1 and E would be 1 periodically. But neither D nor E ever turned
1 during simulation. What is wrong with this code?

Answer: Nothing is wrong with this code. The OR and AND gates have an inertial delay of 5 ns. Pulses narrower than
5 ns will get delayed. Hence the test sequence applied should be modi�ed to produce test stimulus that does not get
rejected. For example the following sequence will demonstrate that the code is working as expected.

add wave A B C D E
force A 0 0, 1 10 –repeat 20 ns
force B 0
force C 0 0, 1 20 -repeat 40 ns
run 100 ns

TIP 1: Make sure that your test sequences are appropriately designed considering inertial delay of the circuit elements
so that you do not interpret a working circuit as incorrect.

108 Chapter 2 Introduction to VHDL

B. Figure 2-72 illustrates code with sensitivity list corrected. Two signals tempSum and tempDiff are added to the pro-
cess sensitivity list. The code performs addition and subtraction now, but this code still has problems. It generates
latches for the output. Also, unnecessary libraries still remain in the code. The two std_logic libraries are not required
for this code. Only the numeric_bit library is needed.

FIGURE 2-71: Preliminary Code for an adder/subtractor unit

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_bit.all;
use IEEE.std_logic_unsigned.all;

entity addsub is
 port(A,B: in unsigned(3 downto 0);
opcode: in bit_vector(2 downto 0);
Cin: in bit;
 Output: out unsigned(3 downto 0);
Cout: out bit);
end addsub;

architecture Structure of addsub is
signal tempSum: unsigned(4 downto 0);
signal tempDiff: unsigned(4 downto 0);
begin
 process(opcode,A,B,Cin)
 begin
 case opcode is
 when "0"=>
 tempSum<='0' & A + B + unsigned'(0=>Cin) after 10 ns;
 Output<=tempSum(3 downto 0) after 10 ns;
 Cout<=tempSum(4) after 10 ns;
 when "1"=>
 tempDiff<='0' & A - B - unsigned'(0=>Cin) after 10 ns;
 Output<=tempDiff(3 downto 0) after 10 ns;
 Cout<=tempDiff(4) after 10 ns;
 end case;
 end process;
end Structure;

Design an adder/subtractor unit with a process and when statements. The circuit should be purely combinational, that
is, no latches should be present.
A. The code in Figure 2-71 is incorrect because Output and Cout correspond to previous values of inputs. The signals

tempSum and tempDiff are not in the sensitivity list.

E X A M PLE

2.20 Tips for Debugging Vhdl Code 109

FIGURE 2-72: Improved Code for the adder/subtractor code

library IEEE;
use IEEE.std_logic_1164.all; --many students add this, but unnecessary here

use IEEE.numeric_bit.all;
use IEEE.std_logic_unsigned.all; --many students add this, but unnecessary here

entity addsub is
 port(A,B: in unsigned(3 downto 0);
opcode: in bit_vector(2 downto 0);
Cin: in bit;
 Output: out unsigned(3 downto 0);
Cout: out bit);
end addsub;

architecture Structure of addsub is
signal tempSum: unsigned(4 downto 0);
signal tempDiff: unsigned(4 downto 0);
begin
 process(opcode,A,B,Cin, tempSum, tempDiff)
 begin
 case opcode is
 when "0"=>
 tempSum<='0' & A + B + unsigned'(0=>Cin)after 10 ns;
 Output<=tempSum(3 downto 0)after 10 ns;
 Cout<=tempSum(4)after 10 ns;
 when "1"=>
 tempDiff<='0' & A - B - unsigned'(0=>Cin) after 10 ns;
 Output<=tempDiff(3 downto 0) after 10 ns;
 Cout<=tempDiff(4) after 10 ns;
 end case;
 end process;
end Structure;

There are two sequential statements dependent on tempSum for case 0 and that results in Output and Cout using
old values of tempSum. While tempSum has correct values, Output and Cout are incorrect.

Basically there is a latch between tempSum and Output and tempSum and Cout which introduces additional delay.
This circuit was intended to be purely combinational and no latches are expected.

Similar problem also exists in case 1 for tempDiff.

TIP 2: If there are multiple statements that need to be executed at the same time, do not put them as sequential state-
ments inside a process.

110 Chapter 2 Introduction to VHDL

C. Figure 2-73 illustrates corrected code with latches removed to eliminate timing problems.

If the statement

tempSum<='0' & A + B + unsigned'(0=>Cin) after 10 ns;

in Figure 2-72 is changed to

Output <= '0' & A + B + unsigned'(0=>Cin) after 10 ns;

Output is correct, but we would like the answer as a 4-bit sum and a 1-bit Cout. Splitting the Sum into Output and Cout is
done outside the process statement, so the operation happens concurrently as opposed to sequentially. Similar changes must
be made in case 1 as well.

TIP 3: If there are multiple statements that should take effect during execution of a case in a case statement, they need to be
independent. If they are dependent (i.e., sequential), see whether a single output vector encompassing all the outputs can be
generated inside the case statement which can be split into multiple outputs outside the process.

FIGURE 2-73: Corrected code for adder/subtractor

library IEEE;
use IEEE.numeric_bit.all;

entity addsub is
port(A, B: in unsigned(3 downto 0);
opcode: in unsigned(2 downto 0);
Cin: in bit;
Cout: out bit;
Output: out unsigned(3 downto 0));
end addsub;

architecture circuit of addsub is
signal Sum: unsigned (4 downto 0):= "00000";

begin
 process(A,B,opcode,Cin)
 begin
 case opcode is

 when "0" =>
 Sum <= '0' & A + B + unsigned'(0=>Cin) after 10 ns; -- 5 bits with carry
 when "1" =>
 Sum <= '0' & A - B - unsigned'(0=>Cin) after 10 ns;
 end case;
 end process;
 Output <= Sum(3 downto 0);
 Cout <= Sum(4);
 end;

2.20 Tips for Debugging Vhdl Code 111

Analyzing code
What is the following code doing?

E X A M PLE

FIGURE 2-74: Counter Code version 1

library IEEE;
use IEEE.numeric_bit.all;

entity bcd is
 port(Load, Clr, Enable, Clk, Up: in bit;
 D: in unsigned(3 downto 0);
 Cout: out bit; Q: out unsigned(3 downto 0));
end bcd;

architecture counter of bcd is
signal Qout: unsigned(3 downto 0);
begin
 Q <= Qout;
 process(Clk,Clr)
 begin
 if Clr = '0' then Qout<="0000";
 elsif Clk'event and Clk = '1' then
 if Load = '1' and Enable = '1' then Qout <= D after 2 ns;
 elsif Load = '0' and Enable = '1' and Up = '1' then
 if Qout = "1001" then Cout <= '1'; Qout<="0000" after 2 ns;
 else Qout <= Qout + 1 after 2 ns; Cout <= '0';
 end if;
 elsif Load = '0' and Up = '0' and Enable = '1' then
 if Qout = "0000" then Cout <= '1'; Qout<="1001" after 2 ns;
 else Qout <= Qout - 1 after 2 ns; Cout <= '0';
 end if;
 end if;
 end if;
 end process;
end counter;

Answer: It is implementing a 1-digit BCD up-down counter with parallel load and a carryout. The carryout becomes 1
when the counter counts up from 9 to 0 or counts down from 0 to 9. When load signal is 1, the counter can be parallel
loaded from D. It has an active low clear and an active high enable. The UP signal must be 1 for counting up and 0 for
counting down.

Question: While counting up, when will the carry be generated? When the counter is 9 or when it is 0?
Answer: When it is 0.

Question: What will happen if this counter is asked to load hexadecimal value C (i.e., 1100)?
Answer: It will load it although it is not a legal BCD value.

112 Chapter 2 Introduction to VHDL

Question: How can you prevent the counter from loading non-BCD values?
Change

 if Load = '1' and Enable = '1' then Qout <= D after 2 ns;

to

if Load ='1' and Enable = '1' and D <= 1001 then Qout <= D after 2 ns;

Question: Is the carry signal synchronous or asynchronous?
Answer: Synchronous.

Now analyze the following variant of this code.

FIGURE 2-75: Counter code version 2

library IEEE;
use IEEE.numeric_bit.all;

entity bcd is
 port(Load, Clr, Enable, Clk, Up: in bit;
 D: in unsigned(3 downto 0);
 Cout: out bit; Q: out unsigned(3 downto 0));
end bcd;

architecture counter of bcd is
signal Qout: unsigned(3 downto 0);
begin
 Q <= Qout;
 Cout <= (not Qout(3) and not Qout(2) and not Qout(1) and not Qout(0) and Enable and
not Up) or (Qout(3) and not Qout(2) and not Qout(1) and Qout(0) and Enable and Up);

 process(Clk,Clr)
 begin
 if Clr = '0' then Qout<="0000";
 elsif Clk'event and Clk = '1' then
 if Load = '1' and Enable = '1' then Qout <= D after 2 ns;
 elsif Load = '0' and Enable = '1' and Up = '1' then
 if Qout = "1001" then Qout<="0000" after 2 ns;
 else Qout <= Qout + 1 after 2 ns;
 end if;
 elsif Load = '0' and Up = '0' and Enable = '1' then
 if Qout = "0000" then Qout<="1001" after 2 ns;
 else Qout <= Qout - 1 after 2 ns;
 end if;
 end if;
 end if;
 end process;
end counter;

2.20 Tips for Debugging Vhdl Code 113

Question: What are differences in this code compared to the code in Figure 2-74?
Answer: Cout is a combinational output implemented using a concurrent statement outside the process. Cout is
 produced when count is 9 and counter is in the up counting mode or when count 5 0 and the counter is in the down
counting mode.

Question: If a 2-digit BCD counter uses the 1-digit BCD as in code in Figure 2-74 versus the code in Figure 2-75, what are
the differences in the results of the 2 implementations?
Answer: The implementation using Figure 2-74 counts from 69 to 60 to 71.

The implementation using Figure 2-75 counts from 69 to 70 to 71.

Why is there a difference?

The implementation in Figure 2-74 produces Cout inside the process. Hence Cout becomes 1 at the next clock after
count equals 9 and Up signal is there. But Cout has to be present in order for the second digit to increment. Hence the
increment happens 1 clock cycle later.

The code in Figure 2-74 has latches between count value and Cout.
The code for Cout in Figure 2-75 is purely combinational.

The following code is used to slow down a fast 50 MHz clock to a 1 Hz clock. The code was tested and found to be not
working. The output simply stays at 0. What is wrong?

E X A M PLE

FIGURE 2-76: Code for generating a slow clock from a fast clock

library IEEE;
use IEEE.numeric_bit.all;

entity complex is
 port(clk50Mhz: in bit;
 clk: inout bit);
end complex;

architecture internal of complex is
signal counter_Big: integer range 1 to 5000000;
begin

process(clk50Mhz)
begin
if clk50Mhz = '1' and clk50Mhz'event then
 if counter_Big = 50000000 then counter_Big <= 1; clk<=not clk;
 else counter_Big<=counter_Big+1;
 end if;
end if;
end process;
end internal;

114 Chapter 2 Introduction to VHDL

In this chapter, we have covered the basics of VHDL. We have shown how to use VHDL
to model combinational logic and sequential machines. Since VHDL is a hardware descrip-
tion language, it differs from an ordinary programming language in several ways. Most
importantly, VHDL statements execute concurrently, since they must model real hardware
in which the components are all in operation at the same time. Statements within a process
execute sequentially, but the processes themselves operate concurrently. VHDL signals
model actual signals in the hardware, but variables may be used for internal computation
that is local to processes, procedures, and functions. We will cover more advanced features
of VHDL in Chapter 8.

Problems
2.1 (a) What do the acronyms VHDL and VHSIC stand for?

(b) How does a hardware description language like VHDL differ from an ordinary programming language?
(c) What are the advantages of using a hardware description language as compared with schematic capture in

the design process?
2.2 (a) Which of the following are legal VHDL identi�ers? 123A, A_123, _A123, A123_, c1__c2, and,

and1
 (b) Which of the following identi�ers are equivalent? aBC, ABC, Abc, abc

2.3 Given the concurrent VHDL statements:

B <= A and C after 3ns;
C <= not B after 2ns;

(a) Draw the circuit the statements represent.
(b) Draw a timing diagram if initially A 5 B 5 '0' and C 5 '1', and A changes to '1' at time 5 ns.

2.4 Write a VHDL description of the following combinational circuit using concurrent statements. Each gate has a
5-ns delay, excluding the inverter, which has a 2-ns delay.

E

F

A
B
C
D
A
B

C

Z

Answer: The integer range for the counter_Big has a typo. It should be 50 million, not 5 million. It is smaller than the
divider ratio.

Good software engineering practices are important while writing VHDL code. Instead of typing the constant
50 million in each place that it was needed, a constant name such as N could be used. If changes are made to this constant,
it then needs to be changed only in one place.

TIP 4: If the same constant number is used in multiple places, use a constant symbol such as N so the constant is
typed only once.

TIP 5: Check ranges of all signals. They should be at least equal to the highest value computed in the program.
It is important to check the warning signals one obtains during compilation of code. Many students ignore warnings

and only �x errors. Looking at warnings can give hints on the existence of bugs.

2.5 (a) Write VHDL code for a full subtracter using logic equations.
 (b) Write VHDL code for a 4-bit subtracter using the module de�ned in (a) as a component.

2.6 Write VHDL code for the following circuit. Assume that the gate delays are negligible.
(a) Using concurrent statements.
(b) Using a process with sequential statements.

B

A
E

FC

D
G

2.7 In the following VHDL code, A, B, C, and D are integers that are 0 at time 10 ns. If D changes to 1 at 20 ns, specify
the times at which A, B, and C will change and the values they will take.

process(D)
begin
 A <= 1 after 5 ns;
 B <= A + 1; -- executes before A changes
 C <= B after 10 ns; -- executes before B changes
end process;

2.8 (a) What device does the following VHDL code represent?

process(CLK, Clr, Set)
begin
 if Clr = '1' then Q <= '0';
 elsif Set = '1' then Q <= '1';
 elsif CLK'event and CLK = '0' then
 Q <= D;
 end if;
end process;

 (b) What happens if Clr 5 Set 5 '1' in the device in part a?
2.9 Write a VHDL description of an S-R latch using a process.

2.10 An M-N �ip-�op responds to the falling clock edge as follows:

If M = N = '0', the flip-flop changes state.
If M = '0' and N = '1', the flip-flop output is set to '1'.
If M = '1' and N = '0', the flip-flop output is set to '0'.
If M = N = '1', no change of flip-flop state occurs.
The flip-flop is cleared asynchronously if CLRn = '0'.

 Write a complete VHDL module that implements an M-N �ip-�op.
2.11 A DD �ip-�op is similar to a D �ip-�op, except that the �ip-�op can change state 1Q1 5 D 2 on both the rising

edge and falling edge of the clock input. The �ip-�op has a direct reset input, R, and R 5 '0' resets the �ip-�op
to Q 5 '0' independent of the clock. Similarly, it has a direct set input, S, that sets the �ip-�op to '1' independent
of the clock. Write a VHDL description of a DD �ip-�op.

2.12 An inhibited toggle �ip-�op has inputs I0, I1, T, and Reset, and outputs Q and QN. Reset is active high and over-
rides the action of the other inputs. The �ip-�op works as follows. If I 0 5 '1', the �ip-�op changes state on the

Problems 115

116 Chapter 2 Introduction to VHDL

rising edge of T; if I 1 5 '1', the �ip-�op changes state on the falling edge of T. If I 0 5 I 1 5 '0', no state change
occurs (except on reset). Assume the propagation delay from T to output is 8 ns and from reset to output is 5 ns.
(a) Write a complete VHDL description of this �ip-�op.
(b) Write a sequence of simulator commands that will test the �ip-�op for the input sequence I 1 5 '1', toggle T

twice, I 1 5 '0', I 0 5 '1', toggle T twice.
2.13 In the following VHDL process A, B, C, and D are all integers that have a value of 0 at time 5 10 ns. If E changes

from '0' to '1' at time 5 20 ns, specify the time(s) at which each signal will change and the value to which it will
change. List these changes in chronological order (20, 20 1 D, 20 1 2D, etc.)

p1: process
begin
 wait on E;
 A <= 1 after 5 ns;
 B <= A + 1;
 C <= B after 10 ns;
 wait for 0 ns;
 D <= B after 3 ns;
 A <= A + 5 after 15 ns;
 B <= B + 7;
end process p1;

2.14 In the following VHDL process A, B, C, and D are all integers that have a value of 0 at time 5 10 ns. If E changes
from '0' to '1' at time 5 20 ns, specify the time(s) at which each signal will change and the value to which it will
change. List these changes in chronological order (20, 20 1 D, 20 1 2D, etc.)

p2: process(E)
begin
 A <= 1 after 5 ns;
 B <= A + 1;
 C <= B after 10 ns;

 D <= B after 3 ns;
 A <= A + 5 after 15 ns;
 B <= B + 7;
end process p2;

2.15 For the following VHDL code, assume that D changes to '1' at time 5 ns. Give the values of A, B, C, D, E, and
F each time a change occurs. That is, give the values at time 5 ns, 5 1 D, 5 1 2D, and so on. Carry this out until
either 20 steps have occurred, until no further change occurs, or until a repetitive pattern emerges.

entity prob is
 port(D: inout bit);
end prob;

architecture q1 of prob is
 signal A, B, C, E, F: bit;
begin
 C <= A;
 A <= (B and not E) or D;
 P1: process (A)
 begin
 B <= A;
 end process P1;

 P2: process
 begin
 wait until A = '1';
 wait for 0 ns;
 E <= B after 5 ns;
 D <= '0';
 F <= E;
 end process P2;
end architecture q1;

2.16 Assuming B is driven by the simulator command:

force B 0 0, 1 10, 0 15, 1 20, 0 30, 1 35

Draw a timing diagram illustrating A, B, and C if the following concurrent statements are executed:

A <= transport B after 5 ns;
C <= B after 8 ns;

2.17 Assuming B is driven by the simulator command:

force B 0 0, 1 4, 0 10, 1 15, 0 20, 1 30, 0 40

Draw a timing diagram illustrating A, B, and C if the following concurrent statements are executed:

A <= transport B after 5 ns;
C <= B after 5 ns;

2.18 In the following VHDL Code, A, B, C, and D are bit signals that are '0' at time 5 4 ns. If A changes to 1 at time
5 ns, make a table showing the values of A, B, C, and D as a function of time until time 5 18 ns. Include deltas.
Indicate the times at which each process begins executing.

P1: process(A)
begin
 B <= A after 5 ns;
 C <= B after 2 ns;
end process;
P2: process
begin
 wait on B;
 A <= not B;
 D <= not A xor B;
end process;

2.19 If A 5 ''101'', B 5 ''011'', and C 5 ''010'', what are the values of the following statements?
(a) (A & B) or (B & C)
(b) A ror 2
(c) A sla 2
(d) A & not B = "111110"
(e) A or B and C

2.20 Consider the following VHDL code:

entity Q3 is
 port(A, B, C, F, Clk: in bit;
 E: out bit);
end Q3;

Problems 117

118 Chapter 2 Introduction to VHDL

architecture Qint of Q3 is
 signal D, G: bit;
begin
 process(Clk)
 begin
 if Clk'event and Clk = '1' then
 D <= A and B and C;
 G <= not A and not B;
 E <= D or G or F;
 end if;
 end process;
end Qint;

(a) Draw a block diagram for the circuit (no gates – at block level only)
(b) Give the circuit generated by the above code (at the gate level)

2.21 Implement the following VHDL code using these components: D �ip-�ops with clock enable, a multiplexer, an
adder, and any necessary gates. Assume that Ad and Ora will never be '1' at the same time, and only enable the
�ip-�ops when Ad or Ora is '1'.

library IEEE;
use IEEE.numeric_bit.all;

entity module1 is
port(A, B: in unsigned (2 downto 0);
 Ad, Ora, clk: in bit;
 C: out unsigned (2 downto 0));
end module1;

architecture RT of module1 is
begin
 process(clk)
 begin
 if clk = '1' and clk'event then
 if Ad = '1' then C <= A + B; end if;
 if Ora = '1' then C <= A or B; end if;
 end if;
 end process;
end RT;

2.22 Draw the circuit represented by the following VHDL process. Use only two gates.

process(clk, clr)
begin
 if clr = '1' then Q <= '0';
 elsif clk'event and clk = '0' and CE = '1' then
 if C = '0' then Q <= A and B;
 else Q <= A or B; end if;
 end if;
end process;

Why is clr on the sensitivity list and C is not?

2.23 (a) Write a selected signal assignment statement to represent the 4-to-1 MUX shown below.
Assume that there is an inherent delay in the MUX that causes the change in output to occur 10 ns after a change
in input.

 (b) Repeat (a) using a conditional signal assignment statement.
 (c) Repeat (a) using a process and a case statement.

I0

I3

I2

I1

A9

B

B9

0

C D

F

2.24 (a) Write a VHDL process that is equivalent to the following concurrent statement:

A <= B1 when C = 1 else B2 when C = 2 else B3 when C = 3 else 0;

 (b) Draw a circuit to implement the following VHDL statement,

A <= B1 when C1 = '1' else B2 when C2 = '1' else
B3 when C3 = '1' else '0';

where all signals are of type bit.
2.25 Write a VHDL description of an SR latch.

(a) Use a conditional assignment statement.
(b) Use the characteristic equation.
(c) Use logic gates.

2.26 For the VHDL code of Figure 2-38, what will be the values of S and Co if A 5 ''1101'', B 5 ''111'', and Ci 5 '1'?
2.27 Write VHDL code to add a positive integer B 1B , 16 2 to a 4-bit bit-vector A to produce a 5-bit bit-vector as a

result. Use an overloaded operator in the IEEE numeric bit package to do the addition. Use calls to conversion
functions as needed. The �nal result should be a bit-vector, not an unsigned vector.

2.28 The 74HC138 is a 3-to-8 decoder with a logic diagram as shown below.
(a) Write behavioral VHDL model for this circuit using a case statement.
(b) Write data�ow VHDL model for this circuit using the corresponding logical equations (as in Figure 2-57).
(c) Make a structural VHDL model for this circuit (as in Figure 2-58) using AND gates and inverters.

A2

A1

A0

E1

Y7

Y6

Y5

Y4

Y3

Y2

Y1

Y0

E2

E3

Problems 119

120 Chapter 2 Introduction to VHDL

2.31 A 4-bit magnitude comparator chip (eg: 74LS85) compares two 4-bit numbers A and B and produces outputs to
indicate whether A , B, A 5 B or A . B. There are 3 output signals to indicate each of the above conditions.
Note that exactly one of the output lines will be high and the other 2 lines will be low at any time. The chip is a
cascadable chip and has 3 inputs, A . B.IN, A 5 B.IN, and A , B.IN, in order to allow cascading the chip to
make 8-bit or bigger magnitude comparators.
(a) Draw block diagram of a 4-bit magnitude comparator
(b) Draw a block diagram to indicate how you can construct an 8-bit magnitude comparator using two 4-bit

magnitude comparators.

2.29 (a) Using the VHDL model created for the 3-to-8 decoder in Question 2.28 (a), construct a structural VHDL
model of 4-to-16 decoder using portmap statements.

 (b) Using the VHDL model created for the 3-to-8 decoder in Question 2.28 (b), construct a structural VHDL
model of 4-to-16 decoder using portmap statements.

 (c) Using the VHDL model created for the 3-to-8 decoder in Question 2.28 (c), construct a structural VHDL
model of 4-to-16 decoder using portmap statements.

2.30 The 74LS181 is an ALU chip with the following function table. Input A, input B, and output F are 4-bits each.
(a) Write VHDL code to implement the logic functions of the chip. Use a case statement.
(b) Write VHDL code to implement the arithmetic functions of the chip. Use a case statement.

ACTIVE-LOW DATA

S3 S2 S1 S0

M 5 H
LOGIC

FUNCTIONS

M 5 L; ARITHMETIC OPERATIONS

Cn 5 L
(no carry)

Cn 5 H
(with carry)

L L L L F 5 A F 5 A MINUS 1 F 5 A

L L L H F 5 AB F 5 AB MINUS 1 F 5 AB

L L H L F 5 A 1 B F 5 AB MINUS 1 F 5 AB

L L H H F 5 1 F 5 MINUS 1 (2’s COMP) F 5 ZERO

L H L L F 5 A 1 B F 5 A PLUS 1A 1 B 2 F 5 A PLUS 1A 1 B 2 PLUS 1

L H L H F 5 B F 5 AB PLUS 1A 1 B 2 F 5 AB PLUS 1A 1 B 2 PLUS 1

L H H L F 5 A ! B F 5 A MINUS B MINUS 1 F 5 A MINUS B

L H H H F 5 A 1 B F 5 A 1 B F 5 1A 1 B 2 PLUS 1

H L L L F 5 AB F 5 A PLUS 1A 1 B 2 F 5 A PLUS 1A 1 B 2 PLUS 1

H L L H F 5 A ! B F 5 A PLUS B F 5 A PLUS B PLUS 1

H L H L F 5 B F 5 AB PLUS 1A 1 B 2 F 5 AB PLUS 1A 1 B 2 PLUS 1

H L H H F 5 A 1 B F 5 1A 1 B 2 F 5 1A 1 B 2 PLUS 1

H H L L F 5 0 F 5 A PLUS A‡ F 5 A PLUS A PLUS 1

H H L H F 5 AB F 5 AB PLUS A F 5 AB PLUS A PLUS 1

H H H L F 5 AB F 5 AB PLUS A F 5 AB PLUS A PLUS 1

H H H H F 5 A F 5 A F 5 A PLUS 1

‡Each bit is shifted to the next more signi�cant position.

SELECTION

(c) Write behavioral VHDL description for the 4-bit comparator.
(d) Write VHDL code for the 8-bit comparator using two 4-bit comparators as components.

2.32 Write a VHDL module that describes a 16-bit serial-in, serial-out shift register with inputs SI (serial input), EN
(enable), and CK (clock, shifts on rising edge) and a serial output (SO).

2.33 A description of a 74194 4-bit bidirectional shift register follows:
The CLRb input is asynchronous and active low and overrides all the other control inputs. All other state
changes occur following the rising edge of the clock. If the control inputs S 1 5 S 0 5 1, the register is loaded
in parallel. If S 1 5 1 and S 0 5 0, the register is shifted right, and SDR (serial data right) is shifted into Q 3. If
S 1 5 0 and S 0 5 1, the register is shifted left, and SDL is shifted into Q 0. If S 1 5 S 0 5 0, no action occurs.

SDR

S1

S0

SDL

CLRb

CLK

D3 D2 D1 D0

Q3 Q2 Q1 Q0

74194

(a) Write a behavioral level VHDL model for the 74194.
(b) Draw a block diagram and write a VHDL description of an 8-bit bidirectional shift register that uses two

74194s as components. The parallel inputs and outputs to the 8-bit register should be X(7 downto 0) and Y(7
downto 0). The serial inputs should be RSD and LSD.

2.34 A synchronous (4-bit) up/down decade counter with output Q works as follows: All state changes occur on the
rising edge of the CLK input, except the asynchronous clear (CLR). When CLR 5 0, the counter is reset regard-
less of the values of the other inputs.

If the LOAD input is 0, the data input D is loaded into the counter.
If LOAD 5 ENT 5 ENP 5 UP 5 1, the counter is incremented.
If LOAD 5 ENT 5 ENP 5 1 and UP 5 0, the counter is decremented.
If ENT 5 UP 5 1, the carry output 1CO 2 5 1 when the counter is in state 9.
If ENT 5 1 and UP 5 0, the carry output 1CO 2 5 1 when the counter is in state 0.

(a) Write a VHDL description of the counter.
(b) Draw a block diagram and write a VHDL description of a decimal counter that uses two of the above

 counters to form a two-decade decimal up/down counter that counts up from 00 to 99 or down from 99 to 00.
(c) Simulate for the following sequence: load counter with 98, increment 3 times, do nothing for 2 clocks,

 decrement 4 times, and clear.
2.35 Write a VHDL model for a 74HC192 synchronous 4-bit up/down counter. Ignore all timing data. Your code

should contain a statement of the form process(DOWN, UP, CLR, LOADB).
2.36 Consider the following 8-bit bi-directional synchronous shift register with parallel load capability. The notation

used to represent the input/output pins is explained below.
CLR Asynchronous Clear, that overrides all other inputs.
Q(7:0) 8-bit output
D(7:0) 8-bit input
S0, S1 mode control inputs
LSI serial input for left shift
RSI serial input for right shift

Problems 121

122 Chapter 2 Introduction to VHDL

The mode control inputs work as follows:

S0 S1 Action

0 0 No action

0 1 Right Shift

1 0 Left Shift

1 1 Load parallel data (i.e. Q 5 D)

(a) Write an entity description for this shift register.
(b) Write an architecture description of this shift register.
(c) Draw a block diagram illustrating how 2 of these can be connected to form a 16-bit cyclic shift register, which

is controlled by signals L and R. If L 5 '1' and R 5 '0', then the 16-bit register is cycled left. If L 5 '0' and
R 5 '1', the register is cycled right. If L 5 R 5 '1', the 16-bit register is loaded from X(15:0). If L 5 R 5 '0',
the register is unchanged.

(d) Write an entity description for the module in part c.
(e) Write an architecture description using the module from parts a and b.

2.37 Complete the following VHDL code to implement a counter that counts in the following sequence: Q 5 1000,
0111, 0110, 0101, 0100, 0011, 1000, 0111, 0110, 0101, 0100, 0011, … (repeats). The counter is synchronously
loaded with 1000 when Ld8 5 '1'. It goes through the prescribed sequence when Enable 5 '1'. The counter out-
puts S5 5 '1' whenever it is in state 0101. Do not change the entity in any way. Your code must be synthesizable.

library IEEE;
use IEEE.numeric_bit.all;

entity countQ1 is
 port(clk, Ld8, Enable: in bit; S5: out bit;
 Q: out unsigned(3 downto 0));
end countQ1;

2.38 A synchronous 4-bit UP/DOWN binary counter has a synchronous clear signal CLR and a synchronous load
signal LD. CLR has higher priority than LD. Both CLR and LD are active high. D is a 4-bit input to the counter
and Q is the 4-bit output from the counter. UP is a signal that controls the direction of counting. If CLR and LD
are not active and UP 5 1, the counter increments. If CLR and LD are not active and UP 0, the counter decre-
ments. All changes occur on the falling edge of the clock.
(a) Write a behavioral VHDL description of the counter.
(b) Use the above UP/DOWN counter to implement a synchronous modulo 6 counter that counts from 1 to 6.

This modulo 6 counter has an external reset which if applied makes the count 5 1. A count enable signal
CNT makes it count in the sequence 1, 2, 3, 4, 5, 6, 1, 2, … incrementing once for each clock pulse. You should
use any necessary logic to make the counter go to count 5 1 after count 5 6. The modulo 6 counter only
counts in the UP sequence. Provide a textual/pictorial description of your approach.

(c) Write a behavioral VHDL description for the modulo-6 counter in part b.
2.39 Examine the following VHDL code and answer the following questions

entity Problem
 port(X, CLK: in bit;
 Z1, Z2: out bit);
end Problem;

architecture Table of Problem is
 signal State, Nextstate: integer range 0 to 3 := 0;
begin
 process(State, X) --Combinational Circuit
 begin
 case State is
 when 0 =>
 if X = '0' then Z1 <= '1'; Z2 <= '0'; Nextstate <= 0;
 else Z1 <= '0'; Z2 <= '0'; Nextstate <= 1; end if;
 when 1 =>
 if X = '0' then Z1 <= '0'; Z2 <= '1'; Nextstate <= 1;
 else Z1 <= '0'; Z2 <= '1'; Nextstate <= 2; end if;
 when 2 =>
 if X = '0' then Z1 <= '0'; Z2 <= '1'; Nextstate <= 2;
 else Z1 <= '0'; Z2 <= '1'; Nextstate <= 3; end if;
 when 3 =>
 if X = '0' then Z1 <= '0'; Z2 <= '0'; Nextstate <= 0;
 else Z1 <= '1'; Z2 <= '0'; Nextstate <= 1; end if;
 end case;
 end process;
 process(CLK) --State Register
 begin
 if CLK'event and CLK = '1' then --rising edge of clock
 State <= Nextstate;
 end if;
 end process;
end Table;

(a) Draw a block diagram of the circuit implemented by this code.
(b) Write the state table that is implemented by this code.

2.40 (a) Write a behavioral VHDL description of the state machine you designed in Problem 1.13.
Assume that state changes occur on the falling edge of the clock pulse. Instead of using if-then-else state-
ments, represent the state table and output table by arrays. Compile and simulate your code using the fol-
lowing test sequence:

X 5 1101 1110 1111

X should change 1/4 clock period after the rising edge of the clock.
 (b) Write a data �ow VHDL description using the next state and output equations to describe the state machine.

Indicate on your simulation output at which times S and V are to be read.
(c) Write a structural model of the state machine in VHDL that contains the interconnection of the gates and

D �ip-�ops.
2.41 (a) Write a behavioral VHDL description of the state machine that you designed in Problem 1.14. Assume that

state changes occur on the falling edge of the clock pulse. Use a case statement together with if-then-else
statements to represent the state table. Compile and simulate your code using the following test sequence:

X 5 1011 0111 1000

X should change 1/4 clock period after the falling edge of the clock.

Problems 123

124 Chapter 2 Introduction to VHDL

Write VHDL code that describes the machine at the behavioral level. Assume that state changes occur 10 ns after
the falling edge of the clock, and output changes occur 10 ns after the state changes.

2.43 Write VHDL code to implement the following state table. Use two processes. State changes should occur on the
falling edge of the clock. Implement the Z1 and Z2 outputs using concurrent conditional statements. Assume
that the combinational part of the sequential circuit has a propagation delay of 10 ns, and the propagation delay
between the rising-edge of the clock and the state register output is 5 ns.

 (b) Write a data �ow VHDL description using the next state and output equations to describe the state machine.
Indicate on your simulation output at which times D and B should be read.

 (c) Write a structural model of the state machine in VHDL that contains the interconnection of the gates and
J-K �ip-�ops.

2.42 A Moore sequential machine with two inputs (X1 and X2) and one output (Z) has the following state table:

next state

present
state X1X2 5 00 01 10 11 output (Z)

1 1 2 2 2 0

2 2 1 2 1 1

next state

present
state X1X2 5 00 01 11 output (Z1Z2)

1 3 2 1 00

2 2 1 3 10
3 1 2 3 01

2.44 In the following code, state and nextstate are integers with a range of 0 to 2.

process(state, X)
begin
 case state is
 when 0 => if X = '1' then nextstate <= 1;
 when 1 => if X = '0' then nextstate <= 2;
 when 2 => if X = '1' then nextstate <= 0;
 end case;
end process;

(a) Explain why a latch would be created when the code is synthesized.
(b) What signal would appear at the latch output?
(c) Make changes in the code which would eliminate the latch.

2.45 For the process given below, A, B, C, and D are all integers that have a value of 0 at time 5 10 ns. If E changes
from '0' to '1' at time 20 ns, specify all resulting changes. Indicate the time at which each change will occur, the
signal/variable affected and the value to which it will change.

process
 variable F: integer:=1; variable A: integer:=0;

begin
 wait on E;
 A := 1;
 F := A + 5;
 B <= F + 1 after 5 ns;
 C <= B + 2 after 10 ns;
 D <= C + 5 after 15 ns;
 A := A + 5;
end process;

2.46 What is wrong with the following model of a 4-to-1 MUX? (It is not a syntax error.)

architecture mux_behavioral of 4to1mux is
signal sel: integer range 0 to 3;
begin
 process(A, B, I0, I1, I2, I3)
 begin
 sel <= 0;
 if A = '1' then sel <= sel + 1; end if;
 if B = '1' then sel <= sel + 2; end if;
 case sel is
 when 0 => F <= I0;
 when 1 => F <= I1;
 when 2 => F <= I2;
 when 3 => F <= I3;
 end case;
 end process;
end mux_behavioral;

2.47 When the following VHDL code is simulated, A is changed to '1' at time 5 ns. Make a table that shows all changes
in A, B, and D and the times at which they occur through time 5 40 ns.

entity Q1F00 is
 port(A: inout bit);
end Q1F00;

architecture Q1F00 of Q1F00 is
 signal B, D: bit;
begin
 D <= A xor B after 10 ns;
 process(D)
 variable C: bit;
 begin
 C := not D;
 if C = '1' then
 A <= not A after 15 ns;
 end if;
 B <= D;
 end process;
end Q1F00;

Problems 125

126 Chapter 2 Introduction to VHDL

2.48 What device does the following VHDL code represent?

process(CLK, RST)
 variable Qtmp: bit;
begin
 if RST '1' then Qtmp := '0';
 elsif CLK'event and CLK = '1' then
 if T = '1' then
 Qtmp := not Qtmp;
 end if;
 end if;
 Q <= Qtmp;
end process;

2.49 (a) Write a VHDL module for a LUT with four inputs and three outputs. The 3-bit output should be a binary
number equal to the number of 1’s in the LUT input.

 (b) Write a VHDL module for a circuit that counts the number of 1’s in a 12-bit number. Use three of the mod-
ules from (a) along with overloaded addition operators.

 (c) Simulate your code and test if for the following data inputs:
 111111111111, 010110101101, 100001011100
2.50 Implement a 3-to-8 decoder using a LUT. Give the LUT truth table and write the VHDL code. The inputs should

be A, B, and C, and the output should be an 8-bit unsigned vector.
2.51 A(1 to 20) is an array of 20 integers. Write VHDL code that �nds the largest integer in the array.

(a) Using a for loop
(b) Using a while loop

2.52 Write VHDL code to test a Mealy sequential circuit with one input (X) and one output (Z). The code should
include the Mealy circuit as a component. Assume the Mealy circuit changes state on the rising edge of CLK.
Your test code should generate a clock with 100 ns period. The code should apply the following test sequence:

X 5 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0

X should change 10 ns after the rising edge of CLK. Your test code should read Z at an appropriate time and
verify that the following output sequence was generated:

Z 5 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0

 Report an error if the output sequence from the Mealy circuit is incorrect; otherwise, report “sequence correct.”
Complete the following architecture for the tester:

architecture test1 of tester is
 component Mealy
 -- sequential circuit to be tested; assume this component
 -- is available in your design; do NOT write code for the
 -- component
 port(X, CLK: in bit; Z: out bit);
 end component;
 signal XA: bit_vector(0 to 11) := "011011011100";
 signal ZA: bit_vector(0 to 11) := "100110110110";

2.53 Write a VHDL test bench that will test the VHDL code for the sequential circuit of Figure 2-58. Your test bench
should generate all ten possible input sequences (0000, 1000, 0100, 1100, …) and verify that the output sequences
are correct. Remember that the components have a 10 ns delay. The input should be changed 1/4 of a clock period
after the rising edge of the clock, and the output should be read at the appropriate time. Report “Pass” if all
sequences are correct; otherwise, report “Fail.”

2.54 Write a test bench to test the counter of Problem 2.37. The test bench should generate a clock with a 100 ns period.
The counter should be loaded on the �rst clock; then it should count for �ve clocks. Then it should do nothing
for two clocks and continue counting for ten clocks. The test bench port should output the current time (in time
units, not the count) whenever S5 5 '1'. Use only concurrent statements in your test bench.

2.55 Complete the following VHDL code to implement a test bench for the sequential circuit SMQ1. Assume that the
VHDL code for the SMQ1 sequential circuit module is already available. Use a clock with a 50 ns half period.
Your test bench should test the circuit for the input sequence X 5 1, 0, 0, 1, 1. Assume that the correct output
sequence for this input sequence is 1, 1, 0, 1, 0. Use a single concurrent statement to generate the X sequence. The
test bench should read the values of output Z at the proper times and compare them with the correct values of
Z. The correct answer is stored as a bit-vector constant:

answer 11 to 5 2 5 ''11010'';

The port signal correct should be set to TRUE if the answer is correct; otherwise, it should be set to FALSE.
Make sure that you read Z at the correct time. Use wait statements in your test bench.

entity testSMQ1 is
 port(correct: out Boolean);
end testSMQ1;
architecture testSM of test SMQ1 is
 component SMQ1 -- the sequential circuit module
 port(X, CLK: in bit; Z: out bit);
 end component;
 constant answer: bit_vector(1 to 5) := "11010";
begin

2.56 Change the code in Figure 2-74 so that if a hex number greater than 9 (eg: hex C) is fed to this counter; it will
parallel load it but convert it to the correct BCD value (i.e., decimal 12). However, it stores only the lower BCD
digit, that is, 2.

2.57 Use constant declaration to correct the error in the code in Figure 2-76.

Problems 127

128

INTRODUCTION TO PROGRAMMABLE
LOGIC DEVICES

Chapter 1 illustrated how the same digital circuit can be implemented using a variety of
 standard building blocks. If one puts several of these building blocks into an integrated
circuit (IC) and provide the user with mechanisms to modify the con�guration, almost any
circuit can be implemented. This is the general principle of programmable logic devices.

This chapter introduces the use of programmable logic devices in digital design. Read-
only memories (ROMs), programmable logic arrays (PLAs), and programmable array logic
(PAL) devices are discussed �rst. Then complex programmable logic devices (CPLDs) and
�eld programmable gate arrays (FPGAs) are introduced. Use of these devices allows us to
implement complex logic functions, which require many gates and �ip-�ops, with a single IC.
Although FPGAs are introduced, only an overview is provided in this chapter. A detailed
treatment of FPGAs is provided in Chapter 6.

3.1 Brief Overview of Programmable Logic Devices
Designers have always liked programmable logic devices such as PALs and FPGAs for
implementation of digital circuits. First, there is reasonable integration ability, allowing
implementation of a signi�cant amount of functionality into one physical chip. Program-
mable logic devices remove the use of multiple off-the-shelf devices and the inconvenience
and unreliability associated with external wires. Second, there is the increased ability to
change designs. Many of the programmable devices allow easy reprogramming. In general, it
is easier to change the design in case of errors or changes in design speci�cations. Nowadays,
programmable logic comes in different types: devices that can be programmed only once and
those that can be reprogrammed many times.

Figure 3-1 illustrates a classi�cation of popular programmable logic devices. Program-
mable logic can be considered to fall into �eld programmable logic and factory program-
mable logic. The term �eld indicates that this type of device is programmed in the user’s
“�eld” rather than in a semiconductor fab. Often, many may refer to programmable logic
to mean devices that are �eld programmable. However, there are factory programmable
devices, too. These are generic devices, which can be programmed at the factory to meet
customers’ requirements. The programming technology uses an irreversible process; hence,
programming can be done only once. Examples of factory programmable logic are mask pro-
grammable gate arrays (MPGAs) and read-only memories (ROMs). The earliest generations
of many programmable devices were programmable only at the factory.

C H A P T E R

3

3.1 Brief Overview of Programmable Logic Devices 129

Read-only memories can be considered as an early form of programmable logic. While
primarily meant for use as memory, ROMs can be used to implement any combinational cir-
cuitry. This will be illustrated later in Section 3.2.1. MPGAs are traditional gate arrays, which
require a mask to be designed. MPGAs are often simply called gate arrays and have been a
popular technology for creating application-speci�c integrated circuits (ASICs).

User-programmable logic in the form of AND-OR circuits was developed at the
beginning of the 1970s. By 1972–1973, one-time �eld programmable logic arrays that
permitted instant customizations by designers were available. Some referred to these
devices as �eld programmable logic arrays or FPLAs. Monolithic Memories Inc. (MMI), a
company that was bought by Advanced Micro Devices (AMD), created integrated circuits
called programmable logic arrays (PLAs) in 20- and 24-pin packages that could yield the
same functionality as �ve to twenty off-the-shelf chips. A similar device is the program-
mable array logic or PAL.

PALs and PLAs contain arrays of gates. In the PLA, there is a programmable AND array
and a programmable OR array, allowing users to implement combinational functions in two
levels of gates. The PAL is a special case of a PLA, in that the OR array is �xed and only the
AND array is programmable. Many PALs also contain �ip-�ops.

In the 1970s and 1980s, PALs and PLAs were very popular. Part of the popularity was
due to the ease of design. MMI and Advanced Micro Devices created a simple programming
language, called PALASM, to easily convert Boolean equations into PLA con�gurations.
PALASM made programming PALs and PLAs relatively simple.

The early programmable devices allowed only one-time programming. The next techno-
logical innovation that helped programmable logic was advancement in erasure of program-
mable devices. In early days, erasure of programmable logic used ultraviolet light. With
ultraviolet light, erasing the con�guration of a device meant removing the device from the
circuit and placing it in an ultraviolet environment. Hence, in-circuit erasure was not pos-
sible. Ultraviolet erasers were slow; typically ten or �fteen minutes were required to perform

FIGURE 3-1: Major
Programmable Logic
Devices

Programmable Logic

Field Programmable
Devices

Factory Programmable
Devices

MPGA
Mask

Programmable
Gate Array

ROM
Read-Only
Memory

FPGA
Field

Programmable
Gate Array

CPLD
Complex

Programmable
Logic Device

SPLD
Simple

Programmable
Logic Device

PLA
Programmable
Logic Array

PAL
Programmable
Array Logic

GAL
Generic

Array Logic

PROM
Programmable

Read-Only
Memory

130 Chapter 3 Introduction to Programmable Logic Devices

erasures. Then electrically erasable technology came along. This led to the creation of �eld
programmable logic arrays that can be easily and quickly erased and reprogrammed without
removing the chip from the board.

The early PALs and PLAs were soon followed by CMOS electrically erasable program-
mable logic devices (PLDs). While the term PLDs can be used to refer to any program-
mable logic devices, there are a set of devices, including the popular PALCE22V10, that
are often referred to as PLDs. PLDs contain macroblocks with arrays of gates, multiplexers,
�ip-�ops, or other standard building blocks. Several of these macroblocks appear in a PLD.
Lattice Semiconductor created similar devices with easy reprogrammability and called its
line of devices GALs or generic array logic.

Now, many refer to PLAs, PALs, GALs, PLDs, and PROMs collectively as simple
PLDs (SPLDs) in contrast to another type of product that has come on the market, com-
plex PLDs (CPLDs). As the name suggests, CPLDs have more integration capability
than SPLDs. They come in sizes ranging from 500 to 16,000 gates. CPLDs essentially put
multiple PLDs into the same chip with some kind of an interconnection circuit, typically a
crossbar switch.

In the late 1980s, Xilinx started using static random-access memory (RAM) storage
elements to hold con�guration information for programmable devices and created devices
called FPGAs that can integrate a fairly large amount of logic. Contrary to their names, the
basic building blocks in these devices were not arrays of gates but were bigger and more com-
plex blocks containing static RAMs and multiplexers. Several PLD vendors and gate array
companies soon jumped into the market, creating a variety of FPGA architectures, some of
which used reprogrammable technologies and others, which used one-time programmable
fuse technologies. The FPGA technology has continually improved in the last �fteen years.
Now, there are FPGAs that can contain more than 5 million gates.

Programmable logic devices basically contain an array of basic building blocks which can
be used to implement whatever functionality one desires. Different programmable devices
differ in the building blocks or the amount of programmability they provide. Table 3-1
 illustrates a comparison of various programmable logic devices. FPGAs are bigger and more
complex than CPLDs. The routing resources in FPGAs are more complex than those in
simple programmable devices. The variety of alternate routes that can be taken causes the
paths taken by signals to be unpredictable. FPGAs are more expensive than CPLDs and
SPLDs. They contain more overhead for programming. This chapter describes various pro-
grammable devices, including SPLDs, CPLDs, and FPGAs.

Many names and abbreviations in this �eld have historically been used to refer to
speci�c types of programmable devices; however, one may not �nd the name to be
meaningful. Consider PALs and PLAs. Both are arrays of logic. The fact that PLAs
contain programmable AND and OR arrays and PALs contain only programmable
AND arrays is due to nothing but historical reasons. PALs and PLAs could very well
be named the other way around. But it is important to understand what these names
popularly refer to because they will need to communicate with fellow designers and
other design teams. Conventions are important in facilitating communication.

3.2 Simple Programmable Logic Devices 131

SPLD CPLD FPGA

Density Low
Few hundred gates

Low to Medium
500 to 12,000 gates

Medium to High
3,000 to 5,000,000 gates

Timing Predictable Predictable Unpredictable

Cost Low Low to Medium Medium to High

Major
Vendors

Lattice Semiconductor
Cypress
AMD

Xilinx
Altera

Xilinx
Altera
Lattice Semiconductor
Microsemi (previously Actel)

Example
Device
Families

Lattice Semiconductor
GAL16LV8
GAL22V10

Xilinx
CoolRunner
XC9500

Xilinx
Kintex
Artix
Virtex
Spartan

Cypress
PALCE16V8

Altera
MAX

Altera
Arria
Cyclone
Stratix

AMD
22V10

Lattice
Mach
ECP

Microsemi
Accelerator

TABLE 3-1: A Comparison of Programmable Devices

3.2 Simple Programmable Logic Devices
With the advent of CPLDs and FPGAs, the early generation programmable logic devices, such
as ROMs, PALs, PLAs, and PLDs, can be collectively called simple programmable logic devices
(SPLDs). In this section, we describe the implementation of digital circuits in simple PLDs.

3.2.1 Read-Only Memories
A read-only memory (ROM) consists of an array of semiconductor devices that are inter-
connected to store an array of binary data. Once binary data is stored in the ROM, it can
be read out whenever desired, but the data that is stored cannot be changed under normal
operating conditions. Figure 3-2(a) shows a ROM that has three input lines and four output
lines. Figure 3-2(b) shows a typical truth table, which relates the ROM inputs and outputs.
For each combination of input values on the three input lines, the corresponding pattern of
0’s and 1’s appears on the ROM output lines. For example, if the combination ABC 5 010 is
applied to the input lines, the pattern F0F1F2F3 5 0111 appears on the output lines. Each of
the output patterns that is stored in the ROM is called a word. Since the ROM has three input

132 Chapter 3 Introduction to Programmable Logic Devices

lines, we have 23 5 8 different combinations of input values. Each input combination serves
as an address, which can select one of the eight words stored in the memory. Since there are
four output lines, each word is four bits long, and the size of this ROM is 8 words 3 4 bits.

FIGURE 3-2:
An 8-Word 3 4-Bit
ROM

(a) Block diagram (b) Truth table for ROM

A B C F0 F1 F2 F3

0 0 0 0 0 1 1
0 0 0 0 1 1 1

1 1 1 1 0 1 1
0 0 1 1 1 1 1

0 0 1 1 0 1 1
0 0 1 1 0 0 1
0 0 0 1 0 1 1

0 1 1 1 0 1 0 Typical data
stored in ROM
(23 words of
4 bits each)

3 Input
lines

ROM
8 words
× 4 bits

A

B

C

F0 F1 F2 F3

4 Output lines

FIGURE 3-3: Read-Only
Memory with n Inputs
and m Outputs

n Input
lines

m Output lines

ROM
2n words
3m bits

n Input
Variables

m Output
Variables

Typical data
array stored
in ROM
(2n words of
m bits each)

00 . . . 00 100 . . . 110
010 . . . 111

11 . . . 00
11 . . . 01
11 . . . 10
11 . . . 11

...
..
.

00 . . . 01
00 . . . 10
00 . . . 11

101 . . . 101
110 . . . 010

001 . . . 011
110 . . . 110
011 . . . 000
111 . . . 101

A ROM which has n input lines and m output lines (Figure 3-3) contains an array of
2n words, and each word is m bits long. The input lines serve as an address to select one of
the 2n words. When an input combination is applied to the ROM, the pattern of 0’s and 1’s
stored in the corresponding word in the memory appears at the output lines. For the example
in Figure 3-3, if 00 . . . 11 is applied to the input (address lines) of the ROM, the word 110
. . . 010 will be selected and transferred to the output lines. A 2n 3 m ROM can realize m
functions of n variables since it can store a truth table with 2n rows and m columns. Typical
sizes for commercially available ROMs range from 32 words 3 4 bits to 512K words 3 8
bits, or larger.

A ROM basically consists of a decoder and a memory array. When a pattern of n 0’s and
1’s is applied to the decoder inputs, exactly one of the 2n decoder outputs is 1. This decoder
output line selects one of the words in the memory array, and the bit pattern stored in this
word is transferred to the memory output lines.

Basic types of ROMs include mask programmable ROMs, user programmable ROMs
(PROMs), erasable programmable ROMs (usually called EPROMs), electrically erasable
and programmable ROMs (EEPROMs), and �ash memories. In the mask programmable
ROM, the data array is permanently stored at the time of manufacture. This is accomplished

3.2 Simple Programmable Logic Devices 133

by selectively including or omitting the switching elements at the row-column intersections
of the memory array. This requires preparation of a special “mask,” which is used during
fabrication of the integrated circuit. Preparation of this mask is expensive, so use of mask
programmable ROMs is economically feasible only if a large quantity (typically several thou-
sand or more) is required with the same data array. There are also one-time user program-
mable ROMs or PROMs.

Modi�cation of the data stored in a ROM is often necessary during the developmental
phases of a digital system, so EPROMs are used instead of mask programmable ROMs.
EPROMs use a special charge-storage mechanism to enable or disable the switching ele-
ments in the memory array. An EPROM programmer is used to provide appropriate volt-
age pulses to store electronic charges in the memory array locations. The data stored in this
manner is generally permanent until erased using ultraviolet light. After erasure, a new set
of data can be stored in the EPROM.

The EEPROM is similar to an EPROM, except that erasure is accomplished using
electrical pulses instead of ultraviolet light. A traditional EEPROM can be erased and
reprogrammed only a limited number of times, typically 100 to 1000 times. Flash memories
are similar to EEPROMs, except that they use a different charge-storage mechanism. They
usually have built-in programming and erasure capability so that data can be written to the
�ash memory while it is in a circuit without the need for a separate programmer.

A ROM can implement any combinational circuit. Essentially, if the outputs for all
combinations of inputs are stored in the ROM, the outputs can be “looked up” in the table
stored in the ROM. The ROM method is also called the look-up table (LUT) method for
this reason.

Consider the implementation of a 2-bit adder in a ROM. This adder must add two 2-bit
numbers. Since the maximum value of a 2-bit number is 3, the maximum sum is 6, necessitat-
ing 3 bits for the sum. The truth table for such an adder is illustrated in Figure 3-4. We could
also design a 2-bit full adder assuming a carry input in addition to the two 2-bit numbers.

FIGURE 3-4: Block
Diagram and Truth
Table of a 2-Bit Adder

X

Y

Sum

X1 X0
0 0 0 0 0
0 0 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 0
0 1 0 1 1
0 1 1 0 1
0 1 1 1 0

2-bit
Adder2

2
3

Y0Y1 S0S1S2
0
0 0
0
0
0
0
0
1

0
1
0
1
1
0
1
0
0

0

0

0

1

1
1

1

1 0 0 0 10
1 0 0 1 10
1 0 1 0 01
1 0 1 1 01
1 1 0 0 10
1 1 0 1 01
1 1 1 0 01
1 1 1 1 11

0

This 2-bit adder can be implemented with a 16 3 3 ROM. The input numbers (X and Y)
must be connected to the four address lines, and the three data lines will produce the sum bits.

Figure 3-5 illustrates the ROM implementation of this 2-bit full adder. Assuming the
connections that are shown, the contents of the ROM in its 16 locations should be 0, 1, 2, 3,
1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, and 6, respectively (representing the digits in decimal form). The
LSB of the sum will come from the LSB of the data bus.

134 Chapter 3 Introduction to Programmable Logic Devices

FIGURE 3-5: ROM
Implementation of a
2-Bit Full Adder

LSB

A0

A1

A2

D0

D1
16 3 3
ROM

X1

X0

Y1

Y0

S2

S1

S0

A3 D2

LSB

Compute the size of the ROM required to implement an 8-to-3 priority encoder.

Answer:

An encoder performs the inverse function of a decoder. An 8-to-3 priority encoder is illustrated in Figure 3-6. If input yi
is 1 and the other inputs are 0, then the abc outputs represent a binary number equal to i. An additional output d is used
to indicate invalid outputs. A value of 1 on bit d indicates that the output bits a, b, and c are valid. If more than one input
is 1 in a priority encoder, the highest numbered input determines the output. The truth table in Figure 3-6 illustrates the
output combinations for each input combination. The X’s in the truth table indicate don’t cares. As illustrated, the 8-to-3
priority encoder has eight inputs and four outputs. Hence, it needs a 28 3 4 bit ROM.

E X A M PLE

y0 y1 y2 y3 y4 y5 y6 y7 a b c d
0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 1
X 1 0 0 0 0 0 0 0 0 1 1
X X 1 0 0 0 0 0 0 1 0 1
X X X 1 0 0 0 0 0 1 1 1
X X X X 1 0 0 0 1 0 0 1
X X X X X 1 0 0 1 0 1 1
X X X X X X 1 0 1 1 0 1
X X X X X X X 1 1 1 1 1

FIGURE 3-6: 8-to-3 Priority Encoder

y0
y1
y2
y3
y4
y5
y6
y7

a

b

c

d

8-to-3
Priority
encoder

Implement, in ROM, a sequential machine whose state table is given in Figure 3-7. You may note that this is the BCD
to excess-3 code converter that we designed in Chapter 1.

E X A M PLE

Comment

There will be 256 entries in this ROM. When all the don’t cares in the truth table in Figure 3-6 are expanded, it does
result in 256 entries.

3.2 Simple Programmable Logic Devices 135

Answer:

A sequential circuit can easily be designed using a ROM and �ip-�ops. The combinational part of the sequential circuit
can be realized using the ROM. The ROM can be used to realize the output functions and the next state functions. The
state of the circuit can then be stored in a register of D �ip-�ops and fed back to the input of the ROM. Use of D �ip-
�ops is preferable to J-K �ip-�ops since using 2-input �ip-�ops would require increasing the number of inputs for the
�ip-�ops (which are outputs from the ROM). The fact that the D �ip-�op input equations would generally require more
gates than the J-K equations is of no consequence since the size of the ROM depends only on the number of inputs and
outputs and not on the complexity of the equations being realized. For this reason, the state assignment used is also of
little importance, and, generally, a state assignment in straight binary order is as good as any.

In order to realize the above sequential machine, a ROM and three D �ip-�ops are necessary. The ROM will gener-
ate the next state equations and output Z from the present states and input X. Hence, the ROM needs four address lines
(three coming from �ip-�ops and one for X), and it should provide four outputs (three next state bits and output Z).
Figure 3-8 illustrates the general organization of the implementation. Since the ROM has four inputs, it contains 24 5 16
words. In general, a Mealy sequential circuit with i inputs, j outputs, and k state variables can be realized using k D �ip-
�ops and a ROM with i 1 k inputs (2i1k words) and j 1 k outputs.

FIGURE 3-7: State Table
for a Sequential Circuit PS X = 0 X = 1

NS

S0
S1
S2
S3
S4
S5
S6

S1
S3
S4
S5
S5
S0
S0

S2
S4
S4
S5
S6
S0

—

Z

X = 0 X = 1

1
1
0
0
1
0
1

0
0
1
1
0
1
—

FIGURE 3-8: Realization
of a Mealy Sequential
Circuit with a ROM D1

D3

D2

Clock

ROM
16 words
3 4 bits

X ZA0

LSB

A1

A2

A3

D0

D1

D2

D3

Q1
+

Q2
+

Q3
+

Q1

Q2

Q3

Now, let us derive the contents of the ROM. Table 3-2 gives the truth table for the sequential circuit, which imple-
ments the state table of Figure 3-7 with the “don’t cares” replaced by 0’s and using a straight binary state assignment.

136 Chapter 3 Introduction to Programmable Logic Devices

3.2.2 Programmable Logic Arrays
A programmable logic array (PLA) performs the same basic function as a ROM. A PLA
with n inputs and m outputs (Figure 3-9) can realize m functions of n variables. The internal
organization of the PLA is different from that of the ROM. The decoder is replaced with an
AND array that realizes selected product terms of the input variables. The OR array OR’s
together the product terms needed to form the output functions.

FIGURE 3-9:
Programmable Logic
Array Structure

AND
array

OR
array

m Output lines

n Input
lines

PLA

k Word
lines

......

......

......

Q3 Q2 Q1 X Q3
1 Q2

1 Q1
1 Z

0 0 0 0 0 0 1 1
0 0 0 1 0 1 0 0
0 0 1 0 0 1 1 1
0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 0
0 1 0 1 1 0 0 1
0 1 1 0 1 0 1 0
0 1 1 1 1 0 1 1
1 0 0 0 1 0 1 1
1 0 0 1 1 1 0 0
1 0 1 0 0 0 0 0
1 0 1 1 0 0 0 1
1 1 0 0 0 0 0 1
1 1 0 1 0 0 0 0
1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0

TABLE 3-2: ROM Truth
Table

Assuming that Q3, Q2, Q1, and X are connected to the address lines in that order, with X connected to the LSB,
the contents of the ROM to implement this sequential machine are 3, 4, 7, 8, 8, 9, A, B, B, C, 0, 1, 1, 0, 0, and 0 (in
 hexadecimal representation). The hexadecimal (hex) representation is a concise and convenient way to represent the
outputs. The output Z will come from the LSB of the data lines. The next state information will be available from the
three MSBs of the ROM data lines.

3.2 Simple Programmable Logic Devices 137

Figure 3-10 shows a PLA that realizes the following functions:

 F0 5 Sm 10, 1, 4, 6 2 5 A rB r 1 AC r (3-1)

 F1 5 Sm 12, 3, 4, 6, 7 2 5 B 1 AC r

 F2 5 Sm 10, 1, 2, 6 2 5 A rB r 1 BC r

 F3 5 Sm 12, 3, 5, 6, 7 2 5 AC 1 B

The above logic functions contain three variables. In a PLA implementation, each prod-
uct term in the equation is created �rst, and then required product terms are OR’ed using the
OR gate. Hence, product terms can be shared while using the PLA. Instead of minimizing
each function separately, minimize the total number of product terms. There are �ve distinct
product terms in the above four equations. Figure 3-10 illustrates a PLA with three inputs,
�ve product terms, and four outputs, implementing the above four equations. It should be
noted that the number of terms in each equation is not important, as long as there are AND
gates to generate all product terms required for all outputs together.

FIGURE 3-10: PLA
with Three Inputs, Five
Product Terms, and
Four Outputs (Logic
Level)

OR array

AC9

B

BC 9

AC

A B C

AND array

F0 F1 F3F2

A9B9

Internally, the PLA may use NOR-NOR logic instead of AND-OR logic. The array
shown in Figure 3-10 is thus equivalent to the nMOS PLA structure of Figure 3-11. Logic
gates are formed in the array by connecting nMOS switching transistors between the column
lines and the row lines.

138 Chapter 3 Introduction to Programmable Logic Devices

FIGURE 3-11: PLA
with Three Inputs,
Five Product Terms,
and Four Outputs
(Transistor Level) +V +V +V +V

+V

+V

+V

+V

+V

A B C

A9 B 9 C 9

Inputs

Outputs

F0 F1 F3F2

AC 9

B

BC9

AC

A9B 9

Source, drain, and gate are the names of the three terminals of the metal oxide
semiconductor (MOS) transistor. The gate is the one that is used to control the ON/
OFF action. There are two types of MOS transistors, n-channel MOS (nMOS) and
p-channel MOS (pMOS). The illustrations in this section use nMOS transistors. A
popular technology since the 1990s is complementary MOS (CMOS), where nMOS
and pMOS transistors are used together in a complementary fashion.

FIGURE 3-12: nMOS
NOR Gate +V

X1 X2

Z Z
X1

X2
;

Figure 3-12 shows the implementation of a two-input NOR gate using nMOS transistors.
The transistors act as switches, so if the gate input is a logic 0, the transistor is off. If the
gate input is a logic 1, the transistor provides a conducting path to ground. If X1 5 X2 5 0,
both transistors are off, and the pull-up resistor brings the Z output to a logic 1 level
11V 2 . If either X1 or X2 is 1, the corresponding transistor is turned on, and Z 5 0. Thus,
Z 5 1X1 1 X2 2 r 5 X1rX2r, which corresponds to a NOR gate. The part of the PLA array that
realizes F0 is equivalent to the NOR-NOR gate structure shown in Figure 3-13. After cancel-
ing the extra inversions, this reduces to an AND-OR structure.

3.2 Simple Programmable Logic Devices 139

A

B

A

C

A

B

A

C

F0 F0

AC 9

A9B 9

;

FIGURE 3-13:
Conversion of NOR-
NOR to AND-OR

The contents of a PLA can be speci�ed by a modi�ed truth table. Table 3-3 speci�es the
PLA in Figure 3-10. The input side of the table speci�es the product terms. The symbols 0,
1, and — indicate whether a variable is complemented, not complemented, or not present in
the corresponding product term. The output side of the table speci�es which product terms
appear in each output function. A 1 or 0 indicates whether a given product term is present or
not present in the corresponding output function. Thus, the �rst row of Table 3-3 indicates
that the term ArBr is present in output functions F0 and F2, and the second row indicates that
ACr is present in F0 and F1.

Next, consider the following functions to be realized using a PLA:

F1 5 Sm 12, 3, 5, 7, 8, 9, 10, 11, 13, 15 2
F2 5 Sm 12, 3, 5, 6, 7, 10, 11, 14, 15 2

F3 5 Sm 16, 7, 8, 9, 13, 14, 15 2

(3-2)

If each function is minimized separately, the result is

F1 5 bd 1 brc 1 abr

F2 5 c 1 arbd
F3 5 bc 1 abrcr 1 abd

(3-3)

If you implement these reduced equations in a PLA, a total of eight different product
terms (including c) are required.

Instead of minimizing each function separately, minimize the total number of rows in the
PLA table. In this case, the number of terms in each equation is not important, since the size
of the PLA does not depend on the number of terms within an equation. Equations (3-3) are
plotted on the Karnaugh maps shown in Figure 3-14. Since the term abrcr is already needed
for F3, use it in F1 instead of abr. The other two 1’s in abr are covered by the brc term. This
eliminates the need to use a row of the PLA table for abr. Since the terms arbd and abd are
needed in F2 and F3, respectively, we can replace bd in F1 with arbd 1 abd. This eliminates

Product
Term

Inputs Outputs

A B C F0 F1 F2 F3

ArBr 0 0 — 1 0 1 0

ACr 1 — 0 1 1 0 0

B — 1 — 0 1 0 1

BCr — 1 0 0 0 1 0

AC 1 — 1 0 0 0 1

TABLE 3-3: PLA Table
for Equations 3-1

140 Chapter 3 Introduction to Programmable Logic Devices

FIGURE 3-14:
Multiple-Output
Karnaugh Maps 0100 11 10

01

00

11 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

110

ab
cd 0100 11 10

01

00

11

10

ab
cd 0100 11 10

01

00

11

10

ab
cd

F1 F2 F3

abd ab 9c 9

a 9bd

the need for a row to implement bd. Since brc and bc are used in F1 and F3, respectively,
replace c in F2 with brc 1 bc. The resulting Equations (3-4) correspond to the reduced PLA
table (Table 3-4). Instead of using Karnaugh maps to reduce the number of rows in the PLA,
the Espresso algorithm can be used. This complex algorithm is described in Logic Minimiza-
tion Algorithms for VLSI Synthesis by Brayton [13].

a b c d F1 F2 F3

0 1 — 1 1 1 0

1 1 — 1 1 0 1

1 0 0 — 1 0 1

— 0 1 — 1 1 0

— 1 1 — 0 1 1

TABLE 3-4: Reduced
PLA Table

 F1 5 arbd 1 abd 1 abrcr 1 brc (3-4)

 F2 5 arbd 1 brc 1 bc

 F3 5 abd 1 abrcr 1 bc

Equations (3-4) have only �ve different product terms, so the PLA table has only �ve
rows. This is a signi�cant improvement over Equations (3-3), which require eight product
terms. Figure 3-15 shows the corresponding PLA structure, which has four inputs, �ve prod-
uct terms, and three outputs. A dot at the intersection of a word line and an input or output
line indicates the presence of a switching element in the array.

FIGURE 3-15: PLA
Realization of
Equations (3-4)

Inputs

a b c d

Word
lines

a 9bd
abd

ab 9c 9

b 9c
bc

F1

Outputs

F2 F3

3.2 Simple Programmable Logic Devices 141

A PLA table is signi�cantly different than a truth table for a ROM. In a truth table, each
row represents a minterm; therefore, exactly one row will be selected by each combination
of input values. The 0’s and l’s of the output portion of the selected row determine the cor-
responding output values. On the other hand, each row in a PLA table represents a general
product term. Therefore, zero, one, or more rows may be selected by each combination of
input values. To determine the value of F for a given input combination, the values of F in
the selected rows of the PLA table must be OR’ed together. The following examples refer
to the PLA table of Table 3-4. If abcd 5 0001, no rows are selected, and all Firs are 0. If
abcd 5 1001, only the third row is selected, and F1F2F3 5 101. If abcd 5 0111, the �rst and
�fth rows are selected. Therefore, F1 5 1 1 0 5 1, F2 5 1 1 1 5 l, and F3 5 0 1 1 5 1.

Next, implement the sequential machine BCD to excess-3 code converter of Figure 1-23,
using a PLA and three D �ip-�ops. The circuit structure is the same as Figure 3-8, except
that the ROM is replaced by a PLA. The required PLA table, based on the equations given
in Figure 1-25, is shown in Table 3-5.

Product Term Q1 Q2 Q3 X Q1
1 Q2

1 Q3
1 Z

Q2r — 0 — — 1 0 0 0

Q1 1 — — — 0 1 0 0

Q1Q2Q3 1 1 1 — 0 0 1 0

Q1Q3rXr 1 — 0 0 0 0 1 0

Q1rQ2rX 0 0 — 1 0 0 1 0

Q3rXr — — 0 0 0 0 0 1

Q3X — — 1 1 0 0 0 1

TABLE 3-5: PLA Table

3.2.3 Programmable Array Logic
The PAL (programmable array logic) is a special case of the programmable logic array in
which the AND array is programmable and the OR array is �xed. The basic structure of the
PAL is the same as the PLA shown in Figure 3-9. Because only the AND array is program-
mable, the PAL is less expensive than the more general PLA, and the PAL is easier to pro-
gram. For this reason, logic designers frequently use PALs to replace individual logic gates
when several logic functions must be realized.

Figure 3-16(a) represents a segment of an unprogrammed PAL. The symbol

Noninverted output

Inverted output

represents an input buffer, which is logically equivalent to

142 Chapter 3 Introduction to Programmable Logic Devices

A buffer is used since each PAL input must drive many AND gate inputs. When the PAL
is programmed, some of the interconnection points are programmed to make the desired
connections to the AND gate inputs. Connections to the AND gate inputs in a PAL are
represented by X’s as shown in the following diagram:

As an example, we will use the PAL segment of Figure 3-16(a) to realize the function
I1Ir2 1 Ir1I2. The Xrs in Figure 3-16(b) indicate that I1 and Ir2 lines are connected to the �rst
AND gate, and the Ir1 and I2 lines are connected to the other gate.

When designing with PALs, we must simplify our logic equations and try to �t them into
one (or more) of the available PALs. Unlike the more general PLA, the AND terms can-
not be shared among two or more OR gates; therefore, each function to be realized can be
simpli�ed by itself without regard to common terms. For a given type of PAL, the number
of AND terms that feed each output OR gate is �xed and limited. If the number of AND
terms in a simpli�ed function is too large, we may be forced to choose a PAL with more gate
inputs and fewer outputs.

A
B
C

A B C A B C

A B C

;

FIGURE 3-16:
PAL Segment

I1

I2

Output

I1 I2 + I1 I2

I2

I1

(a) Unprogrammed

(b) Programmed

9 9

3.2 Simple Programmable Logic Devices 143

As an example of programming a PAL, we will implement a full adder. The logic
 equations for the full adder are

Sum 5 XrYrCin 1 XrYCinr 1 XYrCinr 1 XYCin

Cout 5 XCin 1 YCin 1 XY

Figure 3-17 shows a section of a PAL where each OR gate is driven by four AND gates.
The X’s on the diagram show the connections that are programmed into the PAL to imple-
ment the full adder equations. For example, the �rst row of X’s implements the product term
XrYrCin.

Typical combinational PALs have from 10 to 20 inputs and from 2 to 10 outputs, with 2
to 8 AND gates driving each OR gate. PALs are also available that contain D �ip-�ops with
inputs driven from the programmable array logic. Such PALs are called sequential PALs.
They provide a convenient way of realizing sequential circuits. Figure 3-18 shows a segment
of a sequential PAL. The D �ip-�op is driven from an OR gate, which is fed by two AND
gates. The �ip-�op output is fed back to the programmable AND array through a buffer.
Thus, the AND gate inputs can be connected to A, Ar, B, Br, Q, or Qr. The diagram shows
the realization of the next state equation:

Q1 5 D 5 ArBQr 1 ABrQ

The �ip-�op output is connected to an inverting tristate buffer, which is enabled when
EN 5 1.

FIGURE 3-17:
Implementation of
a Full Adder Using a
PAL

X

Y

Cin

Cout

Sum

FIGURE 3-18: Segment
of a Sequential PAL

D Q

Inverting
3-state
output
buffer

ENClock

A

B

A A9 B B 9 Q 9

Q 9

Q 9

Q 9

Q

Q

Programmable AND array

144 Chapter 3 Introduction to Programmable Logic Devices

A few decades ago, PALs were very popular among digital system designers. A very pop-
ular PAL was the 16R4. This PAL has an AND gate array with 16 input variables, and it has
four D �ip-�ops. Nowadays, several other programmable devices, such as GALs (described
in the next section), CPLDs, and FPGAs, have arrived. PALs have practically disappeared;
hence, we do not describe further any of the traditional PAL devices.

3.2.4 Programmable Logic Devices/Generic Array Logic
PALs and PLAs have been very popular for implementing small circuitry and interface logic
often needed by designers. As integrated circuit technology has improved, a wide variety of
other programmable logic devices have become available. Traditional PALs are not repro-
grammable. However, there are �ash erasable/reprogrammable PALs now. Often, these are
referred to as PLDs.

The 22CEV10 (Figure 3-19) is a CMOS electrically erasable PLD that can be used to
realize both combinational and sequential circuits. The abbreviation PLD has been used as
a generic term for all programmable logic devices and also refers to speci�c devices such as
the 22CEV10. In addition to the AND-OR arrays that the PALs have, most PLDs have some
type of a macroblock that contains some multiplexers and some additional programmability.
These PLDs are named with reference to their input and output capability. For instance, the
22CEV10 has 12 dedicated input pins and 10 pins that can be programmed as either inputs

FIGURE 3-19: Block Diagram for 22V10

I/O1

10

I/O2

12

I/O3

14

I/O4

16

I/O5

16

I/O6

14

I/O7

12

I/O8

10

I/O9

8

Output
Logic
Macro
Cell

Output
Logic
Macro
Cell

Output
Logic
Macro
Cell

Output
Logic
Macro
Cell

Output
Logic
Macro
Cell

Output
Logic
Macro
Cell

Output
Logic
Macro
Cell

Output
Logic
Macro
Cell

Output
Logic
Macro
Cell

Output
Logic
Macro
Cell

I/O0

8

Programmable AND array

(44 3 132)

Reset

1

CLK/I0

Preset

11

I0–I11

3.2 Simple Programmable Logic Devices 145

or outputs. It contains 10 D �ip-�ops and 10 OR gates. The number of AND gates that feeds
each OR gate ranges from 8 through 16. Each OR gate drives an output logic macrocell. Each
macrocell contains one of the 10 D �ip-�ops. The �ip-�ops have a common clock, a common
asynchronous reset (AR) input, and a common synchronous preset (SP) input. The name
22V10 indicates a versatile PAL with a total of 22 input and output pins, 10 of which are
bidirectional I/O (input/output) pins.

Figure 3-20 shows the details of a 22CEV10 output macrocell. The connections to the
output pins are controlled by programming this macrocell. The output MUX control inputs
S1 and S0 select one of the data inputs. For example, S1S0 5 10 selects data input 2. Each
macrocell has two programmable interconnect bits. S1 or S0 is connected to ground (logic 0)
when the corresponding bit is programmed. Erasing a bit disconnects the control line (S1 or
S0) from ground and allows it to �oat to logic 1. When S1 5 1, the �ip-�op is bypassed, and
the output is from the OR gate. The OR gate output is connected to the I/O pin through the

FIGURE 3-20: PLD
Output Macrocell

D Q

Q
_

CK

AR

SP

MUX
0

1S1

MUX
S1

Output
select
MUX

Output
select
MUX

2

3

0

1 S1 S0

S1 S0

D Q

Q
_

CK

AR

SP

0

1

2

3

0

1

I/On

I/On

Programmable
 interconnects

(a) Paths with S1 = S0 = 0

(b) Paths with S1 = S0 = 1

146 Chapter 3 Introduction to Programmable Logic Devices

multiplexer and the output buffer. The OR gate is also fed back so that it can be used as an
input to the AND gate array. If S1 5 0, then the �ip-�op output is connected to the output
pin, and it is also fed back so that it can be used for AND gate inputs. When S0 5 1, the
output is not inverted, so it is an active high. When S0 5 0, the output is inverted, so it is an
active low. The output pin is driven by a tristate inverting buffer. When the buffer output is
in a high-impedance state, the OR gate and �ip-�op are disconnected from the output pin,
and the pin can be used as an input. The dashed lines in Figure 3-20(a) show the path when
both S1 and S0 are 0, and the dashed lines in Figure 3-20(b) show the path when both S1 and
S0 are 1. Note that in the �rst case, the �ip-�op output Q is inverted by the output buffer, and
in the second case, the OR gate output is inverted twice, so there is no net inversion.

Several PLDs similar to the 22V10 have been popular. Typically these PLDs had 8 to 12
I/O pins. Each output pin is typically connected to an output macrocell, and each macrocell
has a D �ip-�op. The I/O pins can be programmed so that they act as inputs or as combina-
tional or �ip-�op outputs. Some of the PLDs have a dedicated clock input, and the others
have a dual-purpose pin that can be used either as a clock or as an input. All the PLDs typi-
cally have tristate buffers at the outputs, and some of them have a dedicated output enable
1OE 2 .

Lattice Semiconductor created similar devices which are in-circuit programmable and
called them generic array logic (GAL). GALs are perfect for implementing small amounts of
interface logic, often called “glue” logic. Most of the common PLDs, like the PALCE22V10,
PALCE20V8, and so on, have GAL equivalents, called GAL22V10, GAL20V8, and so on.

Design Flow for PLDs
Computer-aided design programs for PALs and PLDs are widely available. Such programs
accept logic equations, truth tables, state graphs, or state tables as inputs and automatically
generate the required bit patterns. These patterns can then be downloaded into a PLD pro-
grammer, which will create the necessary connections and verify the operation of the PAL.
Many of the newer types of PLDs are erasable and reprogrammable in a manner similar to
EPROMs and EEPROMs. Hence, in these newer devices, bit patterns corresponding to the
required EEPROM content will be generated by the software.

PALASM and ABEL are examples of two languages that were popularly used with
PALs and PLDs. PALASM is a PLD design language from MMI and AMD. ABEL is a PLD
design language from DATA I/O. Intel used to manufacture PLDs and had a PLD language
called PLDShell. While PALASM and ABEL can still be used, nowadays designs for GALs
can be done using hardware description languages such as VHDL or Verilog.

3.3 Complex Programmable Logic Devices
Improvements in integrated circuit technology have made it possible to create programmable
ICs equivalent to several PLDs in the same chip. These chips are called complex program-
mable logic devices (CPLDs). When storage elements such as �ip-�ops are also included on
the same IC, a small digital system can be implemented with a single CPLD.

CPLDs are an extension of the PAL concept. In general, a CPLD is an IC that consists
of a number of PAL-like logic blocks together with a programmable interconnect matrix.
CPLDs typically contain 500 to 10,000 logic gates. Essentially, several PLDs are intercon-
nected using a crossbar-like switch and fabricated inside the same IC. An N 3 M crossbar
switch is one in which each of the N input lines can be connected to any of the M output lines

3.3 Complex Programmable Logic Devices 147

simultaneously. It is expensive to build these switches; however, use of such a switch results
in predictable timing. Many CPLDs are electronically erasable and reprogrammable and are
sometimes referred to as EPLDs (erasable PLDs).

A typical CPLD contains a number of macrocells that are grouped into function blocks.
Connections between the function blocks are made through an interconnection array. Each
macrocell contains a �ip-�op and an OR gate, which has its inputs connected to an AND
gate array. Some CPLDs are based on PALs, in which case each OR gate has a �xed set of
AND gates associated with it. Other CPLDs are based on PLAs, in which case any AND gate
output within a function block can be connected to any OR gate input in that block.

Xilinx, Altera, Lattice Semiconductor, Cypress, and Atmel are the major CPLD
 manufacturers in the market today. The major products available on the market are listed in
Table 3-6. Some vendors specify their gate capacities in usable gates, and some specify it in
terms of logic elements.

Vendor CPLD family Gate Count

Xilinx CoolRunner-II 750 to 12K

CoolRunner XPLA3 750 to 12K

XC9500XV 800 to 6400

XC9500 800 to 6400

XC9500XL 800 to 6400

Atmel CPLD ATF15 750 to 3000 usable gates

CPLD-2 22V10 500 usable gates

Cypress Delta39K 30K to 200K

Flash370i 800 to 3200

Quantum38K 30K to 100K

Ultra37000 960 to 7700

MAX340 high-density EPLDs 600 to 3750

Lattice
Semiconductor

ispXPLD 5000MX 75K to 300K

ispMACH 4000B/C/V/Z 640 to 10,240

Altera MAX II 240 to 2210 logic elements

MAX3000 600 to 10K usable gates

MAX7000 600 to 10K usable gates

TABLE 3-6: Major
CPLDs and their
Approximate Capacity

3.3.1 An Example CPLD: The Xilinx CoolRunner
Xilinx has two major series of CPLDs, the CoolRunner and the XC9500. Figure 3-21
shows the basic architecture of a CoolRunner family CPLD, the Xilinx XCR3064XL.
This CPLD has four function blocks, and each block has 16 associated macrocells (MC1,
MC2, . . .). Each function block is a programmable AND-OR array that is configured as
a PLA. Each macrocell contains a flip-flop and multiplexers that route signals from the
function block to the input/output (I/O) block or to the interconnect array (IA). The
interconnect array selects signals from the macrocell outputs or I/O blocks and connects
them back to function block inputs. Thus, a signal generated in one function block can

148 Chapter 3 Introduction to Programmable Logic Devices

be used as an input to any other function block. The I/O blocks provide an interface
between the bidirectional I/O pins on the IC and the interior of the CPLD.

Figure 3-22 shows how a signal generated in the PLA (function block) is routed to an
I/O pin through a macrocell. Any of the 36 inputs from the IA (or their complements) can
be connected to any inputs of the 48 AND gates. Each OR gate can accept up to 48 product
term inputs from the AND array. The macrocell logic in this diagram is a simpli�ed version
of the actual logic. The �rst mux (1) can be programmed to select the OR gate output or its
complement. The mux (2) at the output of the macrocell can be programmed to select either
the combinational output (G) or the �ip-�op output (Q). This output goes to the intercon-
nect array and to the output cell. The output cell includes a three-state buffer (3) to drive the
I/O pin. The buffer enable input can be programmed from several sources. When the I/O pin
is used as an input, the buffer must be disabled.

FIGURE 3-21: Architecture of Xilinx CoolRunner XCR3064XL CPLD

FUNCTION
BLOCK

FUNCTION
BLOCK

I/O
36

16

16

36

16

16

MC1
MC2

MC16

I/O

MC1
MC2

MC16

FUNCTION
BLOCK

FUNCTION
BLOCK

I/O
36

16

16

36

16

16

MC1
MC2

MC16

I/O

MC1
MC2

MC16

Inter-
connect

array
(IA)

I/
O

 P
in

s

FIGURE 3-22: CPLD
Function Block
and Macrocell
(Simpli�ed Version of
XCR3064XL)

36 Inputs from IA

D Q

CE
CK

1
2 3

Part of PLA Simpli�ed macrocell Output cell

Programmable
enable

to IA to IA

F
G

Programmable select

Flip-�op

I/O pin

1 of 16 OR gates

48 AND gates

Figure 3-23 shows how a Mealy sequential machine with two inputs, two outputs, and
two �ip-�ops can be implemented by a CPLD. Four macrocells are required, two to generate
the D inputs to the �ip-�ops and two to generate the Z outputs. The �ip-�op outputs are fed
back to the AND array inputs via the interconnection matrix (not shown). The number of
product terms required depends on the complexity of the equations for the D’s and the Z’s.

3.3 Complex Programmable Logic Devices 149

CPLD Implementation of a Parallel Adder with Accumulator
Assume that you need to implement an adder with an accumulator, as in Figure 3-24, in a
CPLD. The accumulator register needs one �ip-�op for each bit. Each bit also needs to gen-
erate the sum and carry bits corresponding to that bit.

FIGURE 3-23: CPLD
Implementation of a
Mealy Machine Q1

Q2

FF

FF

FF

AND
array

X1 X2

Z1

Z2

Macrocells
D1

D2

FIGURE 3-24: N-Bit
Parallel Adder with
Accumulator - - -

CLK

cn

CE D

QQ9

sn

yn

xn

Full
adder - - -

xn

CE D

QQ9

xi

si

yi

cicn + 1 ci + 1

Full
adder

xi

- - - c2c3

CE D

QQ9

x1

s1

y1

Full
adder

x1

CE D

QQ9

x2

s2

y2

Full
adder

x2

ClrN

Ad

Accumulator
Register

- - -

c1 = 0

Figure 3-25 shows how three bits of such a parallel adder with an accumulator can be
implemented using a CPLD. Each bit of the adder requires two macrocells. One of the
macrocells implements the sum function and an accumulator �ip-�op. The other macrocell
implements the carry, which is fed back into the AND array. The Ad signal can be connected
to the enable input (CE) of each �ip-�op via an AND gate (not shown). Each bit of the adder
requires eight product terms (four for the sum, three for the carry, and one for CE). For each
accumulator �ip-�op,

Di 5 Xi
1 5 Si 5 Xi ! Yi ! Ci

If the �ip-�ops are programmed as T �ip-�ops, then the logic for the sum can be simpli-
�ed. For each accumulator �ip-�op

Xi
1 5 Xi ! Yi ! Ci

Therefore, the T input is

Ti 5 Xi
1 ! Xi 5 Yi ! Ci

150 Chapter 3 Introduction to Programmable Logic Devices

The add signal can be AND’ed with the Ti input so that the �ip-�op state only can change
when Ad 5 1:

Ti 5 Ad 1Yi ! Ci 2 5 Ad YiCir 1 Ad YirCi

The equation for carry is

Ci11 5 XiYi 1 XiCi 1 YiCi

3.4 Field Programmable Gate Arrays
In this section, we introduce �eld programmable gate arrays (FPGAs). FPGAs are ICs that
contain an array of identical logic blocks with programmable interconnections. The user can
program the functions realized by each logic block and the connections between the blocks.
FPGAs have revolutionized the way prototyping and designing are done. The �exibility
offered by reprogrammable FPGAs has enhanced the design process. While different kinds
of programmable devices had been around, when Xilinx used static RAM (SRAM) storage
elements to create programmable logic blocks and introduced its family of XC2000 devices in
1985, the world received a totally new and powerful technology. There are a variety of FPGA
products available in the market now. Xilinx, Altera, Lattice Semiconductor, Microsemi,
Cypress, QuickLogic, and Atmel are examples of companies that design and sell FPGAs.

FPGAs provide several advantages over traditional gate arrays or mask programmable
gate arrays (MPGAs). A traditional gate array can be used to implement any circuit but is
programmable only in the factory. A speci�c mask to match the particular circuit is created
in order to fabricate the gate array. The design time of a gate-array-based IC is a few months.
FPGAs are standard off-the-shelf products. Manufacturing time reduces from months
to hours as one adopts FPGAs instead of MPGAs. Design iterations become easier with
FPGAs. This is a tremendous advantage when it comes to time-to-market. It becomes easy to

FIGURE 3-25: CPLD
Implementation of a
Parallel Adder with
Accumulator

Y2

Y1

Y0

C1

X0FF

AND
array

C2

X1FF

C0

FF

C3

X2

S0

S1

S2

3.4 Field Programmable Gate Arrays 151

correct mistakes that creep into designs. Mistakes and design speci�cation changes become
less costly. Prototyping cost is reduced. At low volumes, FPGAs are cheaper than MPGAs.

FPGAs have disadvantages, too. FPGAs are less dense than traditional gate arrays
(MPGAs). In FPGAs, a lot of resources are spent to merely achieve the programmability.
MPGAs have better performance than FPGAs. Programmable points have resistance and
capacitance. They slow down signals, so FPGAs are slower than traditional gate arrays. Also,
interconnection delays are unpredictable in FPGAs. PLDs, like PALs and GALs, are simple
and inexpensive. CPLDs are faster than FPGAs and are cheaper. The overhead for program-
mability is fairly low in PALs and CPLDs. The main advantage of CPLDs over FPGAs is the
lower cost and predictability in timing.

Several commercial FPGAs are listed in Table 3-7. As we notice, some of these chips
contain logic equivalent to 5 million gates. The capacity of some FPGAs is speci�ed in num-
ber of look-up tables (LUTs). Due to the large capacity, it is possible to prototype or even
manufacture large systems in a single FPGA. In this chapter, we describe the basic organiza-
tion of FPGAs. Design examples with FPGAs are presented in Chapter 6.

Vendor FPGA Product Capacity (Approx) in Gates/LUTs

Xilinx Kintex 7
Artix 7
Spartan-3
Virtex-5
Virtex-6
Virtex-E
Virtex-II

41K to 300K LUTs
63K to 135K LUTs
50K to 5M
19,200 to 207,360 LUTs
46K to 474K LUTs
71,693 to 4,074,387
40K to 8M

Altera Arria V
Arria II
ACEX 1K
APEX II
FLEX 10K
Stratix/Stratix II

76,800 to 516,096 LUTs
45,125 to 256,500 LUTs
56K to 257K
1.9M to 5.25M
10K to 50K
10,570 to 132,540 logic elements

Lattice Semiconductor LatticeECP2
Lattice SC
ispXPGA
MachXO
LatticeECP

6K to 68K LUTs
15.2K to 115.2K LUTs
139K to 1.25M
256 to 2280 LUTs
6.1K to 32.8K LUTs

Microsemi Fusion
IGLOO
Axcelerator
eX
ProASIC3
MX

90K to 1.5M system gates
15K to 3M system gates
125K To 2M
3K to 12K
30K to 3M
3K to 54K

Quick Logic Eclipse/EclipsePlus
Quick RAM
pASIC 3

248K to 662K
45K to 176K
5K to 75K

Atmel AT40K
AT40KAL

5K to 40K
5K to 50K

TABLE 3-7: Examples of
Commercial FPGAs

152 Chapter 3 Introduction to Programmable Logic Devices

3.4.1 Organization of FPGAs
Figure 3-26 shows the layout of a typical FPGA. The interior of FPGAs typically contains
three elements that are programmable:

Programmable logic blocks
Programmable input/output blocks
Programmable routing resources

Arrays of programmable logic blocks are distributed within the FPGA. These logic
blocks are surrounded by input/output (I/O) interface blocks. These I/O blocks can be con-
sidered to be on the periphery of the chip. They connect the logic signals to FPGA pins. The
space between the logic blocks is used to route connections between the logic blocks.

The �eld programmability in FPGAs is achieved by recon�gurable elements, which can
be programmed or recon�gured by the user. As mentioned, there are three major program-
mable elements in FPGAs: the logic block, the interconnect, and the input/output block.

FIGURE 3-26: Layout of a Typical FPGA

Programmable Logic Block

Programmable I/O Block

Programmable
Interconnect Area

3.4 Field Programmable Gate Arrays 153

Programmable logic blocks are created by using multiplexers, look-up tables, and AND-OR
or NAND-NAND arrays. “Programming” them means changing the input or control signals
to the multiplexers, changing the look-up table contents, or selecting/not selecting particular
gates in AND-OR gate blocks. For a programmable interconnect, “programming” means
making or breaking speci�c connections. This is required to interconnect various blocks in
the chip and to connect speci�c I/O pins to speci�c logic blocks. Programmable I/O blocks
denote blocks which can be programmed to be input, output, or bidirectional lines. Typically,
they can also be programmed to adjust the properties of their buffers such as inverting/non-
inverting, tristate, passive pull-up, or even to adjust the slew rate, which is the rate of change
of signals on that pin.

What makes an FPGA distinct from a CPLD is the �exible general-purpose interconnect. In
a CPLD, the interconnect is fairly restricted. The general-purpose interconnect in an FPGA gives
it a lot of �exibility, but it also has the disadvantage of being slow. A connection from one part of
the chip to another part might have to travel through several programmable interconnect points,
resulting in large and unpredictable signal delays.

While Figure 3-26 was used to illustrate the general structure of an FPGA, not all FPGAs
look like that. Commercial FPGAs use a variety of architectures. The FPGA architecture
or organization refers to the manner or topology in which the logic blocks and interconnect
resources are distributed inside the FPGA. The organization that is presented in Figure 3-26
is often referred to as symmetrical array architecture. If we examine the various FPGAs that
have been on the market since their inception in the late 1980s, they can be classi�ed into
four different basic architectures or topologies depending on the layout/organization of their
logic blocks:

Matrix-based (symmetrical array) architectures
Row-based architectures
Hierarchical PLD architectures
Sea-of-gates architecture

These architectures are illustrated in Figure 3-27.

Matrix-Based (Symmetrical Array) Architectures
The logic blocks in this type of FPGA are organized in a matrix-like fashion as illustrated
in Figure 3-27(a). Most Xilinx FPGAs belong to this category. The logic blocks in these
architectures are typically of a large granularity (capable of implementing four-variable
functions or more). These architectures typically contain 8 3 8 arrays in the smaller chips
and 100 3 100 or larger arrays in the bigger chips. The routing resources are interspersed
between the logic blocks. The routing in these architectures is often called two-dimensional
channeled routing since routing resources are generally available in horizontal and vertical
directions.

Row-Based Architectures
These architectures were inspired by traditional gate arrays. The logic blocks in this archi-
tecture are organized in rows, as illustrated in Figure 3-27(b). Thus, there are rows of logic
blocks and routing resources. The routing resources interspersed between the rows can be
used to interconnect the various logic blocks. Traditional mask programmable gate arrays use
very similar architectures. The routing in these architectures is often called one- dimensional
channeled routing because the routing resources are located as a channel in between rows of
logic resources. Some Microsemi FPGAs employ this architecture.

154 Chapter 3 Introduction to Programmable Logic Devices

Hierarchical Architectures
In some FPGAs, blocks of logic cells are grouped together by a local interconnect and sev-
eral such groups are interconnected by another level of interconnect. For instance, in Altera
APEX20 and APEX II FPGAs, 10 or so logic elements are connected to form what Altera
calls a logic array block (LAB), and then several LABs are connected to form a MEGALAB.
Thus, there is a hierarchy in the organization of these FPGAs. These FPGAs contain clusters
of logic blocks with localized resources for interconnection. The global interconnect network
is used for the interconnections between the clusters of logic blocks in these FPGAs.

Sea-of-Gates Architecture
The sea-of-gates architecture is yet another manner to organize the logic blocks and inter-
connect in an FPGA. The general FPGA fabric consists of a large number of gates, and then
there is an interconnect superimposed on the sea of gates as illustrated in Figure 3-27(d).
Plessey, a manufacturer who was in the FPGA market in the mid-1990s, made FPGAs of this
architecture. The basic cell they used was a NAND gate, in contrast to the larger basic cells
used by manufacturers like Xilinx. While the terminology sea of gates is the most popular,

FIGURE 3-27: Typical Architectures for FPGAs

(a) Matrix based (symmetrical array)

Interconnect

Logic block

(d) Sea of gates

Logic block

Interconnect
overlayed on
logic blocks

(b) Row based

Interconnect

Logic block

Group
of logic
blocks

(with local
interconnect)

Global
inter-

connect

(c) Hierarchical

L
ocal Interconnect

L
ocal Interconnect

L
ocal Interconnect

L
ocal Interconnect

3.4 Field Programmable Gate Arrays 155

there are also terminologies like sea of cells and sea of tiles to indicate the topology of FPGAs
with a large number of �ne-grain logic cells. The Microsemi Fusion FPGAs contain a sea of
tiles, where each tile can be con�gured as a three-input logic function or a �ip-�op/latch.

3.4.2 FPGA Programming Technologies
FPGAs consist of a large number of logic blocks interspersed with a programmable inter-
connect. The logic block is programmable in the sense that the same building block can be
programmed, or con�gured, to create any desired circuitry. There is also programmability in
the interconnections between the logic blocks.

Several techniques have been used to achieve the programmable interconnections
between FPGAs. The term programming technology is used here to denote the technology
by which the programmability in an FPGA is achieved. In some devices, the recon�gurability
is achieved by changing the contents of static RAM cells. In some devices, it is achieved by
using �ash memory cells. In others, it is achieved by fusing metal links. In general, FPGAs
use one of the following programming methods:

StaticRAM programming technology
EPROM/EEPROM/�ash programming technology
Antifuse programming technology

The SRAM Programming Technology
The SRAM programming technology involves creating recon�gurability by bits stored in
static RAM (SRAM) cells. The logic blocks, I/O blocks, and interconnect can be made
programmable by using con�guration bits stored in SRAM. Recon�gurable logic blocks can
easily be implemented as LUTs, which is the same approach as the ROM method described
in Section 3.2.1. Sixteen SRAM cells can implement any function of four variables. The
programmable interconnect can also be achieved by SRAM. The key idea is to use pass
transistors to create switches and then control them using the SRAM content. Consider the
arrangement in Figure 3-28(a). The SRAM cell is connected to the gate of the pass transistor.
When the SRAM cell content is 0, the pass transistor is OFF, and hence no connection exists
between points A and B. A closed path can be achieved by turning the pass transistor ON by
making the SRAM cell content 1. SRAM bits can be used to construct routing matrices by
using multiplexers as in Figure 3-28(b). Changing the contents of the SRAM in the arrange-
ment in Figure 3-28(b) will allow the designer to change what is connected to point X. The
bits that are stored in the SRAM for deciding the LUT functionality or interconnection are
called con�guration bits.

FIGURE 3-28:
Routing with Static
RAM Programming
Technology

P

Q

R
S

X

M

M = SRAM cell

(a) Pass transistor
 connecting two points

(b) Multiplexer controlled
 by two memory cells

Routing
wire

To logic
cell input

Routing
wire

A B

M

Routing
wire

M

156 Chapter 3 Introduction to Programmable Logic Devices

A SRAM cell usually takes six transistors, as illustrated in Figure 3-29. Four cross-coupled
transistors are required to create a latch, and two additional transistors are used to control
passing data bits into the latch. When the Word Line is set to high, the values on the Bit Line
will be latched into the cell. This is the write operation. The read operation is performed by
precharging the Bit Line and Bit Line to a logic 1 and then setting Word Line to high. The
contents stored in the cell will then appear on the Bit Line. Some SRAM cell implementa-
tions only use �ve transistors. One advantage of using static RAM is that it is volatile, and
you can write new contents again and again. This provides �exibility during prototyping and
development. Another advantage is that the fabrication steps for making SRAM cells are not
different from the steps for making logic. The major disadvantage of the SRAM programming
technology is that �ve or six transistors are used for every SRAM cell. This adds a tremendous
cost to the chip. For example, if an FPGA has 1 million programmable points, it means that
approximately 5 or 6 million transistors are spent in achieving this programmability.

Being volatile can become a disadvantage when an FPGA is used in the �nal product.
Hence, when SRAM FPGAs are used, a nonvolatile device such as an EPROM should be
used to permanently store the con�guration bits. Typically, what is done is to use the EPROM
as a “boot ROM.” The EPROM contents are transferred to the SRAM when power comes up.

Xilinx FPGAs were the �rst FPGAs to use SRAM as the programming technology. In
fact, it is the �exibility and reprogrammability of SRAM FPGAs that caused FPGAs to
become widely popular. Now, many companies use the SRAM programming technology for
their FPGAs.

EPROM/EEPROM Programming Technology
In the EPROM/EEPROM programming technology, EPROM cells are used to control
programmable connections. Assume that EPROM/EEPROM cells are used instead of the
SRAM cells in Figure 3-28. A transistor with two gates, a �oating gate and a control gate, is
used to create an EPROM cell. Figure 3-30 illustrates an EPROM cell. The pull-up resistor
connects the drain of the transistor to the power supply (labeled Vdd in the �gure). To turn

FIGURE 3-29: Typical
Six-Transistor SRAM
Cell

Q5

Q2

Q1 Q3

Q4

Q6

Bit line

gnd

Word line

Vdd

Bit line

3.4 Field Programmable Gate Arrays 157

the transistor off, charge can be injected on the �oating gate using a high voltage between the
control gate and the drain of the transistor. This charge increases the threshold voltage of the
transistor and turns it off. The charge can be removed by exposing the �oating gate to ultra-
violet light. This lowers the threshold voltage of the transistor and makes it function normally.

EPROMs are slower than SRAM; hence, SRAM-based FPGAs can be programmed
faster. EPROMs also require more processing steps than SRAM. EPROM-based switches
have high ON resistance and high static power consumption. The EEPROM is similar to
EPROM, but removal of the gate charge can be done electrically.

Flash memory is a form of EEPROM that allows multiple locations to be erased in one
operation. Flash memory stores information in �oating-gate transistors as in traditional
EPROM. The �oating gate is isolated by an insulating oxide layer, and hence any electrons
placed there are trapped. The cell is read by placing a speci�c voltage on the control gate.
When the voltage to read is placed, electrical current will or will not �ow depending on the
threshold voltage of the cell, which is controlled by the number of electrons trapped in the
�oating gate. In some devices, the information is stored as absence or presence of current.
In some advanced devices, the amount of current �ow is sensed, and hence multiple bits of
information can be stored in a cell. To erase, a large voltage differential is placed between
the control gate and source, which pulls electrons off. Flash memory is erased in segments/
sectors; all cells in a block are erased at the same time.

The Antifuse Programming Technology
In some FPGAs, the programmable connections between different points are achieved by
what is called an “antifuse.” Contrary to fuse wires that blow open when high current passes
through them, the antifuse programming element changes from high resistance (open) to
low resistance (closed) when a high voltage is applied to it. Antifuses are often built using
dielectric layers between N 1 diffusion and polysilicon layers or by amorphous silicon
between metal layers. Antifuses are normally OFF; permanently connected links are cre-
ated when they are programmed. The process is irreversible, and hence antifuse FPGAs are

FIGURE 3-30:
The EPROM
Programming
Technology

EPROM transistor

Pull-up
resistor

gnd

Floating gate

Control gate

Bit line

Word line

VDD

158 Chapter 3 Introduction to Programmable Logic Devices

only one-time programmable. Programming an antifuse requires applying a high voltage and
currents in excess of normal currents. Special programming transistors larger than normal
transistors are incorporated into the device in order to accomplish the programming. There
are different antifuse technologies; a popular one is the Via antifuse technology.

Antifuse technology has the advantage that the area consumed by the programmable
switch is small. Another advantage is that antifuse-based connections are faster than SRAM-
and EEPROM-based switches. The disadvantage of the antifuse technology is that it is not
reprogrammable. It is a permanent connection; if an error or design change necessitates
reprogramming, a new device is required.

The antifuse technology is not very suitable for the prototyping stage where design
keeps changing, however, once the design has matured and no more changes are needed,
the antifuse technology is a good alternative. It gives better performance, lower cost
and increased security. The con�guration bits cannot be maliciously changed since it is a
 permanent physical connection. The military uses antifuse FPGAs in many applications.

Comparison of Programming Technologies
Table 3-8 compares the characteristics of the major programming technologies used by FPGAs.
Only the SRAM and EEPROM programming technologies allow in-circuit programmability.
In-circuit programmability means that an FPGA can be reprogrammed without removing it
from the board in which it is used. In-circuit programmability is not possible in traditional
EPROM-based devices, but EEPROM/�ash technologies allow in-circuit reprogrammability.

Programming Area
Technology Volatility Programmability Overhead Resistance Capacitance

SRAM Volatile In-circuit reprogrammable Large Medium to high High

EPROM Nonvolatile Out-of-circuit
reprogrammable

Small High High

EEPROM/Flash Nonvolatile In-circuit reprogrammable Medium to high High High

Antifuse Nonvolatile Not reprogrammable Small Small Small

TABLE 3-8: Characteristics of the Major FPGA Programming Technologies

SRAM FPGAs have several disadvantages: high area overhead, large delays, volatility,
and so on. However, the in-circuit programmability and fast programmability have made
them very popular. SRAM FPGAs are more expensive than other types of FPGAs because
each programmable point uses six transistors. This extra hardware contributes only to the
reprogrammability but not to the actual circuitry realized with the FPGA. EEPROM/�ash-
based FPGAs are comparable to SRAM FPGAs in many aspects; however, they are not as
fast as SRAM FPGAs.

3.4.3 Programmable Logic Block Architectures
FPGAs in the past have employed different kinds of programmable logic blocks as the basic
building block. In this section, we present some generalized versions of typical building
blocks in commercial FPGAs.

The logic blocks vary in the basic components they use. For instance, some FPGAs use
LUT-based logic blocks, while others use multiplexers and logic gates to build their logic

3.4 Field Programmable Gate Arrays 159

blocks. There also have been FPGAs where logic blocks simply consisted of transistor pairs
(e.g., crosspoint FPGAs). Logic building blocks in early Altera FPGAs were PLD blocks.
There were also FPGAs that used NAND gates as the building block (e.g., Plessey).

The logic blocks also vary in their architecture and size. Some FPGAs use large basic
blocks, which can implement large functions (several �ve-variable or four-variable functions)
and have several �ip-�ops in each basic block. In contrast, there are FPGA building blocks
which only allow a three-variable function or a �ip-�op in one block. Some FPGAs allow
choices as to whether latched/unlatched or both kinds of outputs can be brought out. Some
FPGAs allow one to control the type of �ip-�op that is realized. Some allow positive edge/
negative edge clock, direct set/reset inputs to the �ip-�op, and so on. Different FPGA manu-
facturers use different names (often trademarked) to denote their logic blocks. In the Xilinx
literature, a programmable logic block is called a Con�gurable Logic Block (CLB). Altera
calls their basic blocks Logic Elements (LE) and a collection of 8 or 10 of them Logic Array
Blocks (LABs). The basic cells in Microsemi Fusion FPGAs are referred to as VersaTiles.

Look-Up Table–Based Programmable Logic Blocks
Many LUT-based FPGAs use a four-variable look-up table plus a �ip-�op as the basic ele-
ment and then combine several of them in various topologies. Consider the structure in
 Figure 3-31. There are two four-variable look-up tables (often denoted by the short form
LUT4) and two �ip-�ops in this programmable logic block. The LUT4 can also be called
a four-variable function generator since it can generate any function of four variables. The
two LUT4s can generate any two functions of four variables. The inputs to the X-function
generator are called X1, X2, X3, and X4, and the inputs to the Y-function generator are
called Y1, Y2, Y3, and Y4. The functions can be steered to the output of the block (X and
Y) in combinational or latched form. There are two D �ip-�ops in the logic block. The D
�ip-�ops are versatile in the sense that they have clock enable, direct set, and direct reset
inputs. A multiplexer selects between the combinatorial output and the latched version of the
output. The little box with “M” in it (beneath the multiplexer) indicates a memory cell that
is required to provide appropriate select signals to select between the latched and unlatched
form of the function. An early Xilinx FPGA, the XC3000, used building blocks very similar
to this structure.

FIGURE 3-31:
A Look-Up Table–
Based Programmable
Logic Block

X1

X2

X3

X4

Y1

Y2

Y3

Y4

X

Y

X-Function
generator
LUT4

Y-Function
generator
LUT4

FF
D

R

S Q

FF
D

R

S Q

M

M

CE

CE

160 Chapter 3 Introduction to Programmable Logic Devices

Let us assume that we want to implement the function F1 5 ArBrC 1 ArBCr 1 AB
using an FPGA with programmable logic blocks as in Figure 3-31. Since this is a three-
variable function, a four-input LUT is more than suf�cient to implement the function. The
path highlighted in Figure 3-32 assumes that the X-function generator (top LUT) is used. Let
us assume that X1 is the LSB and X4 is the MSB to the LUT. Since function F1 only uses three
variables, the X4 input is not used. A truth table can be constructed to represent the function,
and the LUT contents can be derived.

The LUT contents to implement function F1 will be 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1.
The �rst 8 bits in the LUT re�ect the truth table outputs when the function is represented in
a truth table form. Since input X4 is not grounded, the �rst 8 bits are repeated to take care
of the possibility that the X4 input might stay at a logic 1 when it is unused. Since the func-
tions are stored in LUT form, the number of terms in the function is not important. Common
minimizations to reduce the number of terms are not relevant. The number of variables is
what is important.

FIGURE 3-32:
Highlighting Paths
for Function F1

X1

X2

X3

X4

Y1

F1

Y2

Y3

Y4

X

Y

X-Function
generator
LUT4

Y-Function
generator
LUT4

FF
D

R

S Q

FF
D

R

S Q

M

M

CE

CE

C

B

A

Many commercial FPGAs use LUTs. Examples are the Xilinx Spartan/Virtex, Altera
Cyclone II/APEX II, QuickLogic Eclipse/PolarPro, and Lattice Semiconductor ECP. Many
of these FPGAs put two or more four-input LUTs into a block in various topologies. Some
FPGAs also provide multiplexers in addition to look-up tables.

Logic Blocks Based on Multiplexers and Gates
Some FPGAs use multiplexers as the basic building block. As you know, any combinational
function can be implemented using multiplexers alone. In the most naïve method, a 4-to-1
multiplexer can generate any two-input function. If inverted inputs can be provided, a 4-to-1
multiplexer can generate any three-input function. Examples of multiplexer-based basic
blocks are given in Figure 3-33. Logic blocks similar to these were used in early Microsemi
FPGAs, such as the ACT I and ACT II.

Let us assume that we want to implement the function F15ArBrC1ArBCr1AB using
an FPGA with programmable logic blocks consisting of 4-to-1 multiplexers. Two of the

3.4 Field Programmable Gate Arrays 161

three-input variables can be connected to the multiplexer select lines. Then we have to pro-
vide appropriate signals to the multiplexer data input lines in order to realize the function.
To derive these inputs, we will �rst construct a truth table of the function as shown below:

FIGURE 3-33:
Multiplexer-Based
Logic Blocks in FPGAs

A0

A1

S0

B0

B1

S1

S2

(a)

D00

D01

D10

D11

Q

CLK

4-to-1
MUX

D

DFF

(b)

S1 S0

 CLR

A B C F Mux Input in Terms of {0, 1, C, Cr}

0 0 0 0
rC0 0 1 1

0 1 0 1
r Cr0 1 1 0

1 0 0 0
r 01 0 1 0

1 1 0 1
r 11 1 1 1

Let us assume that A and B are connected to the select inputs of the multiplexer. Next,
we will derive values of inputs to provide to the multiplexer input lines in terms of the third
variable in the function. The third variable is C, and by providing one of the four values
5C, Cr, 0, 16, any three-variable function can be expressed. Considering the �rst two rows of
the truth table, it can be seen that F 5 C when AB 5 00. Similarly, considering the third and
fourth rows of the truth table, F 5 Cr when AB 5 01. When AB 5 10, F 5 0 irrespective of
the value of C. Similarly, when AB 5 11, the value of the function equals 1. The last column
in the truth table presents the required multiplexer inputs. Hence, one 4-to-1 multiplexer
with the connections shown in Figure 3-34 can implement function F1.

In the past three sections, we have provided an overview of the general architecture, logic
block types, and programming technologies that can be used to build FPGAs. The general
architecture, programming technology, and logic block types of several example commercial
FPGAs are summarized in Table 3-9. LUT-based FPGAs are very common, especially for
Xilinx and Altera. Microsemi is the manufacturer of multiplexer-based FPGAs. SRAM pro-
gramming technology, while expensive, is also common.

162 Chapter 3 Introduction to Programmable Logic Devices

3.4.4 Programmable Interconnects
A key element of an FPGA is the general-purpose programmable interconnect interspersed
between the programmable logic blocks. There are different types of interconnection
resources in all commercial FPGAs. Every vendor has its own speci�c names for the different
types of interconnects in its FPGA.

Interconnects in Symmetric Array FPGAs
In this section, we discuss some of the basic elements used for interconnection in symmetric
array FPGAs.

FIGURE 3-34:
Multiplexer
Implementing
Function F1

D01

D10

D11

4-to-1
MUX

S1 S0

C

C 9

0

1

A B

F1

D00

Company Device Names General Architecture Logic Block Type
Programming
Technology

Microsemi IGLOO
ProASIC/ProASIC3/ProASICplus

Sea-of-Tiles
Sea-of-Tiles

LUT
Multiplexers & Basic Gates

Flash
Flash, SRAM

SX/SXA/eX/MX Sea-of-Modules Multiplexers & Basic Gates Antifuse
Accelerator Sea-of-Modules Multiplexers & Basic Gates SRAM
Fusion Sea-of-Tiles Multiplexers & Basic Gates Flash, SRAM

Xilinx Kintex
Virtex

Symmetrical Array
Symmetrical Array

LUT
LUT

SRAM
SRAM

Spartan Symmetrical Array LUT SRAM
Atmel AT40KAL Cell-Based Multiplexers & Basic Gates SRAM
QuickLogic Eclipse II Flexible Clock LUT SRAM

PolarPro Cell-based LUT SRAM
Altera Cyclone II Two-Dimensional Row

and Column-Based
LUT SRAM

Stratix II Two-Dimensional Row
and Column-Based

LUT SRAM

APEX II Row and Column, but
hierarchical interconnect

LUT SRAM

TABLE 3-9: Architecture, Technology, and Logic Block Types of Commercial FPGAs

3.4 Field Programmable Gate Arrays 163

General-Purpose Interconnect: Many FPGAs use switch matrices that provide
interconnections between routing wires connected to the switch matrix. Figure 3-35(a)
illustrates interconnecting logic blocks in an FPGA using switch matrices. Many FPGAs use
this type of interconnect. A typical switch matrix is illustrated in Figure 3-35(b), where there is
a switch at each intersection (i.e., wherever the lines cross). A switch matrix that supports every
possible connection from every wire to every other wire is very expensive. The connectivity is
often limited to some subset of a full crossbar connection; moreover, not all connections might
be possible simultaneously. In the switch matrix illustrated in Figure 3-35(b), each wire from
a side of the switch can be routed to other wires using some combination of the switches. In
order to support this type of a connection, each cross point in the switch matrix must support
six possible interconnections as marked in Figure 3-35(c).

FIGURE 3-35:
Routing Matrix for
General-Purpose
Interconnection in an
FPGA

Switch
Matrix

Switch
Matrix

Logic
Block

Logic
Block

Logic
Block

Logic
Block

Logic
Block

Logic
Block

(a)

A1

A2

A3

A4

B1

B2

B3

B4

D1 D2

(b)

D3 D4

C1 C2 C3 C4

1 2

34
6

(c)

5

164 Chapter 3 Introduction to Programmable Logic Devices

Depending on the programming technology, SRAM cells, �ash memory cells, or anti-
fuse connections control the con�guration of the switches. The switch matrices interspersed
between the logic blocks in an FPGA allow general-purpose interconnectivity between arbi-
trary points in the chip. However, the switch matrices are expensive in area and time (delay).
If a signal passes through several of these switch matrices, it could contribute to a signi�cant
signal delay. Moreover, the delays are variable and unpredictable depending on the number
of the switch matrices involved in each signal. In contrast, the interconnection resources in a
CPLD are more restricted. However, interconnections in CPLDs result in smaller and more
predictable delays.

Direct Interconnects: Many FPGAs provide special connections between adjacent logic
blocks. These interconnects are fast because they do not go through the routing matrix.
Many FPGAs provide direct interconnections to the four nearest neighbors: top, bottom,
left, and right. Figure 3-36 illustrates examples of direct connections. In some cases, there are
special interconnections to eight neighboring blocks, including the diagonally located logic
blocks (Figure 3-36(b)). The direct interconnections do not go through the switch matrix but
are implemented with dedicated switches, resulting in smaller delays. These types of direct
interconnects are used in some Xilinx FPGAs.

FIGURE 3-36: Direct
Interconnects between
Neighboring Logic
Blocks

Switch
Matrix

Switch
Matrix

Switch
Matrix

Switch
Matrix

Logic
Block

Logic
Block

(a) (b)

Logic
Block

Logic
Block

Logic
Block

Logic
Block

Logic
Block

Logic
Block

Logic
Block

Logic
Block

Logic
Block

Logic
Block

Logic
Block

Logic
Block

Logic
Block

Logic
Block

Logic
Block

Logic
Block

Global Lines: For purposes like high fan-out and low-skew clock distribution, most FPGAs
provide routing lines that span the entire width of the device/height of the device. A limited
number (two or four) of such global lines is provided by many FPGAs in the horizontal and
vertical directions. Figure 3-37 illustrates horizontal long lines (global lines) in an example
FPGA. The logic blocks often have tristate buffers to connect to the global lines.

3.4 Field Programmable Gate Arrays 165

Interconnects in Row-Based FPGAs
Many of the interconnect resources mentioned previously are very characteristic of symmetric
array devices with a two-dimensional array of logic blocks (e.g., Xilinx). In devices that are row
based, there are rows of logic blocks, and there are channels of switches to enable connections
between the logic blocks. Several switches are used to route a signal from a logic block in one
row to another logic block elsewhere in the chip. There are arrays of switches in the routing
channel between the rows of logic. The routing resources in these FPGAs are very similar to
routing in traditional gate arrays.

The interconnects in row-based channeled architecture can be classi�ed into two
categories: nonsegmented routing and segmented routing. In order to understand dif-
ferent types of channel routing, consider the connections x, y, and z in Figure 3-38(a).
Figure 3-38(b) indicates what is called as a nonsegmented channel routing architecture.
There are three horizontal rows or tracks in this �gure. There are several vertical wires and
switches at the crosspoints. The switches technically can use any programming technology
(SRAM, EPROM, or antifuse), although FPGAs that use this type of routing are typi-
cally antifuse FPGAs. Desired connectivity is obtained by programming the appropriate
switches. Connectivity between the points marked x is obtained by the two switches at row
1, columns 1 and 4. Typically this is called net x. Net x simply means a wire that is named x.
The connectivity for net y is obtained by programming the switches at row 2, columns 3 and
8. It may be noticed that row 1 cannot be used for any other connections other than net x.
Similarly, row 2 is exclusively used for net y. Thus, a problem with this type of interconnect
resource is that a full-length track (i.e., an entire row) is used even for a short net. The area
overhead of this type of routing is very high for this reason.

FIGURE 3-37:
Global Lines

Logic
Block

Logic
Block

Logic
Block

Logic
Block

Tristate
lines

Clock Skew

There are several million gates in modern FPGA chips. When a clock is distributed to
various parts of such a large chip, the delays in the wire carrying the clock can result
in the clock edge arriving at different times at different parts. This difference in the
actual edge of the clock as it arrives at different �ip-�ops or other devices is called
clock skew. Clock skew is a problem in large systems, including modern microproces-
sors. Carefully planned clock distribution circuits are implemented in most systems in
order to minimize the effect of clock skew. Modern FPGAs provide specialized clock
distribution circuitry in order to create a clock of suf�cient strength and low skew.

166 Chapter 3 Introduction to Programmable Logic Devices

In order to reduce the area overhead associated with using full-length tracks for each
net, we can use segmented tracks, as in Figure 3-38(c). Instead of being full length, a track
is divided into segments. If a track in row 1 is segmented into two segments, we could use
the same track for one more net. For example, nets x and z can both be routed on row 1 in
Figure 3-38(c). That is the principle of segmented track routing. More nets can be routed
using the same number of tracks; however, when long nets are desired, intersegment switches
must be used to join the segments. These switches introduce more resistance and capacitance
into the net. However, the overall routing resource area will reduce with segmented routing.

3.4.5 Programmable I/O Blocks in FPGAs
The I/O pads on an FPGA are connected to programmable input/output blocks, which facili-
tate connecting the signals from FPGA logic blocks to the external world in desired forms
and formats. I/O blocks on modern FPGAs allow use of the pin as input and/or output, in
direct (combinational) or latched forms, in tristate true or inverted forms, and with a variety
of I/O standards.

Figure 3-39 shows an example con�gurable input/output block (IOB). Each IOB has a
number of I/O options, which can be selected by con�guration memory cells, indicated by
boxes with an M. The I/O pad can be programmed to be an output or an input. To use the

FIGURE 3-38: Typical
Routing Resources in a
Row-Based FPGA

x

y

z

x y x z y z

Fused switch

Unfused switch

Intersegment switch

(a) Example nets

(b) Nonsegmented channel routing of example nets

(c) Segmented channel routing of example nets

x y x z y z

3.4 Field Programmable Gate Arrays 167

cell as an output, the tristate buffer must be enabled. To use the cell as an input, the tristate
control must be set to place the tristate buffer, which drives the output pin, in the high-
impedance state.

Flip-�ops are provided so that input and output values can be stored within the I/O block.
The �ip-�ops are bypassed when direct input or output is desired. The input �ip-�op on many
FPGAs can be programmed to act as an edge-triggered D �ip-�op or as a transparent latch.
Even if the I/O pin is not used, the I/O �ip-�ops can still be used to store data.

The con�guration memory cells (marked M) allow control of various aspects associ-
ated with the I/O block. An output signal can be inverted by the I/O block if desired. The
inversion is done using an XOR gate. The output signal goes through an exclusive-OR gate,
where it is either complemented or not, depending on the contents of the con�guration bit
in the OUT-INVERT cell. The 3-STATE INVERT con�guration bit allows one to create an
active high or active low tristate control signal. If the 3-STATE signal is 1 and the 3-STATE
INVERT bit is 0 (or if the 3-STATE signal is 0 and the 3 STATE INVERT bit is 1), the output

FIGURE 3-39: Programmable I/O Block for an FPGA

OUT
INVERT

3-STATE
INVERT

SLEW
RATE

PASSIVE
PULL UP

I/O PAD

(GLOBAL RESET)

I

Q

T

O

Vcc

OUTPUT
BUFFER

D Q

R

FLIP
FLOP

DQ

R

FLIP
FLOP

or
LATCH

M
0

M
0

M
0

M
0

M
0

LATCHED
OUTPUT

VOLTAGE
REFERENCE

ENABLE

ENABLE

3-STATE
(OUTPUT ENABLE)

MUX

CONFIGURATION BITS

CE

CE

OUT
SIGNAL

IN SIGNAL

IN SIGNAL
(LATCHED)

CLK CLK

1

168 Chapter 3 Introduction to Programmable Logic Devices

buffer has a high-impedance output. Otherwise, the buffer drives the output signal to the I/O
pad. When the I/O pad is used as an input, the output buffer must be in the high-impedance
state. An external signal coming into the I/O pad goes through a buffer and then to the input
of a D �ip-�op. The buffer output provides a DIRECT IN signal to the logic array. Alter-
natively, the input signal can be stored in the D �ip-�op, which provides the LATCHED IN
signal to the logic array.

The LATCHED OUTPUT con�guration bit allows one to provide the output in latched or
combinational form. Depending on how the LATCHED OUTPUT bit is programmed, either the
OUT signal or the �ip-�op output goes to the output buffer. The SLEW RATE bit controls the
rate at which the output signal can change. When the output drives an external device, reduction
of the slew rate is desirable to reduce the induced noise that can occur when the output changes
rapidly. When the PASSIVE PULL-UP bit is set, a pull-up resistor is connected to the I/O pad.
This internal pull-up resistor can be used to avoid �oating inputs. The highlighted path indicates
the I/O block in an output con�guration, with tristate enabled and with a passive pull-up resistor.

I/O Standards

Early FPGAs provided TTL and CMOS signal compatibility, but nowadays there are
many more standards for input/output signals. I/O blocks on modern FPGAs allow
transforming signals to a variety of I/O signal standards, some of which are as follows:

LVTTL: low-voltage transistor-transistor logic
PCI: peripheral component interconnect
LVCMOS: low-voltage complementary metal-oxide semiconductor
LVPECL: low-voltage positive emitter-coupled logic
SSTL: stub-series terminated logic
AGP: advanced graphics port
CTT: center tap terminated
GTL: gunning transceiver logic
HSTL: high-speed transceiver logic

Some of these standards use 5 volts whereas some use 3.3 volts or even 1.5 volts.
The LVTTL is an example of a 3.3-V standard that can tolerate 5-V signals. The
LVCMOS2 is a 2.5-V signal standard which can tolerate 5-V signals. The PCI stan-
dard has 5-V and 3.3-V versions. Some standards need an input voltage reference.

3.4.6 Dedicated Specialized Components in FPGAs
In the early days, FPGAs were simply logic blocks of medium or low complexity, integrated
with programmable I/O and interconnect. More recently, FPGA vendors have incorporated
embedded processors, digital signal processing (DSP) processors, dedicated multipliers,
dedicated memory, analog-to-digital (A/D) converters, and so on into FPGAs. These special-
ized components help to ef�ciently achieve the provided special-purpose functionality. For
instance, if dedicated multipliers are not provided, we will have to implement multipliers
using general-purpose logic blocks, albeit in an inef�cient manner.

3.4 Field Programmable Gate Arrays 169

Dedicated Memory
A key feature of modern FPGAs is the embedding of dedicated memory blocks (RAM)
onto the chip. The embedded RAM can be used to implement the memory needs of the
circuit being designed. It could be a table storing constants/coef�cients during processing, or
it could be implementing memory for an embedded processor that you are designing using
the FPGA. Modern FPGAs include 16K to 10M bits of memory. The width of the embedded
RAM often can be adjusted. Let us assume that there are 32K of SRAM bits provided as
blocks of RAM. This RAM can be used as 32K 3 1, 16K 3 2, 8K 3 4, or 4K 3 8. Essentially
there are several tiles or blocks of memory. They can be placed in different ways to achieve
different aspect ratios. The number of address lines and data lines get adjusted according to
the aspect ratio, as illustrated in Table 3-10.

Width Depth Address Bus Data Bus

1 32K 15 bits 1 bit

2 16K 14 bits 2 bits

4 8K 13 bits 4 bits

8 4K 12 bits 8 bits

16 2K 11 bits 16 bits

TABLE 3-10: Variable-
Width RAM Aspect
Ratios

Dedicated Arithmetic Units
Many users of FPGAs use them to implement arithmetic logic. When logic is implemented in
FPGA logic blocks, the implementation generally takes more area and power and is slower
than custom implementations. Hence, if most of the target users use arithmetic units, such as
adders and multipliers, it is bene�cial to provide support for such dedicated operations inside
the chip. Most FPGAs provide dedicated fast-carry logic to create fast adders. Nowadays,
many FPGAs also contain dedicated multipliers (see Table 3-11). Thus, instead of mapping
a multiplier into several logic blocks, dedicated multipliers provided on the FPGA fabric can
be used. These dedicated multipliers are more ef�cient than a multiplier one could imple-
ment using the programmable logic in the FPGA. As indicated in Table 3-11, many Xilinx
and Altera FPGAs provide 18 bit 3 18 bit multipliers. Xilinx Virtex-5 and Virtex-6 series
contain 25 3 18 multipliers, which are touted to be highly useful for Digital Signal Process-
ing applications.

FPGA Dedicated Multipliers

Xilinx Virtex-5 and Virtex-6 25 3 18 multipliers

Xilinx Virtex-4, 18 3 18 multipliers
Virtex-II Pro/X,
Spartan-3E,
Spartan 3/3L

Altera 18 3 18 multipliers
Stratix II, III, IV
Cyclone II, III, IV

TABLE 3-11: Examples
of FPGAs with
Dedicated Multipliers

170 Chapter 3 Introduction to Programmable Logic Devices

Digital Signal Processing Blocks
Multiplication is a common operation in DSP. Hence the dedicated multipliers help DSP
applications. Xilinx Virtex 5 FPGAs provide DSP slices which contain 25 3 18 multipliers,
48-bit adders, and so forth. Most FPGAs that do not contain built-in adders contain carry
chains to facilitate addition. The Altera Stratix IV FPGAs contain built-in adders in each
logic module. Similar to adders and multipliers, an FPGA vendor can provide DSP building
blocks such as hardware for fast Fourier transforms (FFTs), �nite impulse response (FIR)
�lters, in�nite impulse response (IIR) �lters, and so on. Encryption/decryption, compression/
decompression, and security functions can also be provided. Once a large amount of special-
ized components are provided, a large part of an FPGA may be unused in applications that
do not warrant such specialized components. In some FPGAs, DSP support is limited to the
dedicated multipliers.

Embedded Processors
Many modern FPGAs contain an entire processor core (see Table 3-12). This is extremely
useful when designers use hybrid solutions, where part of a system is in a programmable
processor, but part of the system is implemented in hardware. Circuitry that needs a large
amount of �exibility can be implemented in the microprocessor, but circuit parts that need
better performance than that of a programmable processor can be implemented in the FPGA
logic blocks. Some FPGAs include the core of a small MIPS processor such as the MIPS R
4000, and some include an embedded version of the IBM PowerPC processor. Some FPGAs
include custom processors designed by the FPGA vendors such as the MicroBlaze from
Xilinx and the Nios processor from Altera.

FPGA Embedded Processor
Xilinx
Kintex

MicroBlaze

Xilinx
Virtex-4
Virtex-II
Pro/X,

IBM PowerPC

Xilinx
Spartan-3E
Spartan 3/3l

MicroBlaze
PicoBlaze

Altera
Arria

ARM 9

Altera
Stratix II
Cyclone II

Nios II

Altera
APEX
APEX II

ARM
MIPS
Nios

Altera
Excalibur

ARM 9

Microsemi
Fusion

ARM7

TABLE 3-12:
Examples of FPGAs
with Embedded
Microprocessors

3.4 Field Programmable Gate Arrays 171

Content Addressable Memories
In some FPGAs, the memory blocks can be used as content addressable memories (CAMs).
The general concept of a memory is that the user provides a memory address and the mem-
ory unit responds with the content. A CAM is a special kind of memory in which the content,
not the address, is used to search the memory. We provide a data element, and the CAM
responds with addresses where that data was found. CAMs contain more logic than RAMs
because all locations of the memory have to be searched simultaneously to see whether
the particular content is in any of the locations. Some FPGAs allow embedded CAM (e.g.,
Altera APEX II).

The Microsemi Fusion architecture, shown in Figure 3-40, provides several special-
ized components, including embedded RAM, decryption, and A/D converters. At the
core of the chip are tiles of logic blocks (VersaTiles in Microsemi terminology). The
embedded RAM is in the form of rows of SRAM blocks above and below the tiles of
logic blocks. Several specialized components appear below the SRAM blocks in the
bottom. There is a dedicated decryption unit that implements the AES decryption
algorithm. (AES stands for Advanced Encryption Standard, which has been the cryp-
tograhic standard for the U.S. government since 2001.) There is an analog-to-digital
converter (ADC) that accepts inputs from several analog quads, which are circuitry to
condition analog signals received by the FPGA. The analog quads contain circuitry to
monitor and condition signals according to voltage, current, and temperature.

3.4.7 Applications of FPGAs
FPGAs have become a popular mode of circuit implementation for various applications:

Rapid Prototyping
FPGAs are very useful for building rapid prototypes of large systems. A designer can build
proof-of-concept systems very quickly using �eld programmable gate arrays. Since FPGAs
are large enough to contain 5 million or more gates, many large real-world systems can be
prototyped using a single FPGA. If a single FPGA will not suf�ce, multiple FPGAs can be
interconnected to realize large systems. Rapid prototyping of large systems is done by using
boards with multiple FPGAs and plugging multiple boards into a backplane (motherboard).

As Final Product in Medium-Speed Systems
Circuits realized using FPGAs typically operate in the 150–200-MHz clock rate. For applica-
tions where this speed is suf�cient, FPGAs can be used for the �nal product itself as opposed
to the prototype. When an FPGA is used as the �nal product, enhancements to the system
can be done as software updates rather than hardware changes. Modern FPGA speeds are
adequate for many applications.

Reconfigurable Circuits and Systems
The reprogrammability of FPGAs lends itself to building dynamically recon�gurable circuits
and systems. SRAM-based FPGAs make it possible to implement “soft” hardware. FPGAs
have been used to design circuits and systems that need multiple functionalities at various times.

172 Chapter 3 Introduction to Programmable Logic Devices

FIGURE 3-40: Overview of the Microsemi Fusion Chip (© 2006 Microsemi Corporation)

I/O Bank 0 I/O Bank 1

I/O Blocks

Logic Blocks

I/O
 B

ank 2

I/O Bank 3

I/
O

 B
an

k
4

A/D
Converter

Decryption
Block

Oscillator

Phase Locked
Loop/Clock

Circuitry

Clock Circuitry

SRAM Blocks

SRAM Blocks

Clock CircuitryClock Circuitry

Clock Circuitry

User Nonvolatile
Flash ROM

As an example, consider a reprogrammable Tomahawk missile that the Navy designed
using FPGAs [53]. The conventional Tomahawk is a long-range Navy cruise missile designed
to perform a variety of missions. The Navy designed a recon�gurable Tomahawk, which
can operate in one of two modes, depending on the mission at hand. Rather than designing
separate logic for each mode, the missile designers used FPGAs so that the con�guration for
each mode can be kept on-board in ROM. Depending on the mode of operation, the FPGA
could be con�gured in mid�ight.

Glue Logic
FPGAs have become the medium of choice for implementing interface or glue logic between
modules and components. Small changes in interface protocols or formats would convention-
ally necessitate building new interface logic. With SRAM FPGAs, the new interface logic can
be implemented on the same FPGA as in a software update.

B
as

ed
 o

n
M

ic
ro

se
m

i

3.4 Field Programmable Gate Arrays 173

Hardware Accelerators/Coprocessors
A software application running on a conventional system can be accelerated if a coprocessor/
accelerator can implement some key routines/kernels from the application in hardware. An
FPGA can be used to implement the key kernel. A SRAM-based, recon�gurable FPGA is
well suited for this type of use because depending on the application running, different ker-
nels can be dynamically programmed into the FPGA. This approach has been demonstrated
for applications, such as pattern matching. FPGA-based hardware is used for several appli-
cations, including computer architecture simulator acceleration, emulation boards, hardware
test/veri�cation, and so on.

3.4.8 Design Flow for FPGAs
Sophisticated CAD tools are available to assist with the design of systems using program-
mable gate arrays. Designs can be entered in many ways.

In the early days of FPGAs, designs were entered using schematic entry or even lower
levels of design entry tools. Low-level design entry means less abstraction, whereas high-
level means entering designs at a higher level of abstraction (e.g., behavioral VHDL/Verilog
description). Early FPGA tools allowed low-level utilities to enter logic equations, Karnaugh
maps, and so on into speci�c logic blocks in the FPGA. Schematic capture technique means
that the designer develops a schematic of the design. Schematic diagrams utilizing standard
hardware components are created and entered into the CAD software.

Nowadays, automatic synthesis tools are available that will take a VHDL description of
the system as an input and generate an interconnection of gates and �ip-�ops to realize the
system. Behavioral models can be translated into design implementations reasonably ef�-
ciently. Synthesis tools have advanced signi�cantly in the last decade.

One method of designing a digital system with an FPGA uses the following steps:

1. Create a behavioral, register-transfer level (RTL), or structural model of the design in a
hardware description language such as VHDL or Verilog.

2. Simulate and debug the design.
3. Synthesize the design targeting the desired device.
4. Run a mapping/partitioning program. This program will break the logic diagram into

pieces that will �t into the con�gurable logic blocks.
5. Run an automatic place and route program. This will place the logic blocks in appropriate

places in the FPGA and then route the interconnections between the logic blocks.
6. Run a program that will generate the bit pattern necessary to program the FPGA.
7. Download the bit pattern into the internal con�guration cells in the FPGA, and test the

operation of the FPGA.

Steps 3, 4, and 5 are often integrated in modern CAD tools. However, the processes men-
tioned in the steps are happening whether presented as one step or several steps. This is anal-
ogous to how general-purpose compilers have integrated compiling and assembling steps. In
the early days of high-level language compilers, the term compiling only meant translation
into an assembly language format. Converting from assembly language to machine language
code was considered the assembler’s job. Nowadays, the steps are integrated in most high-
level language compilation environments.

In SRAM-based FPGAs, when the �nal system is built, the bit pattern for programming
the FPGA is normally stored in an EPROM and automatically loaded into the FPGA when
the power is turned on. The EPROM is connected to the FPGA, as shown in Figure 3-41.
The FPGA resets itself after the power has been applied. Then it reads the con�guration

174 Chapter 3 Introduction to Programmable Logic Devices

data from the EPROM by supplying a sequence of addresses to the EPROM inputs and
storing the EPROM output data in the FPGA internal con�guration memory cells. This is
not required in �ash memory–based FPGAs because the �ash technology is nonvolatile. In
antifuse FPGAs, the con�guration bits permanently alter the switches.

3.5 Programmable SoCs (PSOC)
Before going into Programmable SoCs, consider what an SoC is. Systems often contain ana-
log and digital blocks. A system on a chip (SoC) is an integrated circuit (IC) that integrates all
parts of a system, analog and digital, into one chip. It typically contains processors, memories,
receivers, transmitters, memory controllers, network controllers, and so on. While many of
these units are digital, one can also notice analog components like opamps, mixed-signal
components like analog-to-digital converters (ADCs) and radio-frequency (RF) compo-
nents, such as transmitters and receivers. Until the arrival of SoCs, system designers would
buy various chips from different vendors and assemble them into a system on a board. How-
ever, advances in integration abilities has made it possible to buy IP (intellectual property)
cores of various components from different vendors and electronically integrate the cores.
Integrating complex systems into one chip is something that became possible with the ability
to integrate lots of transistors onto one chip. Integrating radio frequency components with
logical components is also a recent capability with the shrinking of feature sizes.

An IP core means the chip is not a physical chip, but it is in some electronic form. Cores
are generally available as HDL (RTL) source code or post-synthesis EDIF netlist. EDIF,
which stands for Electronic Design Interchange Format, is a standard format to store circuit
netlists and schematics so that such data can be exchanged between various vendors in an
easy vendor-neutral manner. Such IP cores can be obtained and integrated into an SoC by
the SoC maker and fabricated as a custom SoC.

Cores that can be bought to create SoCs include the following:
Processor cores (e.g., ARM Cortex-M0, ARM Cortex-M3, ARM7TDMI, Intel 8051,

Intel 80186, Intel 80188, Intel Quark, Freescale 6809)
Register �les (e.g., single-port and dual-port register �les)
SRAM cores (single-port SRAM, dual-port SRAM)
DSP cores: (e.g., Microsemi JPEG, FFT, FIR, CORDIC, H264 encoder)
Memory Controller (e.g., DDR controller, Flash controller, SD controller)
Ethernet (e.g., Microsemi MII, RGMII, GMII, SGMII)
Security (e.g., Microsemi MD5, DES, AES, SHA)
Error Correction (Microsemi EDAC, RS)
Wireless Radio (e.g., ARM Cordio)
On Chip Interconnect (e.g., ARM CCI-500)

A Programmable SoC is a single chip SoC substrate that is �eld-programmable. These chips
contain various SoC building blocks, but the �nal SoC con�guration is programmable by the

FIGURE 3-41: EPROM
Connections for SRAM
FPGA Initialization

FPGA

EPROM
(contains

con�guration
data)

Address

Data

3.5 Programmable SoCs (PSOC) 175

user so that the user can create an SoC very quickly. They often contain some programmable
digital block area to create the glue logic necessary to create a working system.

Cypress PSOC is a trademarked name to denote a family of devices which contain several
analog and digital building blocks, and allow the creation of custom SoCs from a program-
mable substrate. The PSOC4 family of chips contain:

Processor
SRAM memory
Flash memory
DMA controllers
A-to-D Converter
Opamps
Analog Multiplexer
UART (Universal Asynchronous Receiver Transmitter)
Capacitive Sensors (CapSense)
Network Controllers

The processor in the PSOC4 is an ARM CORTEX M0 core. Figure 3-42 illustrates an
overview of the PSOC4. The programmable analog and digital blocks in the PSOC4 can be
programmed, using Cypress software tools.

Cortex
M0 Processor

core

Flash Memory SRAM ROM

Programmable
Analog
Blocks

Programmable
Digital
Blocks

System Interconnect

Peripheral Interconnect

UART

Comparators

CAPSENSE

FIGURE 3-42: Overview
of a Programmable SoC

In this chapter we have introduced several different types of programmable logic devices
and used them for designing circuits. The technology underlying early programmable logic
devices, such as ROMs, PALs, and PLAs, was presented �rst. Simple PLDs and GALs were
presented next. Examples were presented to illustrate implementations of simple logic func-
tions in these devices. CPLDs and FPGAs were presented next. The discussion on FPGAs
was limited to an overview of the general technology underlying this class of devices. General
organization of FPGAs, general structure of logic blocks, typical programming techniques,
and so on were discussed. Finally, an introduction to Programmable System-on-Chip (SoC)
designs were presented. More details on FPGAs will be presented in Chapter 6.

176 Chapter 3 Introduction to Programmable Logic Devices

Problems
3.1 What is the size of the smallest ROM that is needed to implement the following? Specify the answer as number

of entries X data width.
(a) An 8-bit full adder (assume carry-in and carry-out)
(b) A BCD to binary converter (2 BCD digits)
(c) A 4-to-1 MUX
(d) A 32-bit adder (adds two 32-bit numbers to give a 33-bit sum)
(e) A 3-to-8 decoder
(f) A 32-bit adder (no carry in or carry out)
(g) A 16 3 16 bit multiplier
(h) A 16-bit full adder (with carry-in and carry-out)
(i) An 8-to-3 priority encoder
(j) A 10-to-4 priority encoder
(k) An 8-to-1 multiplexer

3.2 What is the size of the smallest ROM that is needed to implement the following? Specify the answer as number
of entries X data width.
(a) A 32 X 32–bit multiplier (no product bits should be lost)
(b) A BCD to binary converter (8 BCD digits, i.e., 32 bits in BCD)
(c) A binary to BCD converter (16 bits binary)
(d) A 32-bit multiplier with 32-bit product (rest of the product bits lost for big numbers)
(e) A 4-to-16 decoder
(f) A 16-bit adder (no carry in or carry out)
(g) A binary to BCD converter (32-bit binary) (no result bits should be lost)
(h) A 32-bit full adder (with carry-in and carry-out)
(i) F 5 A rB r 1 BC r
(j) F 5 A rB rC r 1 BC r 1 AC r
(k) A combinational BCD to Excess-3 counter

3.3 What is the size of the smallest ROM that is needed to implement the following state machine using the ROM
method? Only �ip-�ops and ROM are allowed in the design.
(a) A 4-bit binary counter
(b) A decade counter (counts up to 9 and then to 0)
(c) A sequential circuit with the following next state equations and output equations (�ip-�ops are

 represented by Qi, input signals are R, S, T, and output is P):

 D1 5 Q1
1 5 Q2R 1 Q1S

 D2 5 Q2
1 5 Q1 1 Q2rT

 Output equation is P 5 Q2RT 1 Q1ST

(d) A sequential circuit with the following next state equations and output equations (�ip-�ops are represented
by Qi, input signals are R, S, T, and output is P):

 D1 5 Q1
1 5 Q2R 1 Q3S

 D2 5 Q2
1 5 Q1 1 Q2rT

 D3 5 Q3
1 5 Q1S 1 Q2rT

Output equation is P 5 Q1RT 1 Q2ST 1 Q3RS

3.4 Write the contents of the ROM if a 2-bit adder with no carry in or carry out is implemented. Use the ROM
(lookup table) method.

3.5 Write the contents of the ROM if a 2-bit multiplier is implemented. Use the ROM (lookup table) method. All
bits of the output required to represent the product should be produced.

3.6 What is the size of the ROM required to implement the following sets of functions. Specify the answer as number
of entries X data width.

(a) f1 1A, B, C, D 2 5 am 10, 2, 3, 6, 7, 8, 9, 11, 13 2

 f2 1A, B, C, D 2 5 am 13, 7, 8, 9, 13 2

 f3 1A, B, C, D 2 5 am 10, 2, 4, 6, 8, 12, 13 2

(b) f1 1A, B, C, D 2 5 cd 1 ad 1 a rbc rd r

 f2 1A, B, C, D 2 5 bc rd r 1 ac r 1 ad r

3.7 What is the size of the smallest ROM that is needed to implement the following using the ROM method?
(a) Any function of 2 variables (Assume you are given 1 function, which is any one of the many possible

2- variable functions. You design the function using the ROM after the function is given to you.)
(b) All functions of 2 variables (You design a ROM that can do all functions. The function will be given to you

after the ROM is designed. So the ROM should contain all functions of 2 variables. You can assume there is
an external mechanism to select the particular function.)

3.8 What is the size of the smallest ROM that is needed to implement the following, using the ROM method?
(a) Any function of 3 variables (Assume you are given 1 function, which is any one of the many possible

 2-variable functions. You design the function using the ROM after the function is given to you.)
(b) All functions of three variables (You design a ROM that can do all functions. The function will be given to

you after the ROM is designed. So the ROM should contain all functions of 3 variables. You can assume there
is an external mechanism to select the particular function.)

3.9 Given F 5 A rB r 1 BC r and G 5 AC 1 B r, write a complete VHDL module that realizes the functions F and
G, using an 8-word 3 2-bit ROM. Include the array type declaration and the constant declaration that de�nes
the contents of the ROM.

3.10 Implement the following state table using a ROM and two D �ip-�ops. Use a straight binary state assignment.
(a) Show the block diagram and the ROM truth table. Truth table column headings should be in the order:

Q1 Q0 3 D1 D0 Z.
(b) Write VHDL code for the implementation. Use an array to represent the ROM table, and use two processes.

present
state

next state output (Z)

X 5 0 X 5 1 X 5 0 X 5 1

S0 S0 S1 0 1

S1 S2 S3 1 0

S2 S1 S3 1 0

S3 S3 S2 0 1

Problems 177

178 Chapter 3 Introduction to Programmable Logic Devices

3.11 The following state table is implemented using a ROM and two D �ip-�ops (falling edge triggered):

Q1Q2 Q1
1Q2

1 Z

X 5 0 X 5 1 X 5 0 X 5 1

00 01 10 0 1

01 10 00 1 1

10 00 01 1 0

(a) Draw the block diagram.
(b) Write VHDL code that describes the system. Assume that the ROM has a delay of 10 ns, and each �ip-�op

has a propagation delay of 15 ns.
3.12 Find a minimum-row PLA to implement the following three functions:

f 1A, B, C, D 2 5 Sm 13, 6, 7, 11, 15 2
g 1A, B, C, D 2 5 Sm 11, 3, 4, 7, 9, 13 2
h 1A, B, C, D 2 5 Sm 14, 6, 8, 10, 11, 12, 14, 15 2

(a) Use Karnaugh maps to �nd common terms. Give the logic equations with common terms underlined, the
PLA table, and also a PLA diagram similar to Figure 3-15.

(b) Use the Espresso multiple output simpli�cation routine that is in LogicAid. Compare the LogicAid results
with part (a). They might not be exactly the same since LogicAid Espresso only �nds minimum row tables; it
does not necessarily minimize the number of variables in each AND term. Note: enter the variable names A,
B, C, D, F, G, and H in LogicAid. Printouts with variable names X1, X2, X3, X4, and so on are not acceptable.

3.13 Find a minimum-row PLA table to implement the following sets of functions.

(a) f1 1A, B, C, D 2 5 Sm 10, 2, 3, 6, 7, 8, 9, 11, 13 2
 f2 1A, B, C, D 2 5 Sm 13, 7, 8, 9, 13 2
 f3 1A, B, C, D 2 5 Sm 10, 2, 4, 6, 8, 12, 13 2

(b) f1 1A, B, C, D 2 5 cd 1 ad 1 a rbc rd r

 f2 1A, B, C, D 2 5 bc rd r 1 ac r 1 ad r

3.14 (a) Find a minimum-row PLA table to implement the following equations:

x 1A, B, C, D 2 5 Sm 10, 1, 4, 5, 6, 7, 8, 9, 11, 12, 14, 15 2
y 1A, B, C, D 2 5 Sm 10, 1, 4, 5, 8, 10, 11, 12, 14, 15 2
z 1A, B, C, D 2 5 Sm 10, 1, 3, 4, 5, 7, 9, 11, 15 2

 (b) Indicate the connections that will be made to program a PLA to implement your solution to part (a) on a
diagram similar to Figure 3-15.

3.15 Write VHDL code that describes the output macrocell of a 22V10 (the part enclosed by dashed lines on
 Figure 3-20). The entity should include S1 and S0. Note that the �ip-�op has an asynchronous reset (AR) and a
synchronous preset (SP).

3.16 An N-bit bidirectional shift register has N parallel data inputs, N outputs, a left serial input (LSI), a right serial
input (RSI), a clock input, and the following control signals:
Load: Load the parallel data into the register (load overrides shift).
Rsh: Shift the register right (LSI goes into the left end).
Lsh: Shift the register left (RSI goes into the right end).
(a) If the register is implemented using a 22V10, what is the maximum value of N?
(b) Give equations for the rightmost two cells.

3.17 Show how the left shift register of Figure 2-43 could be implemented using a CPLD. Draw a diagram similar to
Figure 3-25. Give the equations for the �ip-�op D inputs.

3.18 A Mealy sequential circuit with four output variables is realized, using a 22V10. What is the maximum number of
input variables it can have? What is the maximum number of states? Can any Mealy circuit with these numbers
of inputs and outputs be realized with a 22V10? Explain.

3.19 (a) What is the difference between a traditional gate array and an FPGA?
 (b) What are the different types of FPGAs based on architecture (organization)?
 (c) What are the different programming technologies for FPGAs?
 (d) What is the main advantage of SRAM FPGAs?
 (e) What is the main advantage of antifuse FPGAs?
 (f) What are the major programmable elements in an FPGA?
 (g) What are the disadvantages of SRAM FPGAs?
 (h) What are the disadvantages of antifuse FPGAs?
 (i) How many transistors are typically required to make an SRAM cell?
 (j) What is an MPGA?
 (k) What is difference between a CPLD and an FPGA?
 (l) What is an advantage of a CPLD over an FPGA?
 (m) What is the advantage of an FPGA over a CPLD?
 (n) Name 3 vendors of CPLDs.
 (o) Name 3 vendors of FPGAs.
3.20 (a) In what type of applications should a designer use a CPLD rather than an FPGA?

 (b) In what type of applications should a designer use an MPGA rather than an FPGA?
 (c) In what type of applications should a designer use an FPGA rather than an MPGA?
 (d) A company is designing an experimental product, which is in version 1 now. It is expected that the product

will undergo several revisions. The company’s plan is to use an FPGA for the actual design. What type of
FPGA (SRAM or antifuse) should be used?

 (e) A company is designing a product using an FPGA. The company’s plan is to use an FPGA for the actual
design. The product has undergone several revisions and is fairly stable. Minimizing area, power, and cost is
important for the company. What type of FPGA (SRAM or antifuse) should be used?

 (f) A company is designing a product. It expects to sell 1000 copies of it. Should they use a MPGA or FPGA for
this product?

 (g) A company is designing a product. It expects to sell 100 million copies of it. Should they use a MPGA or
FPGA for this product?

3.21 (a) Implement the function F1 5 A rBC 1 B rC 1 ABC using an FPGA with programmable logic blocks consist-
ing of 4-to-1 multiplexers. Assume inputs and their complements are available as in Figure 3-34.

 (b) Implement the function F1 5 A rB 1 AB r 1 AC r 1 A rC using a multiplexer. What is the size of the smallest
multiplexer needed, assuming inputs and their complements are available?

Problems 179

180 Chapter 3 Introduction to Programmable Logic Devices

3.22 The 74LS181 is an ALU chip with the function table provided below. Implement the 16 logic functions of the
chip using the minimum number of 4-to-1 multiplexers and the minimum number of LUT4s. The answer should
consist of a circuit diagram with muxes and LUT4s and the LUT4 contents.

SELECTION

ACTIVE LOW DATA

M 5 L; ARITHMETIC OPERATIONS

S3 S2 S1 S0

M 5 H
LOGIC

FUNCTIONS
Cn 5 L

(no carry)
Cn 5 H

(with carry)

L L L L F 5 A F 5 A MINUS 1 F 5 A

L L L H F 5 AB F 5 AB MINUS 1 F 5 AB

L L H L F 5 A 1 B F 5 AB MINUS 1 F 5 AB

L L H H F 5 1 F 5 MINUS 1 (2’s COMP) F 5 ZERO

L H L L F 5 A 1 B F 5 A PLUS 1A 1 B 2 F 5 A PLUS 1A 1 B 2 PLUS 1

L H L H F 5 B F 5 AB PLUS 1A 1 B 2 F 5 AB PLUS 1A 1 B 2 PLUS 1

L H H L F 5 A ! B F 5 A MINUS B MINUS 1 F 5 A MINUS B

L H H H F 5 A 1 B F 5 A 1 B F 5 1A 1 B 2 PLUS 1

H L L L F 5 AB F 5 A PLUS 1A 1 B 2 F 5 A PLUS 1A 1 B 2 PLUS 1

H L L H F 5 A ! B F 5 A PLUS B F 5 A PLUS B PLUS 1

H L H L F 5 B F 5 AB PLUS 1A 1 B 2 F 5 AB PLUS 1A 1 B 2 PLUS 1

H L H H F 5 A 1 B F 5 1A 1 B 2 F 5 1A 1 B 2 PLUS 1

H H L L F 5 0 F 5 A PLUS A‡ F 5 A PLUS A PLUS 1

H H L H F 5 AB F 5 AB PLUS A F 5 AB PLUS A PLUS 1

H H H L F 5 AB F 5 AB PLUS A F 5 AB PLUS A PLUS 1

H H H H F 5 A F 5 A F 5 A PLUS 1

‡Each bit is shifted to the next more signi�cant position.

3.23 Implement the following sets of functions using only multiplexer(s). For each set of functions, what is the size of
the smallest multiplexer(s) needed, assuming inputs and their complements are available? No components other
than multiplexers should be used.
(a) f1 1A, B, C, D 2 5 Sm 10, 2, 3, 6, 7, 8, 9, 11, 13 2

 f2 1A, B, C, D 2 5 Sm 13, 7, 8, 9, 13 2
 f3 1A, B, C, D 2 5 Sm 10, 2, 4, 6, 8, 12, 13 2

(b) f1 1A, B, C, D 2 5 cd 1 ad 1 a rbc rd r

 f2 1A, B, C, D 2 5 bc rd r 1 ac r 1 ad r

3.24 (a) Route the p, q, r, and s nets on the non-segmented tracks shown below. Use the minimum number of tracks
possible.

 (b) Route the p, q, r, and s nets on the segmented tracks shown below. Use the minimum number of tracks
possible.

S

q

p

Fused switch

Unfused switch

Intersegment switch

Non-segmented tracks

Segmented tracks

r

Problems 181

182 Chapter 3 Introduction to Programmable Logic Devices

3.25 (a) Route the w, x, y, and z nets on the non-segmented tracks shown below. Use the minimum number of tracks
possible.

 (b) Route the w, x, y, and z nets on the segmented tracks shown below. Use the minimum number of tracks
possible.

z

y

x

Fused switch

Unfused switch

Intersegment switch

Non-segmented tracks

Segmented tracks

w

3.26 Consider the following programmable I/O block:

OUT
INVERT

3-STATE
INVERT

SLEW
RATE

PASSIVE
PULL UP

I/O PAD

(GLOBAL RESET)

I

Q

T

O

Vcc

OUTPUT
BUFFER

D Q

R

FLIP
FLOP

DQ

R

FLIP
FLOP

or
LATCH

M
?

3-STATE
(OUTPUT ENABLE)

M
?

M
?

M
?

M
?

M
?

LATCHED
OUTPUT

VOLTAGE
REFERENCE

ENABLE

ENABLE

MUX

CONFIGURATION BITS

CE

CE

OUT
SIGNAL

IN SIGNAL

IN SIGNAL
(LATCHED)

CLK CLK

 Highlight the connections to con�gure this I/O block as an INPUT pin. Specify the six con�guration bits.

Problems 183

184

DESIGN EXAMPLES

This chapter, presents several VHDL design examples to illustrate the design of small digital
systems in addition to the concept of dividing a design into a controller and a data path and
using the control circuit to control the sequence of operations in a digital system. VHDL is
used to describe a digital system at the behavioral level so that one can simulate the system
to test the algorithms used. The chapter also demonstrates how designs have to be coded
structurally if speci�c hardware structures are to be generated.

In any design, �rst you should understand the problem and the design speci�cations
clearly. If the problem has not been stated clearly, try to get the features of the design clari-
�ed. In real-world designs, if another team or a client company is providing your team with
the speci�cations, getting the design speci�cations clari�ed properly can save you a lot of
grief later. Good design starts with a clear speci�cation document.

Once the problem has been stated clearly, often designers start thinking about the basic
blocks necessary to accomplish what is speci�ed. Designers often think of standard building
blocks, such as adders, shift registers, counters, and so on. Traditional design methodol-
ogy splits a design into a “data path” and a “controller.” The term data path refers to the
hardware that actually performs the data processing. The controller sends control signals or
commands to the data path, as in Figure 4-1. The controller can obtain feedback in the form
of status signals from the data path.

In the context of a microprocessor, the data path is the arithmetic logic unit (ALU) that
performs the core of the processing. The controller is the control logic that sends appropriate
control signals to the data path, instructing it to perform addition, multiplication, shifting, or
whatever action is called for by the instruction. It is a �nite state machine (FSM) that gener-
ates the control signals to properly control the data path. Many have a tendency to consider
the term data path to be synonymous with the data bus, but data path in traditional design
terminology refers to the actual data processing unit.

C H A P T E R

4

FIGURE 4-1: Separation
of a Design into Data
Path and Controller

Controller
Data
path

Data
in

Data
out

Clock

Control
inputs

Control
signals

Status
signals

4.1 BCD to Seven-Segment Display Decoder 185

Maintaining a distinction between data path and controller helps in debugging (i.e., �nd-
ing errors in the design). It also helps while modifying the design. Many modi�cations can
be accomplished by changing only the control path because the same data path can support
the new requirements. The controller can generate the new sequence of control signals to
accomplish the functionality of the modi�ed design. Design often involves re�ning the data
path and controller in iterations.

In this chapter, we will discuss various design examples. Several arithmetic and nonarith-
metic examples are presented. Nonarithmetic examples include a seven-segment decoder, a
traf�c light, a scoreboard, and a keypad scanner. Arithmetic circuits such as adders, multipli-
ers, and dividers are presented.

4.1 BCD to Seven-Segment Display Decoder
Seven-segment displays are often used to display digits in digital counters, watches, and
clocks. A digital watch displays time by turning on a combination of the segments on a seven-
segment display. For this example, the segments are labeled as follows, and the digits have
the forms as indicated in Figure 4-2.

FIGURE 4-2: Seven-
Segment Display

a

b

c

d

e

f

g

Let us design a BCD to seven-segment display decoder. BCD stands for binary-coded
decimal. In this format, each digit of a decimal number is encoded into 4-bit binary represen-
tation. This decoder is a purely combinational circuit, and hence no state machine is involved
here. A block diagram of the decoder is shown in Figure 4-3. The decoder for one BCD digit
is presented.

FIGURE 4-3: Block
Diagram of a BCD to
Seven-Segment Display
Decoder

BCD
to

Seven-
segment
display
decoder

A

B

C

D

a
b
c
d
e
f
g

LSB LSB

BCD
input

Seven-segment
output

Create a behavioral VHDL architectural description of this BCD to seven-segment
decoder by using a single process with a case statement to model this combinational circuit,
as in Figure 4-4. The sensitivity list of the process consists of the BCD number (4 bits).

186 Chapter 4 Design Examples

4.2 A BCD Adder
In this example, the objective is to design a two-digit BCD adder, which will add two BCD
numbers and produce the sum in BCD format. In BCD representation, each decimal digit
is encoded into binary. For instance, decimal number 97 will be represented as 1001 0111 in
the BCD format, where the �rst 4 bits represent digit 9 and the next 4 bits represent digit 7.
Note that the BCD representation is different from the binary representation of 97, which
is 1100001. It takes 8 bits to represent 97 in BCD, whereas the binary representation of 97
(1100001) only requires 7 bits. The 4-bit binary combinations 1010, 1011, 1100, 1101, 1110,
and 1111 corresponding to hexadecimal numbers A to F are not used in the BCD representa-
tion. Since 6 out of 16 representations possible with 4 binary bits are skipped, a BCD number
will take more bits than the corresponding binary representation.

When BCD numbers are added, each sum digit should be adjusted to skip the six unused
codes. For instance, if 6 is added with 8, the sum is 14 in decimal form. A binary adder would
yield 1110, but the lowest digit of the BCD sum should read 4. In order to obtain the correct
BCD digit, 6 should be added to the sum whenever it is greater than 9. Figure 4-5 illustrates
the hardware that will be required to perform the addition of two BCD digits. A binary adder
adds the least signi�cant digits. If the sum is greater than 9, an adder adds 6 to yield the cor-
rect sum digit and a carry digit to be added with the next digit. The addition of the higher
digits is performed in a similar fashion.

The VHDL code for the BCD adder is shown in Figure 4-6. The input BCD numbers
are represented by X and Y. The BCD sum of two 2-digit BCD numbers can exceed two

FIGURE 4-4: Behavioral VHDL Code for BCD to Seven-Segment Decoder

entity bcd_seven is
 port(bcd: in bit_vector(3 downto 0);
 seven: out bit_vector(7 downto 1));
 –– LSB is segment a of the display. MSB is segment g
end bcd_seven;

architecture behavioral of bcd_seven is
begin
 process (bcd)
 begin
 case bcd is
 when "0000" => seven <= "0111111";
 when "0001" => seven <= "0000110";
 when "0010" => seven <= "1011011";
 when "0011" => seven <= "1001111";
 when "0100" => seven <= "1100110";
 when "0101" => seven <= "1101101";
 when "0110" => seven <= "1111101";
 when "0111" => seven <= "0000111";
 when "1000" => seven <= "1111111";
 when "1001" => seven <= "1101111";
 when others => null;
 end case;
 end process;
end behavioral;

4.2 A BCD Adder 187

FIGURE 4-5: Addition of
Two BCD Numbers

Y digit 0X digit 0

5 S0

4-bit
adder

4-bit adder to
add 6

if S0 > 9

4

Z digit 0

Y digit 1X digit 1

4 4 4 4

5 S1

4-bit
adder

4-bit adder to
add 6

if S1 > 9

4

Z digit 1Z digit 2

C

3 9 8 7

1 3 5

F (>9)D (>9)

1

38

+ 97

CF
+ 66

135

FIGURE 4-6: VHDL Code for BCD Adder

library IEEE;
use IEEE.numeric_bit.all;

entity BCD_Adder is
 port(X, Y: in unsigned(7 downto 0);
 Z: out unsigned(11 downto 0));
end BCD_Adder;

architecture BCDadd of BCD_Adder is
alias Xdig1: unsigned(3 downto 0) is X(7 downto 4);
alias Xdig0: unsigned(3 downto 0) is X(3 downto 0);
alias Ydig1: unsigned(3 downto 0) is Y(7 downto 4);
alias Ydig0: unsigned(3 downto 0) is Y(3 downto 0);
alias Zdig2: unsigned(3 downto 0) is Z(11 downto 8);
alias Zdig1: unsigned(3 downto 0) is Z(7 downto 4);
alias Zdig0: unsigned(3 downto 0) is Z(3 downto 0);
signal S0, S1: unsigned(4 downto 0);
signal C: bit;
begin
 S0 <= '0' & Xdig0 + Ydig0; -- overloaded +
 Zdig0 <= S0(3 downto 0) + 6 when S0 > 9
 else S0(3 downto 0); -- add 6 if needed
 C <= '1' when S0 > 9 else '0';
 S1 <= '0' & Xdig1 + Ydig1 + unsigned'(0=>C);
 -- type conversion done on C before adding
 Zdig1 <= S1(3 downto 0) + 6 when S1 > 9
 else S1(3 downto 0);
 Zdig2 <= "0001" when S1 > 9 else "0000";
end BCDadd;

188 Chapter 4 Design Examples

digits, and hence three BCD digits are provided for the sum, which is represented by Z. The
unsigned type from the IEEE numeric_bit library is used to represent X, Y, and Z. Aliases
are de�ned to denote each digit of each BCD number. For example, the upper digit of X can
be denoted by Xdig1 by using the VHDL statement

alias Xdig1: unsigned(3 downto 0) is X(7 downto 4);

This statement allows you to use the name Xdig1 whenever you wish to refer to the upper
digit of X. If BCD numbers 97 and 38 are added, the sum is 135, and hence, Zdig2 equals 1,
Zdig1 equals 3 and Zdig0 equals 5.

The overloaded “1” operator from the IEEE numeric_bit library is used for adding
each BCD digit. Adding two 4-bit vectors can result in a 5-bit sum. The sums are temporarily
stored in S0 and S1, which are declared to be 5-bit numbers. Since you want a 5-bit result,
you must extend Xdig0 to 5 bits by concatenating '0' and Xdig0. (Ydig0 will automatically be
extended to match.) Hence

S0 <= '0' & Xdig0 + Ydig0;

FIGURE 4-7: A 32-Bit
Ripple-Carry Adder

Full
adder

Full
adder

Full
adder

Full
adder

Co Ci
C1C2

S1

B0A0B1A1B2A2A31 B31

S0S2S31

C3

accomplishes the addition of the least signi�cant digits. During the addition of the second
digit, the carry digit from the addition of the XDig0 and Ydig0 is also added. The carry bit
C must be converted to the unsigned type before it can be added to Xdig1 1 Ydigp1. The
notation unsigned'(0=>C) accomplishes this conversion. Thus, the addition of the second
digit is accomplished by the statement

S1 <= '0' & Xdig1 + Ydig1 + unsigned'(0=>C);

4.3 32-Bit Adders
Assume that you have to design a 32-bit adder. A simple manner to construct an adder is
to build a ripple-carry adder, as in Figure 4-7. In this type of adder, 32 copies of a 1-bit full
adder are connected in succession to create the 32-bit adder. The carry “ripples” from the
least signi�cant bit to the most signi�cant bit. If gate delays are tg, a 1-bit adder delay is 2tg
(assuming a sum-of-products expression for sum and carry, and ignoring delay for inverters),
and a 32-bit ripple-carry adder will take approximately 64 gate delays. For instance, if gate
delays are 1 ns, the maximum frequency at which the 32-bit ripple-carry adder can operate
is approximately 16 MHz. This is inadequate for many applications. Hence, designers often
resort to faster adders.

4.3 32-Bit Adders 189

4.3.1 Carry Look-Ahead Adders
A popular fast-addition technique is carry look-ahead (CLA) addition. In the carry look-
ahead adder, the carry signals are calculated in advance, based on the input signals. For any
bit position i, we see that a carry will be generated if the corresponding input bits (i.e., Ai, Bi)
are '1' or if there was a carry-in to that bit and at least one of the input bits are '1'. In other
words, bit i has carry-out if Ai and Bi are '1' (irrespective of carry-in to bit i); bit i also has a
carry-out if Ci 5 '1' and either Ai or Bi is '1'. Thus, for any stage i, the carry-out is

 Ci11 5 AiBi 1 1Ai ! Bi 2 # Ci (4-1)

The “!” stands for the exclusive OR operation. Equation (4-1) simply expresses that
there is a carry out from a bit position if it generated a carry by itself (i.e., AiBi 5 '1') or it
simply propagated the carry from the lower bit forwarded to it (i.e., 1Ai ! Bi 2 # Ci 2 .

Since AiBi 5 '1' indicates that a stage generated a carry, a general generate 1Gi 2 function
may be written as

 Gi 5 AiBi (4-2)

Similarly, since 1Ai ! Bi 2 indicates whether a stage should propagate the carry it receives
from the lower stage, a general propagate 1Pi 2 function may be written as

 Pi 5 Ai ! Bi (4-3)

Notice that the propagate and generate functions only depend on the input bits and can
be realized with one or two gate delays. Since there will be a carry whether one of Ai or Bi is
'1' or both are '1', write the propagate expression as

 Pi 5 Ai 1 Bi (4-4)

where the OR operation is substituted for the XOR operation. Logically this propagate
function also results in the correct carry-out; however, traditionally it has been customary to
de�ne the propagate function as the XOR; that is, the bit position simply propagates a carry
(without generating a carry by itself). Also, typically, the sum signal is expressed as

 Si 5 Ai ! Bi ! Ci 5 Pi ! Ci (4-5)

The expression Pi ! Ci can be used for sum only if Pi is de�ned as Ai ! Bi.
The carry-out equation can be rewritten by substituting (4-2) and (4-3) in (4-1) for Gi

and Pi as

 Ci11 5 Gi 1 PiCi (4-6)

In a 4-bit adder, the Ci’s can be generated by repeatedly applying Equation (4-6) as
follows:

 C1 5 G0 1 P0C0 (4-7)

 C2 5 G1 1 P1C1 5 G1 1 P1G0 1 P1P0C0 (4-8)

 C3 5 G2 1 P2C2 5 G2 1 P2G1 1 P2P1G0 1 P2P1P0C0 (4-9)

C4 5 G3 1 P3C3 5 G3 1 P3G2 1 P3P2G1 1 P3P2P1G0 1 P3P2P1P0C0 (4-10)

These carry bits are the look-ahead carry bits. They are expressed in terms of Pi’s, Gi’s,
and C0. Thus, the sum and carry from any stage can be calculated without waiting for the
carry to ripple through all the previous stages. Since Gi’s and Pi’s can be generated with
one or two gate delays, the Ci’s will be available in three or four gate delays. The advantage

190 Chapter 4 Design Examples

is that these delays will be the same independent of the number of bits you need to add, in
contrast to the ripple carry adder. Of course, this is achieved with the extra gates to generate
the look-ahead carry bits. A 4-bit carry look-ahead adder can now be built, as illustrated in
Figure 4-8.

FIGURE 4-8: Block
Diagram of a 4-Bit
CLA

Partial
full adder

CS

Partial
full adder

CS

Partial
full adder

CS

Partial
full adder

A B

CG P

A B

G P

A B

G P

A B

G PS

B0

C0

A0B1A1B3A3 B2A2

S0S1S2S3

Carry look-ahead logic

C3G3 P3 C2G2 P2 C1G1 P1 G0 P0

The disadvantage of the carry look-ahead adder is that the look-ahead carry logic, as in
Equations (4-7) through (4-10), is not simple. It gets quite complicated for more than 4 bits.
For that reason, carry look-ahead adders are usually implemented as 4-bit modules and are
used in a hierarchical structure to realize adders that have multiples of 4 bits. Figure 4-9
shows the block diagram for a 16-bit carry look-ahead adder. Four carry look-ahead adders,
similar to the one shown in Figure 4-8, are used. Instead of relying on each 4-bit adder to
send its carry-out to the next 4-bit adder, the block carry look-ahead logic generates input

FIGURE 4-9: Block Diagram of a 16-Bit CLA

4-bit
CLA ADDER

A B

CGG PGS

4-bit
CLA ADDER

A B

CGG PGS

4-bit
CLA ADDER

A B

CGG PGS

4-bit
CLA ADDER

A B

CGG PGS

B3-0A3-0B7-4A7-4B15-12A15-12 B11-8A11-8

S3-0S7-4S11-8S15-12

C0Block Carry Look-Ahead Logic

C4C8C12 GG0 PG0GG1 PG1GG2 PG2GG3 PG3

GG PG

4.3 32-Bit Adders 191

carry bits to be fed to each 4-bit adder. This is accomplished by computing a group propa-
gate 1PG 2 and group generate 1GG 2 signal, which is produced by each 4-bit adder. The next
level of carry look-ahead logic uses these group propagates/ generates and generates the
required carry bits in parallel. The propagate for a group is true if all the propagates in that
group are true. The generate for a group is true if the MSB generated a carry or if a lower
bit generated a carry and every higher bit in the group propagated it. Thus

 PG 5 P3P2P1P0 (4-11)

 GG 5 G3 1 P3G2 1 P3P2G1 1 P3P2P1G0 (4-12)

The group propagate PG and generate GG will be available after three and four gate
delays, respectively (one or two additional delays than the Pi and Gi signals, respectively).
The carry equations for the block carry look-ahead logic are as follows:

 C4 5 GG0 1 PG0C0 (4-13)

 C8 5 GG1 1 PG1GG0 1 PG1PG0C0 (4-14)

 C12 5 GG2 1 PG2GG1 1 PG2PG1GG0 1 PG2PG1PG0C0 (4-15)

C16, which is a �nal carry of 16-bit CLA, will be

 C16 5 GG 1 PG C0 (4-16)

One can derive the propagate (PG) and generate (GG) equation for block carry look-ahead
logic in a manner similar to equations 4-11 and 4-12. Figure 4-10 illustrates the VHDL
description of a 4-bit carry look-ahead adder.

FIGURE 4-10: VHDL Description of a 4-Bit Carry Look-Ahead Adder

entity CLA4 is
 port(A, B: in bit_vector(3 downto 0); Ci: in bit; -- Inputs
 S: out bit_vector(3 downto 0); Co, PG, GG: out bit); -- Outputs
end CLA4;

architecture Structure of CLA4 is
component GPFullAdder
 port(X, Y, Cin: in bit; -- Inputs
 G, P, Sum: out bit); -- Outputs
end component;

component CLALogic is
 port(G, P: in bit_vector(3 downto 0); Ci: in bit; -- Inputs
 C: out bit_vector(3 downto 1); Co, PG, GG: out bit); -- Outputs
end component;

signal G, P: bit_vector(3 downto 0); -- carry internal signals
signal C: bit_vector(3 downto 1);
begin --instantiate four copies of the GPFullAdder
 CarryLogic: CLALogic port map (G, P, Ci, C, Co, PG, GG);
 FA0: GPFullAdder port map (A(0), B(0), Ci, G(0), P(0), S(0));
 FA1: GPFullAdder port map (A(1), B(1), C(1), G(1), P(1), S(1));

192 Chapter 4 Design Examples

 FA2: GPFullAdder port map (A(2), B(2), C(2), G(2), P(2), S(2));
 FA3: GPFullAdder port map (A(3), B(3), C(3), G(3), P(3), S(3));
end Structure;

entity CLALogic is
 port(G, P: in bit_vector(3 downto 0); Ci: in bit; -- Inputs
 C: out bit_vector(3 downto 1); Co, PG, GG: out bit); -- Outputs
end CLALogic;

architecture Equations of CLALogic is
signal GG_int, PG_int: bit;
begin -- concurrent assignment statements
 C(1) <= G(0) or (P(0) and Ci);
 C(2) <= G(1) or (P(1) and G(0)) or (P(1) and P(0) and Ci);
 C(3) <= G(2) or (P(2) and G(1)) or (P(2) and P(1) and G(0)) or
 (P(2) and P(1) and P(0) and Ci);
 PG_int <= P(3) and P(2) and P(1) and P(0);
 GG_int <= G(3) or (P(3) and G(2)) or (P(3) and P(2) and G(1)) or
 (P(3) and P(2) and P(1) and G(0));
 Co <= GG_int or (PG_int and Ci);
 PG <= PG_int;
 GG <= GG_int;
end Equations;

entity GPFullAdder is
 port(X, Y, Cin: in bit; -- Inputs
 G, P, Sum: out bit); -- Outputs
end GPFullAdder;

architecture Equations of GPFullAdder is
signal P_int: bit;
begin -- concurrent assignment statements
 G <= X and Y;
 P <= P_int;
 P_int <= X xor Y;
 Sum <= P_int xor Cin;
end Equations;

VHDL code for a 16-bit carry look-ahead adder can be developed by instantiating four
copies of the 4-bit carry look-ahead adder and one additional copy of the carry look-ahead
logic. A 64-bit adder can be built by one more level of block carry look-ahead logic. The
delay increases only by two gate delays when the adder size increases from 16 bits to 64 bits.
Developing VHDL code for 16-bit carry look-ahead logic is left as an exercise.

4.3.2 Parallel Prefix Adders
With increasing demand for performance in high-speed systems, traditional carry look-ahead
adders have been replaced by better ones. While traditional carry look-ahead adders per-
formed better than bit serial and ripple carry adders, their implementations are often detri-
mentally affected by the delays of the large fan-in and fan-out required in many of the gates.

4.3 32-Bit Adders 193

Fan-in refers to the number of inputs of the gates, and fan-out refers to the number of loads
the output of a gate has to feed. One may notice that Equations 4-9 and 4-10 need AND and
OR gates with fan-in of 4 or 5. This led to the development of a class of adders often referred
to as parallel pre�x adders. These adders involve usage of the propagate and generate bits as
in carry look-ahead adders, but additionally involve a primitive operation on the propagate
and generate bits. This step is done in a very parallel manner, leading to the name of these
adders. The computation of these parallel “pre�xes” leads to a fast pre-computation of carry
for all bits in parallel, and many of these adders are more friendly to VLSI implementations
with their reduced fan-in, fan-out, or wiring overhead.

The notion of a parallel pre�x adder is very similar to carry look-ahead adders. The only
difference lies in how the carry bits are generated for each bit position after the individual
propagate and generate bits are computed. The Kogge-Stone, Ladner-Fisher, Brent-Kung,
and Han Carlson adders are examples of parallel pre�x adders. The Brent-Kung adder has
the minimum area among these, while the Kogge-Stone adder is the fastest among them.

Since Kogge-Stone adder is often used in the industry due to its superior performance, it
is described in greater detail below. Figure 4-11 illustrates the structure of the Kogge-Stone
adder. There are 4 types of blocks in the schematic, indicated by white, dark, and semi-dark
circles and dark squares.

FIGURE 4-11: Organization of the Kogge Stone Adder

14 13 12 11 10 9 8 7 6 5 4 3 2 1 015Inputs

Outputs

p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0

Stage 1

Stage 2

Stage 3

Stage 4

C16 C15 C14 C13 C12 C11 C10 C9 C8 C7 C6 C5 C4 C3 C2 C1

S15 S14 S13 S12 S11 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1 S0

C0

p15
g15

p0
g0

P15:14
G15:14

P15:12
G15:12

P15:7
G15:7

P15:0
G15:0

Ai Bi

(gi, pi)

Gx:y

(gx, px) (gy, py)

Px:y

Gi-1:0
Pi-1:0 Co

Ci

Si

gi = AiBi
pi = Ai%Bi

Si = pi%Ci

Ci = Gi-1:0 + Pi-1:0 C0

Gx:y = gx + pxgy
Px:y = pxpy

Ci Pi

194 Chapter 4 Design Examples

Operation of the white circles:
This stage produces the same generate and propagate signals which were introduced in the
section on carry look-ahead adders. The two signals, generate and propagate, for each bit
is represented by gi, pi, and is generated by the white circles in Figure 4.11. The generate
bit indicates when a stage can generate a carry whereas the propagate bit indicates if a
stage will propagate a carry. The equations for the operations in the black circles are the
following:

 gi 5 AiBi

 pi 5 Ai ! Bi

This stage is common for all pre�x adders and the traditional carry look-ahead adder.

Operation of the dark circles:
The chain of dark circles in Figure 4.11 constitute what is called the pre�x tree. The operation
of the pre�x tree is explained below.

From the propagate and generate bits, we get a new set of vectors Gi, Pi using what is
called the pre�x operator often denoted as s.

The pre�x operator s can be de�ned using

 1gx, px 2 s 1gy, py 2 5 1gx 1 pxgy, pxpy 2 (4.17)

where the operator s computes two outputs, the �rst of which equals gx 1 pxgy and the
second of which equals pxpy. It may be noted that the �rst output is the generate pre�x for
the bits x and y and the second output is the propagate pre�x for the bits x and y. Each dark
circle represents a pre�x operation and two outputs are computed in each.

It should be noted that the pre�x operator is associative, that is,

 3 1g1, p1 2 s 1g2, p2 2 4 s 1g3, p3 2 5 1g1, p1 2 s 3 1g2, p2 2 s 1g3, p3 2 4, (4.18)

but not commutative, that is,

 1g1, p1 2 s 1g2, p2 2 2 1g2, p2 2 s 1g1, p1 2 . (4.19)

Now that we know the pre�x operator, let us understand the parallel pre�x problem. In order
to understand a parallel pre�x adder problem, let us consider a simpler problem, the parallel
sum problem which can be de�ned as:
Given

xk c x2 x1 x0

�nd the sums

xk 1 c 1 x2 1 x1 1 x0 c x2 1 x1 1 x0 x1 1 x0 x0

The parallel pre�x adder problem can similarly be stated as follows:
Given

xk c x2 x1 x0

�nd

xk s c s x2 s x1 s x0 c x2 s x1 s x0 x1 s x0 x0

where s is the pre�x operator and xi 5 1gi, pi 2

4.3 32-Bit Adders 195

A tree of pre�x operators are employed in order to create the pre�x output for each
bit in a parallel fashion, as shown in Figure 4.11. For each bit position i, the pre�x tree will
produce two outputs 1Gi:0, Pi:0 2 , where Gi:0 is the generate pre�x for bits 0 through i and Pi:0
is the propagate pre�x for bits 0 through i. It can be written in a recursive fashion using Gi-1:0
and Pi-1:0 as

 1Gi:0, Pi:0 2 5 1gi, pi 2 s 1Gi-1:0, Pi-1:0 2 (4.20)

where 1Gi-1:0, Pi-1:0 2 can be further recursively expanded. For the initial computation, one can
assume that 1G0:0, P0:0 2 5 1g0, p0 2 .

The Kogge-Stone adder is a very fast parallel pre�x adder. For k bits, it will use a pre�x
adder tree of depth log2k. The number of pre�x operations needed for a k-bit Kogge-Stone
adder is k log2k 2 k 1 1. For a 16-bit Kogge-Stone adder, this would be 49.

Various pre�x adders such as Kogge-Stone, Ladner-Fisher, Brent-Kung, and Han Carl-
son adders vary in how the pre�x tree is organized. They differ in the amount of hardware,
wiring cost, fan-out of components, critical path delays, and so on. A important feature of the
Kogge-Stone adder is the fan-out of 2.

Operation of the half-dark circles:
The Gi:0 and Pi:0 outputs are used to compute the carry and sum at each bit. Considering Ci
to denote the carry-in to bit position i, the carry outputs Ci11 from bit position i can be writ-
ten in the following form:

 Ci 5 Gi21:0 1 Pi21:0C0 (4.21)

The initial value C0 5 Cin and the remaining carry outputs are

 C1 5 G0:0 1 P0:0C0 (4.22)

 C2 5 G1:0 1 P1:0C0 (4.23)

 C3 5 G2:0 1 P2:0C0 (4.24)

and so on.
The half-dark circles in Figure 4–11 accomplish this step. This stage is common for all

pre�x adders.

Operation of the squares:
The sum can be written as

 Si 5 pi ! Ci (4.25)

For example:

 S0 5 p0 ! Cin

 S1 5 p1 ! C1

 S2 5 p2 ! C2

 S3 5 p3 ! C3

and so on.
The squares in Figure 4–11 accomplish this step. This stage is common for all pre�x

adders and the traditional carry look-ahead adder.

196 Chapter 4 Design Examples

The delay for pre�x adders can be computed as follows:

1 gate delay for the white circles
 gi 5 AiBi

 pi 5 Ai ! Bi

2 gate delays for each level of dark circles in the pre�x tree
1gx, px 2 s 1gy, py 2 5 1gx 1 pxgy, pxpy 2

2 gate delays in the half-dark circles for the carry computation
Ci 5 Gi21:0 1 Pi21:0C0

1 gate delay for the dark squares for the sum computation
Si 5 pi ! Ci

Adding the four types of delays above, you can obtain the following:
Delay of the Kogge Stone Adder (in gate delays) 5 1 1 2*#stages 1 2 1 1 5 4 1 2*#stages

Delay of Carry look-head adder (in gate delays) 5 4 1 2*#levels of CLA-logic

The CLA equation assumes that the delay of the CLA logic is 2 gate delays. Some of these
gates need high fan-in, whereas the gates in Kogge-Stone do not need fan-in more than 2. The
limited fan-in and fan-out of the Kogge-Stone blocks result in fast VLSI implementations.

The Kogge-Stone adder �nds wide applications in the industry where high perfor-
mance is a major concern. The different trade-offs are involved in the carry generation
block, some of which include depth, area, fan-out of the nodes, and wiring overhead.
Kogge Stone adders have very high wiring overhead as compared to other examples from
the class of parallel pre�x adders. This is a cost paid to achieve a fan-out of 2 at each stage,
which is an important feature of this kind of adder.

The concept of kill and alive functions:
Many recent implementations of parallel pre�x adders use the concept of a “kill” function.
The kill function, as opposed to the generate signal, kills an incoming carry in a stage. It is
de�ned as

 ki 5 Ai nor Bi (4.26)

where Ai and Bi are the input bits.
This helps to modify the carry equation as

 Ci 5 AiBi 1 1Ai 1 Bi 2 Ci

 5 AiBi 1 aiCi (4.27)

where ai is the complement of the kill function for a particular stage and ai is often referred
to as the “alive” function.

The modi�ed form of the carry computation uses an OR gate instead of an XOR gate as
opposed to earlier implementations. The advantage is that an OR gate is more ef�cient in
terms of area when implemented in CMOS technology.

4.3.3 Discussion
Figure 4-12 illustrates behavioral VHDL code for a 32-bit adder using the overloaded “1”
operator from IEEE numeric_bit library. If this code is synthesized, depending on the

4.3 32-Bit Adders 197

tools used and the target technology, an adder with characteristics in between a ripple-
carry adder and a fast two-level adder will be obtained. The various topologies result in
different area, power, and delay characteristics.

If gate delays are tg, what is the delay of the fastest 32-bit adder? Assume that tg represents the delay of of any gate of
any size.

Answer:

Express each sum bit of a 32-bit adder as a sum of products expression of the input bits. There will be 33 such equations,
including one for the carry-out bit. These equations will be very long, and some of them could include 601 variables
in the product term. In VLSI design implementations, a gate with high fan-in does result in large delays. Nevertheless,
if gates with any number of inputs are available, theoretically, a two-level adder can be made. Although it is not very
practical, theoretically, the delay of the fastest adder will be 2tg if gate delays are tg.

E X A M PLE

FIGURE 4-12: Behavioral Model for a 32-Bit Adder

library IEEE;
use IEEE.numeric_bit.all;

entity Adder32 is
 port(A, B: in unsigned(31 downto 0); Ci: in bit; -- Inputs
 S: out unsigned(31 downto 0); Co: out bit); -- Outputs
end Adder32;

architecture overload of Adder32 is
signal Sum33: unsigned(32 downto 0);
begin
 Sum33 <= '0' & A + B + unsigned'(0=>Ci); -- adder
 S <= Sum33(31 downto 0);
 Co <= Sum33(32);
end overload;

Is ripple-carry adder the smallest 32-bit adder?

Answer:

No. A 32-bit ripple-carry adder uses 32 1-bit adders. It is possible to design a 32-bit serial adder using a single 1-bit full
adder. The input numbers are shifted into the adder, one bit at a time, and carry output from addition of each pair of
bits is saved in a �ip-�op and fed back to the next addition. The hardware illustrated in Figure 4-13 accomplishes this.
The delay of adder will be 32 12tg 1 tff 2 , where 2tg is the delay of the 1-bit full adder, and tff is the delay of the �ip-�op
(including setup time). If a �ip-�op delay is at least two gate delays, the delay of the 32-bit serial adder will be at least
128tg. The adder hardware is simple; however, there is also the control circuitry to generate 32 shift signals. The registers
storing the operands must have shift capability as well.

E X A M PLE

198 Chapter 4 Design Examples

Even if you write VHDL code based on data�ow equations, as in Figure 4-10, that does
not guarantee that the synthesizer will produce a carry look-ahead adder with the delay
characteristics discussed. The software might optimize the synthesis output depending on
the speci�c hardware components available in the target technology. For instance, if you are
using an FPGA with fast adder support, the software may map some of the functions into
the fast adder circuitry. Depending on the number of FPGA logic blocks and interconnects
used, the delays will be different from the manual calculations. The delays of a ripple-carry,
traditional carry look-ahead, Kogge-Stone adder, and serial adder for a gate-based imple-
mentation are presented in Table 4-1 for various adder sizes. The delays are speci�ed in gate
delays, however, the circuit for the CLA adder includes some 3-input and 4-input gates. The
delays for the Kogge-Stone adder are with 2-input gates. Hence two different symbols tg and
Tg are used to emphasize the difference in the types of gates assumed. Typically Kogge-Stone
adder designs end up being faster than the traditional carry look-ahead adder due to the need
for only 2-input gates.

FIGURE 4-13: A 32-Bit
Serial Adder Built from
a Single 1-Bit Adder

Full
adder

Q

Q9

xi

yi

ci ci + 1

Sumi
x31 x30 x1 x0

Addend register

Accumulator

Clock

N (Start signal)

Sh SI
Sh

SI
Sh

Sh

Clock

Serial adder

. . .

y31 y30 y1 y0. . .

5-Bit counter

K

Control circuit

CE

D

TABLE 4-1: Comparison
of Ripple-Carry and
Carry Look-Ahead
Adders

Adder size
Ripple-Carry
Adder Delay

Traditional
CLA Delay

Serial Adder
Delay

Kogge Stone
Adder

4 bit 8tg 5–6Tg 16tg 8tg
16 bit 32tg 7–8Tg 64tg 12tg

32 bit 64tg 9–10Tg 128tg 14tg
64 bit 128tg 9–10Tg 256tg 16tg

4.4 Traffic Light Controller
Let us design a sequential traf�c light controller for the intersection of street A and street B.
Each street has traf�c sensors, which detect the presence of vehicles approaching or stopped
at the intersection. Sa 5 '1' means a vehicle is approaching on street A, and Sb 5 '1' means

4.4 Traffic Light Controller 199

a vehicle is approaching on street B. Street A is a main street and has a green light until a car
approaches on B. Then the lights change, and B has a green light. At the end of 50 seconds, the
lights change back unless there is a car on street B and none on A, in which case the B cycle is
extended for 10 additional seconds. If cars continue to arrive on street B and no car appears on
street A, B continues to have a green light. When A is green, it remains green at least 60 seconds,
and then the lights change only when a car approaches on B. Figure 4-14 shows the external con-
nections to the controller. Three of the outputs (Ga, Ya, and Ra) drive the green, yellow, and red
lights on street A. The other three (Gb, Yb, and Rb) drive the corresponding lights on street B.

FIGURE 4-14: Block
Diagram of Traf�c
Light Controller

Sa Sb

Ga Ya Ra Gb Yb Rb

Clock

Figure 4-15 shows a Moore state graph for the controller. For timing purposes, the sequen-
tial circuit is driven by a clock with a 10-second period. Thus, a state change can occur at most
once every 10 seconds. The following notation is used: GaRb in a state means that Ga 5 Rb 5 1
and all the other output variables are 0. Sa'Sb on an arc implies that Sa 5 0 and Sb 5 1 will
cause a transition along that arc. An arc without a label implies that a state transition will occur
when the clock occurs, independent of the input variables. Thus, the green A light will stay on
for six clock cycles (60 seconds) and then change to yellow if a car is waiting on B street.

FIGURE 4-15: State
Graph for Traf�c Light
Controller

S5
GaRb

Sb9S1
GaRb

S2
GaRb

S3
GaRb

S4
GaRb

S11
RaGbSa 9Sb

S10
RaGb

S9
RaGb

S8
RaGb

S7
RaGb

S6
YaRb

Sb

S0
GaRb

S12
RaYb (Sa + Sb9)

The VHDL code for the traf�c light controller (Figure 4-16) represents the state machine
with two processes. Whenever the state, Sa, or Sb changes, the �rst process updates the out-
puts and nextstate. When the rising edge of the clock occurs, the second process updates the
state register. The case statement illustrates use of a when clause with a range. Since states S0
through S4 have the same outputs, and the next states are in numeric sequence, use a when
clause with a range instead of �ve separate when clauses:

when 0 to 4 => Ga <= '1'; Rb <= '1'; nextstate <= state + 1;

200 Chapter 4 Design Examples

For each state, only the signals that are '1' are listed within the case statement. Since in
VHDL, a signal will hold its value until it is changed, turn off each signal when the next state
is reached. In state 6, set Ga to '0', in state 7, set Ya to '0', and so on. This could be accom-
plished by inserting appropriate statements in the when clauses. For example, insert Ga <=
'0' in the when 6 => clause. An easier way to turn off the outputs is to set them
all to '0' before the case statement, as shown in Figure 4-16. At �rst, it seems that a glitch
might occur in the output when you set a signal to '0' that should remain '1'. However, this is
not a problem because the sequential statements within a process execute instantaneously.
For example, suppose that at time 5 20 ns a state change from S2 to S3 occurs. Ga and Rb
are '1', but as soon as the process starts executing, the �rst line of code is executed and Ga
and Rb are scheduled to change to '0' at time 20 1 D. The case statement then executes,

FIGURE 4-16: VHDL Code for Traf�c Light Controller

entity traffic_light is
 port(clk, Sa, Sb: in bit;
 Ra, Rb, Ga, Gb, Ya, Yb: inout bit);
end traffic_light;

architecture behave of traffic_light is
signal state, nextstate: integer range 0 to 12;
type light is (R, Y, G);
signal lightA, lightB: light; -- define signals for waveform output
begin
 process(state, Sa, Sb)
 begin
 Ra <= '0'; Rb <= '0'; Ga <= '0'; Gb <= '0'; Ya <= '0'; Yb <= '0';
 case state is
 when 0 to 4 => Ga <= '1'; Rb <= '1'; nextstate <= state+1;
 when 5 => Ga <= '1'; Rb <= '1';
 if Sb = '1' then nextstate <= 6; end if;
 when 6 => Ya <= '1'; Rb <= '1'; nextstate <= 7;
 when 7 to 10 => Ra <= '1'; Gb <= '1'; nextstate <= state+1;
 when 11 => Ra <= '1'; Gb <= '1';
 if (Sa='1' or Sb='0') then nextstate <= 12; end if;
 when 12 => Ra <= '1'; Yb <= '1'; nextstate <= 0;
 end case;
 end process;
 process(clk)
 begin
 if clk'event and clk = '1' then
 state <= nextstate;
 end if;
 end process;
 lightA <= R when Ra='1' else Y when Ya='1' else G when Ga='1';
 lightB <= R when Rb='1' else Y when Yb='1' else G when Gb='1';
end behave;

4.5 State Graphs for Control Circuits 201

and Ga and Rb are scheduled to change to '1' at time 20 1 D. Since this is the same time as
before, the new value ('1') preempts the previously scheduled value ('0'), and the signals
never change to '0'.

Before completing the design of the traf�c controller, test the VHDL code to see that
it meets speci�cations. As a minimum, our test sequence should cause all of the arcs on the
state graph to be traversed at least once. You may want to perform additional tests to check
the timing for various traf�c conditions, such as heavy traf�c on both A and B, light traf�c on
both, heavy traf�c on A only, heavy traf�c on B only, and special cases such as a car failing
to move when the light is green, a car going through the intersection when the light is red,
and so on.

To make it easier to interpret the simulator output, de�ne a type named light with the
values R, Y, and G and two signals, lightA and lightB, which can assume these values. Then
add code to set lightA to R when the light is red, to Y when the light is yellow, and to G
when the light is green. The following simulator command �le �rst tests the case where both
self-loops on the graph are traversed and then the case where neither self-loop is traversed:

add wave clk SA SB state lightA lightB
force clk 0 0, 1 5 sec -repeat 10 sec
force SA 1 0, 0 40, 1 170, 0 230, 1 250 sec
force SB 0 0, 1 70, 0 100, 1 120, 0 150, 1 210, 0 250, 1 270 sec

The test results in Figure 4-17 verify that the traf�c lights change at the speci�ed times.

FIGURE 4-17: Test
Results for Traf�c Light
Controller

0

/clk

/sa

/sb

/state 0 1 2 3 4 0 1 2 3 4 5 6 7 8 9 10 11 12 05 6 7 8 9 10 11 12

/lighta g

r g y r g y r

g y gry r

/lightb

50 100 150 200 250 300

4.5 State Graphs for Control Circuits
Before continuing with additional examples, the notation used on control state graphs and
the conditions that must be satis�ed to have a proper state graph are described. Control state
graphs are labeled, using variable names instead of 0’s and 1’s. This makes the graph easier
to read, especially when the number of inputs and outputs is large. If an arc on a Mealy
state graph is labeled XiXj/ZpZq, this means if inputs Xi and Xj are 1 (it doesn’t matter what
the other input values are), the outputs Zp and Zq are 1 (and the other outputs are 0). For
example, for a circuit with four inputs 1X1, X2, X3, X4 2 and four outputs 1Z1, Z2, Z3, Z4 2 ,
the label X1X4 r/Z2Z3 is equivalent to 1--0/0110. In general, if an arc is labeled with an input
expression, I, the �nite state machine will traverse the arc when I 5 1. For example, if the
input label is AB 1 C r, the controller traverses the arc when AB 1 C r 5 1.

202 Chapter 4 Design Examples

In order to have a completely speci�ed proper state graph in which the next state is
always uniquely de�ned for every input combination, the following constraints must be
placed on the input labels for every state Sk :

1. If Ii and Ij are any pair of input labels on arcs exiting state Sk, then IiIj 5 0 if i 2 j.
2. If n arcs exit state Sk and the n arcs have input labels I1, I2, c, In, respectively, then

I1 1 I2 1 c1 In 5 1.

Condition 1 assures us that at most one input label can be 1 at any given time, and
condition 2 assures us that at least one input label will be 1 at any given time. There-
fore, exactly one label will be 1, and the next state will be uniquely de�ned for every
input combination. For example, consider the partial state graph in Figure 4-18, where
I1 5 X1, I2 5 X1 rX2 r, and I3 5 X1 rX2 :

FIGURE 4-18: Example
Partial State Graph

Sk

Sp Sq

X1

(X1) (X1X2) = 09 9

(X1) (X1X2) = 09

(X1X2) (X1X2) = 09 99

X1 + X1X2 + X1X2 = 19 9 9

X1X29 9 X1X29

Conditions 1 and 2 are satis�ed for Sk.
An incompletely speci�ed proper state graph must always satisfy condition 2, and it must

satisfy condition 1 for all combinations of values of input variables that can occur for each
state Sk. Thus, the partial state graph in Figure 4-19 represents part of a proper state graph
only if input combination X1 5 X2 5 1 cannot occur in state Sk.

If there are three input variables 1X1, X2, X3 2 , the preceding partial state graph repre-
sents the following state table row:

FIGURE 4-19: Example
Partial State Graph

Sk

Sp Sq

X1 X2

X1X29 9

000 001 010 011 100 101 110 111

Sk Sk Sk Sq Sq Sp Sp — —

4.6 Scoreboard and Controller 203

4.6 Scoreboard and Controller
In this example, you will design a simple scoreboard, which can display scores from 0 to 99
(decimal). The input to the system should consist of a reset signal and control signals to incre-
ment or decrement the score. The two-digit decimal count gets incremented by 1 if increment
signal is true and is decremented by 1 if decrement signal is true. If increment and decrement
are true simultaneously, no action happens.

The current count is displayed on seven-segment displays. In order to prevent accidental
erasure, the reset button must be pressed for �ve consecutive cycles in order to erase the
scoreboard. The scoreboard should allow down counts to correct a mistake (in case of acci-
dentally incrementing more than required).

4.6.1 Data Path
At the core of the design will be a two-digit BCD counter to perform the counting. Two
seven-segment displays will be needed to display the current score. You will also require
BCD to seven-segment decoders to facilitate the display of each BCD digit. Figure 4-20
illustrates a block diagram of the system. Since true reset should happen only after pressing
reset for �ve clock cycles, use a 3-bit reset counter called rstcnt.

FIGURE 4-20: Overview
of Simple Scoreboard

2-Digit
BCD

counter

2 BCD
to

7-segment
decoder

a

b

c

d

e

f

g

a

b

c

d

e

f

g

INC

DEC

RESET

4.6.2 Controller
The controller for this circuit works as follows. There are two states in this �nite state
machine (FSM), as indicated in Figure 4-21. In the initial state 1S0 2 , the BCD counter is
cleared. The reset counter is also made equal to 0. Essentially, S0 is an initialization state
where all the counters are cleared. After the initial start state, the FSM moves to the next
state 1S1 2 , which is where counting gets done. In this state, in every clock cycle, incrementing
or decrementing is done according to the input signals. If reset signal rst arrives, the rstcnt is
incremented. If reset count has already reached 4, and reset command is still persisting in the
�fth clock cycle, a transition to state S0 is made. If the inc signal is present and dec is not pres-
ent, the BCD counter is incremented. The notation add1 on the arc on the top right is used
to indicate that the BCD counter is incremented. If the dec signal is present and inc is not
present, the BCD counter is decremented. The notation sub1 on the arc on the bottom right
is used to indicate that the BCD counter is decremented. In any cycle that the reset signal is
not present, the rstcnt is cleared. If both the inc and dec signals are true, or neither are true,
the reset counter (rstcnt) is cleared and the BCD counter is left unchanged.

204 Chapter 4 Design Examples

FIGURE 4-21: State
Graph for Scoreboard

S0
CLR

S1
CNT

rst • (rstcnt Þ 4)/
rstcnt = rstcnt + 1

rst • (rstcnt = 4)/−

rst • inc • dec,
rst • inc • dec /

rstcnt = 0

sub1
rst • inc • dec /

rstcnt = 0

add1
rst • inc • dec /

rstcnt = 0−/clear

4.6.3 VHDL Model
The VHDL code for the scoreboard is given in Figure 4-22. The two seven-segment displays,
seg7disp1 and seg7disp2, are declared as unsigned 7-bit vectors. The segments of the seven-
segment display are labeled a through g, as in Figure 4-20. The unsigned type is used so that
the overloaded “1” operator can be used for incrementing the counter by 1. The decoder
for the seven-segment display can be implemented as an array or look-up table. The look-
up table consists of ten 7-bit vectors. A new datatype called sevsegarray is de�ned for the
array of the seven-segment values corresponding to each BCD digit. It is a two-dimensional
array with 10 elements, each of which is a 7-bit unsigned vector. The look-up table must be
addressed with an integer data type; hence, the conversion function to_integer is used to
generate the array index. The expression to_integer(BCD0) converts BCD0 to integer
type and the statement

seg7disp0 <= seg7rom(to_integer(BCD0));

accesses the appropriate element from the array seg7rom to convert the decimal digit to the
seven-segment form. BCD addition is accomplished with the overloaded “1” operator. If the
current count is less than 9, it is incremented. If it is 9, adding 1 results in a 0, but the next
digit should be incremented. Similarly, decrementing from 0 is performed by borrowing a 1
from the next higher digit.

FIGURE 4-22: VHDL Code for Scoreboard

library IEEE;
use IEEE.numeric_bit.all; -- any package with overloaded add and subtract

entity Scoreboard is
 port(clk, rst, inc, dec: in bit;
 seg7disp1, seg7disp0: out unsigned(6 downto 0));
end Scoreboard;

4.6 Scoreboard and Controller 205

architecture Behavioral of Scoreboard is
signal State: integer range 0 to 1;
signal BCD1, BCD0: unsigned(3 downto 0) := "0000"; -- unsigned bit vector
signal rstcnt: integer range 0 to 4 := 0;
type sevsegarray is array (0 to 9) of unsigned(6 downto 0);
constant seg7Rom: sevsegarray :=
 ("0111111", "0000110", "1011011", "1001111", "1100110", "1101101", "1111100",
 "0000111", "1111111", "1100111"); -- active high with "gfedcba" order
begin
 process(clk)
 begin
 if clk'event and clk = '1' then
 case State is
 when 0 => -- initial state
 BCD1 <= "0000"; BCD0 <= "0000"; -- clear counter
 rstcnt <= 0; -- reset RESETCOUNT
 State <= 1;
 when 1 => -- state in which the scoreboard waits for inc and dec
 if rst = '1' then
 if rstcnt = 4 then -- checking whether 5th reset cycle
 State <= 0;
 else rstcnt <= rstcnt + 1;
 end if;
 elsif inc = '1' and dec = '0' then
 rstcnt <= 0;
 if BCD0 < "1001" then
 BCD0 <= BCD0 + 1; -- library with overloaded "+" required
 elsif BCD1 < "1001" then
 BCD1 <= BCD1 + 1;
 BCD0 <= "0000";
 end if;
 elsif dec = '1' and inc = '0' then
 rstcnt <= 0;
 if BCD0 > "0000" then
 BCD0 <= BCD0 - 1; -- library with overloaded "-" required
 elsif BCD1 > "0000" then
 BCD1 <= BCD1 - 1;
 BCD0 <= "1001";
 end if;
 elsif (inc = '1' and dec = '1') or (inc = '0' and dec = '0') then
 rstcnt <= 0;
 end if;
 end case;
 end if;
 end process;
 seg7disp0 <= seg7rom(to_integer(BCD0)); -- type conversion function from
 seg7disp1 <= seg7rom(to_integer(BCD1)); -- IEEE numeric_bit package used
end Behavioral;

206 Chapter 4 Design Examples

4.7 Synchronization and Debouncing
The inc, dec, and rst signals to the scoreboard in the previous design are external inputs.
An issue in systems involving external inputs is synchronization. Outputs from a keypad or
push-button switches are not synchronous to the system clock signal. Since they will be used
as inputs to a synchronous sequential circuit, they should be synchronized.

Another issue in systems involving external inputs is switch bounce. When a mechanical
switch is closed or opened, the switch contact will bounce, causing noise in the switch output,
as shown in Figure 4-23(a). The contact may bounce for several milliseconds before it settles
down to its �nal position. After a switch closure has been detected, wait for the bounce to
settle before reading the key. In any circuit involving mechanical switches, debounce the
switches. Debouncing means removing the transients in the switch output.

Flip-�ops are very useful devices when contacts need to be synchronized and debounced.
Figure 4-23(b) shows a proposed debouncing and synchronizing circuit. In this design, the
clock period is greater than the bounce time. If the rising edge of the clock occurs during the
bounce, either a 0 or 1 will be clocked into the �ip-�op at t1. If a 0 was clocked in, a 1 will
be clocked in at the next active clock edge 1 t2 2 . So it appears that QA will be a debounced
and synchronized version of K. However, a possibility of failure exists if the switch changes
very close to the clock edge such that the setup or hold time is violated. In this case the �ip-
�op output QA may oscillate or otherwise malfunction. Although this situation will occur
very infrequently, it is best to guard against it by adding a second �ip-�op. Choose the clock
period so that any oscillation at the output of QA will have died out before the next active
edge of the clock so that the input DB will always be stable at the active clock edge. The
debounced signal, QB, will always be clean and synchronized with the clock, although it may
be delayed up to two clock cycles after the switch is pressed.

FIGURE 4-23:
Debouncing Mechanical
Switches

Contact
closure

Clock

QA

QB
t1 t2 t3

(a) Switch bouncing

1

00

CK

DA QA

CK

CLK

(b) Debouncing and synchronizing circuit

Contact
closure DB QB

4.7.1 Single Pulser
One assumption in the scoreboard design is that each time the inc and dec signals are pro-
vided, they last only for one clock cycle. Digital systems generally run at speeds higher than
actions by humans, and it is very dif�cult for humans to produce a signal that only lasts for

4.7 Synchronization and Debouncing 207

a clock pulse. If the pressing of the button lasted longer than a clock cycle, the counters will
continue to get incremented in the aforementioned design. A solution to the problem is to
develop a circuit that generates a single pulse for a human action of pressing a button or
switch. Such a circuit can be used in a variety of applications involving humans, push buttons,
and switches.

Now, let us design a single pulser circuit that delivers a synchronized pulse that is a single
clock cycle long, when a button is pressed. The circuit must sense the pressing of a button
and assert an output signal for one clock cycle. Then the output stays inactive until the but-
ton is released.

Let us create a state diagram for the single pulser. The single pulser circuit must have
two states: one in which it will detect the pressing of the key and one in which it will detect
the release of the key. Let us call the �rst state S0 and the second state S1. Let us use the
symbol SYNCPRESS to denote the synchronized key press. When the circuit is in state S0
and the button is pressed, the system produces the single pulse and moves to state S1. The
single pulse is a Mealy output as the state changes from S0 to S1. Once the system is in state
S1, it waits for the button to be released. As soon as it is released, it moves to the start state
S0 waiting for the next button press. The single pulse output is true only during the transi-
tion from S0 to S1. The state diagram is illustrated in Figure 4-24.

FIGURE 4-24: State
Diagram of Single
Pulser S0 S1

SYNCPRESS/SP

(SYNCPRESS)9
(SYNCPRESS)9

SYNCPRESS

FIGURE 4-25: Single
Pulser and Synchronizer
Circuit

D Q

CE
Q9

Clk

PRESS

SYNCPRESS

SP

S1

S1 = S0

Synchronizing
circuit

Since there are only two states for this circuit, it can be implemented using one �ip-�op.
A single pulser can be implemented as in Figure 4-25. The �rst block consists of the circuitry
in Figure 4-23(b) and generates a synchronized button press, SYNCPRESS. The �ip-�op
implements the two states of the state machine. Let us assume the state assignments are
S0 5 0 and S1 5 1. In such a case, the Q output of the �ip-�op is synonymous with S1, and
the Q r output of the �ip-�op is synonymous with S0. The equation for the single pulse SP is

 SP 5 S0 # SYNCPRESS

It may also be noted that S0 5 S1 r. Including the two �ip-�ops inside the synchroniz-
ing block, three �ip-�ops can provide debouncing, synchronization, and single pulsing. If
button pushes can be passed through such a circuit, a single pulse that is debounced and

208 Chapter 4 Design Examples

synchronized, with respect to the system clock, can be obtained. It is a good practice to feed
external push-button signals through such a circuit in order to obtain controlled and predict-
able operation.

4.8 Add-and-Shift Multiplier
In this section, you will design a multiplier for unsigned binary numbers. When you form the
product A 3 B, the �rst operand (A) is called the multiplicand, and the second operand (B)
is called the multiplier. As illustrated here, binary multiplication requires only shifting and
adding. In the following example, multiply 1310 by 1110 in binary:

1 1 0 1
1 0 1 1
1 1 0 1

1 1 0 1
1 0 0 1 1 1
0 0 0 0
1 0 0 1 1 1

1 1 0 1
1 0 0 0 1 1 1 1

(13)
(11)

(143)

Multiplicand
Mutliplier

Partial
products

Note that each partial product is either the multiplicand (1101) shifted over by the appropri-
ate number of places or zero. Instead of forming all the partial products �rst and then adding,
each new partial product is added in as soon as it is formed, which eliminates the need for
adding more than two binary numbers at a time.

Multiplication of two 4-bit numbers requires a 4-bit multiplicand register, a 4-bit
multiplier register, a 4-bit full adder, and an 8-bit register for the product. The product
register serves as an accumulator to accumulate the sum of the partial products. If the
multiplicand were shifted left each time before it was added to the accumulator, as was
done in the previous example, an 8-bit adder would be needed. So it is better to shift the
contents of the product register to the right each time, as shown in the block diagram of
Figure 4-26. This type of multiplier is sometimes referred to as a serial-parallel multiplier,
since the multiplier bits are processed serially, but the addition takes place in parallel. As
indicated by the arrows on the diagram, 4 bits from the accumulator (ACC) and 4 bits from
the multiplicand register are connected to the adder inputs; the 4 sum bits and the carry
output from the adder are connected back to the accumulator. When an add signal (Ad)
occurs, the adder outputs are transferred to the accumulator by the next clock pulse, thus
causing the multiplicand to be added to the accumulator. An extra bit at the left end of
the product register temporarily stores any carry that is generated when the multiplicand
is added to the accumulator. When a shift signal (Sh) occurs, all 9 bits of ACC are shifted
right by the next clock pulse.

Since the lower 4 bits of the product register are initially unused, store the multiplier in
this location instead of in a separate register. As each multiplier bit is used, it is shifted out
the right end of the register to make room for additional product bits. A shift signal (Sh)
causes the contents of the product register (including the multiplier) to be shifted right one
place when the next clock pulse occurs. The control circuit puts out the proper sequence of
add and shift signals after a start signal 1St 5 1 2 has been received. If the current multiplier

4.8 Add-and-Shift Multiplier 209

FIGURE 4-26: Block
Diagram for Binary
Multiplier

4 - Bit adder

Multiplicand

Cm

Multiplier

Product

C

o

n

t

r

o

l St

Sh
Ad

M

Done

Load 4567 0238
ACC

Clk

1

bit (M) is 1, the multiplicand is added to the accumulator followed by a right shift; if the
multiplier bit is 0, the addition is skipped, and only the right shift occurs. The multiplication
example 113 3 11 2 is reworked below, showing the location of the bits in the registers at
each clock time.

initial contents of product register M (11)
(add multiplicand since M = 1) (13)
after addition
after shift M
(add multiplicand since M = 1)
after addition
after shift M
(skip addition since M = 0)
after shift M
(add multiplicand since M = 1)
after addition
after shift (�nal answer) (143)

dividing line between product and multiplier

0 0 0 0 0 1 0 1 1
 1 1 0 1
0 1 1 0 1 1 0 1 1
0 0 1 1 0 1 1 0 1
 1 1 0 1
1 0 0 1 1 1 1 0 1
0 1 0 0 1 1 1 1 0

0 0 1 0 0 1 1 1 1
 1 1 0 1
1 0 0 0 1 1 1 1 1
0 1 0 0 0 1 1 1 1

The control circuit must be designed to output the proper sequence of add and shift sig-
nals. Figure 4-27 shows a state graph for the control circuit where S0 is the reset state, and the
circuit stays in S0 until a start signal 1St 5 1 2 is received. This generates a Load signal, which
causes the multiplier to be loaded into the lower 4 bits of the accumulator (ACC) and the
upper 5 bits of the accumulator to be cleared. In state S1, the low-order bit of the multiplier
(M) is tested. If M 5 1, an add signal is generated, and if M 5 0, a shift signal is generated.
Similarly, in states S3, S5, and S7, the current multiplier bit (M) is tested to determine whether
to generate an add or shift signal. A shift signal is always generated at the next clock time
following an add signal (states S2, S4, S6, and S8). After four shifts have been generated, the
control network goes to S9, and a done signal is generated before returning to S0.

210 Chapter 4 Design Examples

The behavioral VHDL model (Figure 4-28) corresponds directly to the state graph. Since
there are 10 states, you should declare an integer ranging from 0 to 9 for the state signal. The
signal ACC represents the 9-bit accumulator output. The statement

alias M: bit is ACC(0);

allows you to use the name M in place of ACC(0). The notation when 1|3|5|7 => means
that when the state is 1 or 3 or 5 or 7, the action that follows occurs. All register operations and
state changes take place on the rising edge of the clock. For example, in state 0, if St is '1', the
multiplier is loaded into the accumulator at the same time the state changes to 1. The expres-
sion '0' & ACC(7 downto 4) + Mcand is used to compute the sum of two 4-bit unsigned
vectors to give a 5-bit result. This represents the adder output, which is loaded into ACC at the
same time the state counter is incremented. The right shift on ACC is accomplished by load-
ing ACC with '0' concatenated with the upper 8 bits of ACC. The expression '0' & ACC(8
downto 1) could be replaced with ACC srl 1.

FIGURE 4-27: State
Graph for Binary
Multiplier Control

S1

S7

S9

S8

S0

S2

S3

S4S5

S6

St/Load

M/Ad

M 9/Sh

M 9/Sh

M 9/Sh

M 9/Sh

–/Done

–/Sh

–/Sh–/Sh

M/Ad

M/Ad

M/Ad

–/Sh

St 9/0

FIGURE 4-28: Behavioral Model for 4 3 4 Binary Multiplier

–– This is a behavioral model of a multiplier for unsigned
–– binary numbers. It multiplies a 4-bit multiplicand
–– by a 4-bit multiplier to give an 8-bit product.

–– The maximum number of clock cycles needed for a
–– multiply is 10.

library IEEE;
use IEEE.numeric_bit.all;

4.8 Add-and-Shift Multiplier 211

entity mult4X4 is
 port(Clk, St: in bit;
 Mplier, Mcand: in unsigned(3 downto 0);
 Done: out bit);
end mult4×4;

architecture behave1 of mult4×4 is
signal State: integer range 0 to 9;
signal ACC: unsigned(8 downto 0); -- accumulator
alias M: bit is ACC(0); -- M is bit 0 of ACC
begin
 process(Clk)
 begin
 if Clk'event and Clk = '1' then -- executes on rising edge of clock
 case State is
 when 0 => -- initial State
 if St = '1' then
 ACC(8 downto 4) <= "00000"; -- begin cycle
 ACC(3 downto 0) <= Mplier; -- load the multiplier
 State <= 1;
 end if;
 when 1 | 3 | 5 | 7 => -- "add/shift" State
 if M = '1' then -- add multiplicand
 ACC(8 downto 4) <= '0' & ACC(7 downto 4) + Mcand;
 State <= State + 1;
 else
 ACC <= '0' & ACC(8 downto 1); -- shift accumulator right
 State <= State + 2;
 end if;
 when 2 | 4 | 6 | 8 => -- "shift" State
 ACC <= '0' & ACC(8 downto 1); -- right shift
 State <= State + 1;
 when 9 => -- end of cycle
 State <= 0;
 end case;
 end if;
 end process;
 Done <= '1' when State = 9 else '0';
end behave1;

The Done signal needs to be turned on only in state 9. If you had used the statement
when 9 => State <= 0; Done <= '1', Done would be turned on at the same time
State changes to 0. This is too late, since you want Done to turn on when State becomes 9.
Therefore, you should use a separate concurrent assignment statement. This statement is
placed outside the process so that Done will be updated whenever State changes.

As the state graph for the multiplier (Figure 4-27) indicates, the control performs two
functions—generating add or shift signals as needed and counting the number of shifts. If
the number of bits is large, it is convenient to divide the control circuit into a counter and an

212 Chapter 4 Design Examples

add-shift control, as shown in Figure 4-29(a). First, derive a state graph for the add-shift control
that tests St and M and outputs the proper sequence of add and shift signals (Figure 4-29(b)).
Then add a completion signal (K) from the counter that stops the multiplier after the proper
number of shifts have been completed. Starting in S0 in Figure 4-29(b), when a start signal
St 5 1 is received, a load signal is generated and the circuit goes to state S1. Then if M 5 1, an
add signal is generated and the circuit goes to state S2; if M 5 0, a shift signal is generated and
the circuit stays in S1. In S2, a shift signal is generated since a shift always follows an add. The
graph of Figure 4-29(b) will generate the proper sequence of add and shift signals, but it has no
provision for stopping the multiplier.

In order to determine when the multiplication is completed, the counter is incremented
each time a shift signal is generated. If the multiplier is n bits, n shifts are required. Design the
counter so that a completion signal (K) is generated after n 2 1 shifts have occurred. When
K 5 1, the circuit should perform one more addition if necessary and then do the �nal shift.
The control operation in Figure 4-29(c) is the same as Figure 4-29(b) as long as K 5 0. In
state S1, if K 5 1, test M as usual. If M 5 0, output the �nal shift signal and go to the done
state 1S3 2 ; however, if M 5 1, add before shifting and go to state S2. In state S2, if K 5 1,
output one more shift signal and then go to S3. The last shift signal will increment the counter
to 0 at the same time the add-shift control goes to the done state.

As an example, consider the multiplier of Figure 4-26, but replace the control circuit
with Figure 4-29(a). Since n 5 4, a 2-bit counter is needed to count the four shifts, and
K 5 1 when the counter is in state 3 1112 2 . Table 4-2 shows the operation of the multiplier
when 1101 is multiplied by 1011. S0, S1, S2, and S3 represent states of the control circuit
(Figure 4-29(c)). The contents of the product register at each step are the same as given
on page 212.

FIGURE 4-29: Multiplier
Control with Counter

Add-shift
control

Counter

Done
Load
Ad
Sh

K

St

M
S0

S1

S2

St/Load

St/Load

M/Ad

M/Ad

−/Sh

M 9/Sh

K 9/Sh

K/Sh

K 9M 9/Sh

(a) Multiplier control (b) State graph for add-shift control

KM 9/Sh
−/Done

S0

S3 S2

S1

(c) Final state graph for add-shift control

9/0

St 9/0

St

4.9 Array Multiplier 213

Time State Counter
Product
Register St M K Load Ad Sh Done

t0 S0 00 000000000 0 0 0 0 0 0 0
t1 S0 00 000000000 1 0 0 1 0 0 0
t2 S1 00 000001011 0 1 0 0 1 0 0
t3 S2 00 011011011 0 1 0 0 0 1 0
t4 S1 01 001101101 0 1 0 0 1 0 0
t5 S2 01 100111101 0 1 0 0 0 1 0
t6 S1 10 010011110 0 0 0 0 0 1 0
t7 S1 11 001001111 0 1 1 0 1 0 0
t8 S2 11 100011111 0 1 1 0 0 1 0
t9 S3 00 010001111 0 1 0 0 0 0 1

TABLE 4-2: Operation
of Multiplier Using a
Counter

At time t0, the control is reset and waiting for a start signal. At time t1, the start signal St
is 1, and a Load signal is generated. At time t2, M 5 1, so an Ad signal is generated. When
the next clock occurs, the output of the adder is loaded into the accumulator and the control
goes to S2. At t3, an Sh signal is generated, so at the next clock shifting occurs and the counter
is incremented. At t4, M 5 1, so Ad 5 1, and the adder output is loaded into the accumulator
at the next clock. At t5 and t6, shifting and counting occur. At t7, three shifts have occurred
and the counter state is 11, so K 5 1. Since M 5 1, addition occurs and control goes to S2.
At t8, Sh 5 K 5 1, so at the next clock the �nal shift occurs and the counter is incremented
back to state 00. At t9, a Done signal is generated.

The multiplier design given here can easily be expanded to 8, 16, or more bits simply by
increasing the register size and the number of bits in the counter. The add-shift control would
remain unchanged.

4.9 Array Multiplier
An array multiplier is a parallel multiplier that generates the partial products in a parallel
fashion. The various partial products are added as soon as they are available. Consider the
process of multiplication as illustrated in Table 4-3. Two 4-bit unsigned numbers, X3X2X1X0
and Y3Y2Y1Y0, are multiplied to generate a product that is possibly 8 bits. Each of the XiYj
product bits can be generated by an AND gate. Each partial product can be added to the
previous sum of partial products, using a row of adders. The sum output of the �rst row
of adders, which adds the �rst two partial products, is S13S12S11S10, and the carry output is
C13C12C11C10. Similar results occur for the other two rows of adders. (The notation Sij and
Cij represent the sums and carries from the ith row of adders.)

Figure 4-30 shows the array of AND gates and adders to perform this multiplication. If
an adder has three inputs, a full adder (FA) is used, but if an adder has only two inputs, a
half-adder (HA) is used. A half-adder is the same as a full adder with one of the inputs set
to 0. This multiplier requires 16 AND gates, 8 full adders, and 4 half-adders. After the X and
Y inputs have been applied, the carry must propagate along each row of cells, and the sum
must propagate from row to row. The time required to complete the multiplication depends
primarily on the propagation delay in the adders. The longest path from input to output goes
through 8 adders. If tad is the worst-case (longest possible) delay through an adder, and tg is the
longest AND gate delay, then the worst-case time to complete the multiplication is 8 tad 1 tg.

214 Chapter 4 Design Examples

X3 X2 X1 X0 Multiplicand
Y3 Y2 Y1 Y0 Multiplier

X3Y0 X2Y0 X1Y0 X0Y0 Partial product 0
X3Y1 X2Y1 X1Y1 X0Y1 Partial product 1
C12 C11 C10 First row carries

C13 S13 S12 S11 S10 First row sums
X3Y2 X2Y2 X1Y2 X0Y2 Partial product 2
C22 C21 C20 Second row carries

C23 S23 S22 S21 S20 Second row sums
X3Y3 X2Y3 X1Y3 X0Y3 Partial product 3
C32 C31 C30 Third row carries

C33 S33 S32 S31 S30 Third row sums
P7 P6 P5 P4 P3 P2 P1 P0 Final product

TABLE 4-3: Four-bit
Multiplier Partial
Products

In general, an n-bit-by-n-bit array multiplier would require n2 AND gates, n 1n 2 2 2 full
adders, and n half-adders. So the number of components required increases quadratically. For
the serial-parallel multiplier previously designed, the amount of hardware required in addition
to the control circuit increases linearly with n.

For an n 3 n array multiplier, the longest path from input to output goes through n
adders in the top row, n 2 1 adders in the bottom row, and n 2 3 adders in the middle rows.
The corresponding worst-case multiply time is 13n 2 4 2 tad 1 tg. The longest delay in a cir-
cuit is called critical path. The worst-case delay can be improved to 2ntad 1 tg by forwarding
carry from each adder to the diagonally lower adder rather than the adder on the left side.
When n 5 4, both expressions are the same; however, for larger values of n, it is bene�cial
to pass carry diagonally as opposed to rippling it to the left. Note that this multiplier has no
sequential logic or registers.

FIGURE 4-30: Block
Diagram of 4 3 4 Array
Multiplier

HAFAFAHA

HAFAFAFA

HAFAFAFA

X3Y0

X3Y1

X3Y2

X3Y3 X2Y3 X1Y3 X0Y3

X2Y2 X1Y2 X0Y2

X2Y1 X1Y1 X0 Y1

X2Y0 X1Y0 X0Y0

P7 P6 P5 P4 P3

P2

P1

P0

S10S11S12S13

C12 C11 C10

C22 C21 C20

C13

S21 S20S22S23C23

C32 C31 C30

C33 S30S31S32S33

4.9 Array Multiplier 215

The shift-and-add multiplier that was previously designed requires 2n 1 2 clocks to
complete the multiply in the worst case, although this can be reduced to n 1 2 clocks using a
technique discussed in the next section. The minimum clock period depends on the propaga-
tion delay through the n-bit adder as well as the propagation delay and setup time for the
accumulator �ip-�ops.

4.9.1 VHDL Coding
If the topology has to be exactly what the designer wants, do structural coding as shown in
Figure 4-31. If you made a behavioral model of a multiplier without specifying the topol-
ogy, the topology generated by the synthesizer would depend on the synthesis tool. Here a
structural model for an array multiplier is presented. Full-adder and half-adder modules are
created and used as components for the array multiplier. The full adders and half adders are
interconnected according to the array multiplier topology. Several instantiation (port map)
statements are used for this purpose.

FIGURE 4-31: VHDL Code for 4 3 4 Array Multiplier

entity Array_Mult is
 port(X, Y: in bit_vector(3 downto 0);
 P: out bit_vector(7 downto 0));
end Array_Mult;

architecture Behavioral of Array_Mult is
signal C1, C2, C3: bit_vector(3 downto 0);
signal S1, S2, S3: bit_vector(3 downto 0);
signal XY0, XY1, XY2, XY3: bit_vector(3 downto 0);
component FullAdder
 port(X, Y, Cin: in bit;
 Cout, Sum: out bit);
end component;
component HalfAdder
 port(X, Y: in bit;
 Cout, Sum: out bit);
end component;
begin
 XY0(0) <= X(0) and Y(0); XY1(0) <= X(0) and Y(1);
 XY0(1) <= X(1) and Y(0); XY1(1) <= X(1) and Y(1);
 XY0(2) <= X(2) and Y(0); XY1(2) <= X(2) and Y(1);
 XY0(3) <= X(3) and Y(0); XY1(3) <= X(3) and Y(1);

 XY2(0) <= X(0) and Y(2); XY3(0) <= X(0) and Y(3);
 XY2(1) <= X(1) and Y(2); XY3(1) <= X(1) and Y(3);
 XY2(2) <= X(2) and Y(2); XY3(2) <= X(2) and Y(3);
 XY2(3) <= X(3) and Y(2); XY3(3) <= X(3) and Y(3);

 FA1: FullAdder port map (XY0(2), XY1(1), C1(0), C1(1), S1(1));
 FA2: FullAdder port map (XY0(3), XY1(2), C1(1), C1(2), S1(2));
 FA3: FullAdder port map (S1(2), XY2(1), C2(0), C2(1), S2(1));
 FA4: FullAdder port map (S1(3), XY2(2), C2(1), C2(2), S2(2));
 FA5: FullAdder port map (C1(3), XY2(3), C2(2), C2(3), S2(3));

216 Chapter 4 Design Examples

 FA6: FullAdder port map (S2(2), XY3(1), C3(0), C3(1), S3(1));
 FA7: FullAdder port map (S2(3), XY3(2), C3(1), C3(2), S3(2));
 FA8: FullAdder port map (C2(3), XY3(3), C3(2), C3(3), S3(3));
 HA1: HalfAdder port map (XY0(1), XY1(0), C1(0), S1(0));
 HA2: HalfAdder port map (XY1(3), C1(2), C1(3), S1(3));
 HA3: HalfAdder port map (S1(1), XY2(0), C2(0), S2(0));
 HA4: HalfAdder port map (S2(1), XY3(0), C3(0), S3(0));

 P(0) <= XY0(0); P(1) <= S1(0); P(2) <= S2(0);
 P(3) <= S3(0); P(4) <= S3(1); P(5) <= S3(2);
 P(6) <= S3(3); P(7) <= C3(3);
end Behavioral;

–– Full Adder and half adder entity and architecture descriptions
–– should be in the project
entity FullAdder is
 port(X, Y, Cin: in bit;
 Cout, Sum: out bit);
end FullAdder;

architecture equations of FullAdder is
begin
 Sum <= X xor Y xor Cin;
 Cout <= (X and Y) or (X and Cin) or (Y and Cin);
end equations;

entity HalfAdder is
 port(X, Y: in bit;
 Cout, Sum: out bit);
end HalfAdder;

architecture equations of HalfAdder is
begin
 Sum <= X xor Y;
 Cout <= X and Y;
end equations;

4.10 A Signed Integer/Fraction Multiplier
Several algorithms are available for multiplication of signed binary numbers. The following
procedure is a straightforward way to carry out the multiplication:

1. Complement the multiplier if negative.
2. Complement the multiplicand if negative.
3. Multiply the two positive binary numbers.
4. Complement the product if it should be negative.

Although this method is conceptually simple, it requires more hardware and computation
time than some of the other available methods.

The next method described requires only the ability to complement the multiplicand.
Complementation of the multiplier or product is not necessary. Although the method works

4.10 A Signed Integer/Fraction Multiplier 217

equally well with integers or fractions, the method is illustrated with fractions because you
will later use this multiplier as part of a multiplier for �oating-point numbers. Using 2’s
complement for negative numbers, represent signed binary fractions in the following form:

0.101 15/8 1.011 25/8

The digit to the left of the binary point is the sign bit, which is 0 for positive fractions and
1 for negative fractions. In general, the 2’s complement of a binary fraction F is F* 5 2 2 F.
Thus, 25/8 is represented by 10.000 2 0.101 5 1.011. (This method of de�ning 2’s comple-
ment fractions is consistent with the integer case 1N* 5 2n 2 N 2 , since moving the binary
point n 2 1 places to the left is equivalent to dividing by 2n21.) The 2’s complement of a
fraction can be found by starting at the right end and complementing all the digits to the
left of the �rst 1, the same as for the integer case. The 2’s complement fraction 1.000 . . . is a
special case. It actually represents the number 21, since the sign bit is negative and the 2’s
complement of 1.000 . . . is 2 2 1 5 1. You cannot represent 11 in this 2’s complement frac-
tion system, since 0.111 . . . is the largest positive fraction.

Binary Fixed-Point Fractions

Fixed-point numbers are number formats in which the decimal or binary
point is at a �xed location. You can have a �xed-point 8-bit number format
where the binary point is assumed to be after 4 bits (i.e., 4 bits for the frac-
tional part and 4 bits for the integer part). If the binary point is assumed to
be located two more bits to the right, there will be 6 bits for the integer part
and 2 bits for the fraction. The range and precision of the numbers that can
be represented in the different formats depend on the location of the binary
point. For instance, if there are 4 bits for the fractional part and 4 bits for the
integer, the range, assuming unsigned numbers, is 0.00 to 15.9375. If only 2
bits are allowed for the fractional part and 6 bits for the integer, the range
increases; however, the precision reduces. Now, the range would be 0.00 to
63.75, but the fractional part can be speci�ed only as a multiple of 0.25.

Assume that you need to represent 213.45 in a 2’s complement �xed-
point number representation with four fractional bits. To convert any deci-
mal fraction into the binary fraction, one technique is to repeatedly multiply
the fractional part (only the fractional part in each intermediate step) with 2.
So, starting with 0.45, the repeated multiplication results in

0.90
1.80
1.06
1.20
0.40
0.80
1.60
1.20

Now, the binary representation can be obtained by considering the digits
in bold. An appropriate representation can be obtained depending on the
number of bits available (e.g., 0111 if 4 bits are available, 01110011 if 8 bits

218 Chapter 4 Design Examples

When multiplying signed binary numbers, there are four cases:

Multiplicand Multiplier

1 1

2 1

1 2

2 2

are available, and so on). The representation for decimal number 13.45 in the
�xed-point format with four binary places will be as follows:

13.45: 1101.0111

Note that the represented number is only an approximation of the actual
number. The represented number can be converted back to decimal and seen
to be 13.4375 (slightly off from the number you started with). The representa-
tion approaches the actual number as more and more binary places are added
to the representation.

Negative fractions can be represented in 2’s complement form. Let us rep-
resent 213.45 in 2’s complement form. This cannot be done if you have only
four places for the integer. You need to have at least 5 bits for the integer in
order to handle the sign. Assuming 5 bits are available for the integer, in a
9-bit format,

13.45: 01101.0111
1’s complement 10010.1000
2’s complement 10010.1001

Hence 213.45 5 10010.1001 in this representation.

When both the multiplicand and the multiplier are positive, standard binary multiplica-
tion is used. For example,

 0.1 1 1 117/8 2 d Multiplicand
 3 0.1 0 1 115/8 2 d Multiplier
10. 0 0 20 1 1 1 117/64 2 d Note: The proper representation
10. 20 1 1 1 117/16 2 d of the fractional partial products
 0. 1 0 0 0 1 1 1135/64 2 requires extension of the sign

bit past the binary point, as
indicated in parentheses. 1Such
extension is not necessary in
the hardware.)

4.10 A Signed Integer/Fraction Multiplier 219

When the multiplicand is negative and the multiplier is positive, the procedure is the
same as in the previous case, except that you must extend the sign bit of the multiplicand so
that the partial products and �nal product will have the proper negative sign. For example,

 1.1 0 1 123/8 2
 3 0.1 0 1 115/8 2
11. 1 1 21 1 0 1 123/64 2 d Note: The extension of the sign bit
11. 21 1 0 1 123/16 2 d provides proper representation of
 1. 1 1 0 0 0 1 1215/64 2 the negative products.

When the multiplier is negative and the multiplicand is positive, you must make a slight
change in the multiplication procedure. A negative fraction of the form 1.g has a numeric
value 21 1 0.g; for example, 1.011 5 21 1 0.011 5 2 11 2 0.011 2 5 20.101 5 25/8.
Thus, when multiplying by a negative fraction of the form 1.g, treat the fraction part (.g) as
a positive fraction, but the sign bit is treated as 21. Hence, multiplication proceeds in the
normal way as you multiply by each bit of the fraction and accumulate the partial products.
However, when you reach the negative sign bit, add in the 2’s complement of the multipli-
cand instead of the multiplicand itself. The following example illustrates this:

 0.1 0 1 115/8 2
 3 1.1 0 1 123/8 2
10. 0 0 20 1 0 1 115/64 2
10. 20 1 0 1 115/16 2
10. 20 1 1 0 0 1
 1. 0 1 1 125/8 2 d Note: The 2 rs complement of the
 1. 1 1 0 0 0 1 1215/64 2 multiplicand is added at this point.

When both the multiplicand and multiplier are negative, the procedure is the same as
before. At each step, be careful to extend the sign bit of the partial product to preserve the
proper negative sign, and at the �nal step, add in the 2’s complement of the multiplicand,
since the sign bit of the multiplier is negative. For example,

 1.1 0 1 123/8 2
 3 1.1 0 1 123/8 2
11. 1 1 21 1 0 1 123/64 2 d Note: Extend sign bit.
11. 21 1 0 1 123/16 2
 1. 1 1 0 0 0 1
 0. 0 1 1 113/8 2 d Add the 2's complement of the
 0. 0 0 1 0 0 1 119/64 2 multiplicand.

In summary, the procedure for multiplying signed 2’s complement binary fractions is the
same as for multiplying positive binary fractions, except that you must be careful to preserve

220 Chapter 4 Design Examples

the sign of the partial product at each step, and if the sign of the multiplier is negative, you
must complement the multiplicand before adding it in at the last step. The hardware is almost
identical to that used for multiplication of positive numbers, except a complementer must be
added for the multiplicand.

Figure 4-32 shows the hardware required to multiply two 4-bit fractions (including the
sign bit). A 5-bit adder is used so the sign of the sum is not lost due to a carry into the sign
bit position. The M input to the control circuit is the currently active bit of the multiplier.
Control signal Sh causes the accumulator to shift right one place with sign extension. Ad
causes the ADDER output to be loaded into the left 5 bits of the accumulator. The carry-out
from the last bit of the adder is discarded, since you are doing 2’s complement addition. Cm
causes the multiplicand (Mcand) to be complemented (1’s complement) before it enters the
adder inputs. Cm is also connected to the carry input of the adder so that when Cm 5 1, the

FIGURE 4-32: Block
Diagram for 2’s
Complement Multiplier

4567 02 138

ACC

Multiplier

Product

5-Bit full adder Cin

19s Complementer

Multiplicand

Cm

C

o

n

t

r

o

l
St

Sh
Ad

Load

M

Cm

Done

Clk

adder adds 1 plus the 1’s complement of Mcand to the accumulator, which is equivalent to
adding the 2’s complement of Mcand. Figure 4-33 shows a state graph for the control circuit.
Each multiplier bit (M) is tested to determine whether to add and shift or whether to just
shift. In state S7, M is the sign bit, and if M 5 1, the complement of the multiplicand is added
to the accumulator.

When the hardware in Figure 4-32 is used, the add and shift operations must be done at
two separate clock times. You can speed up operation of the multiplier by moving the wires
from the adder output one position to the right (Figure 4-34) so that the adder output is
already shifted over one position when it is loaded into the accumulator. With this arrange-
ment, the add and shift operations can occur at the same clock time, which leads to the control

4.10 A Signed Integer/Fraction Multiplier 221

FIGURE 4-33:
State Graph for 2’s
Complement Multiplier

St/Load

M/Ad

M 9/Sh

–/Sh

M/Ad

M 9/Sh

M 9/Sh

–/Done

–/Sh

M/Ad

–/Sh

M/Cm Ad

M 9/0

St 9/0

S0

S1

S2

S3

S4

S5

S6

S7

S8

FIGURE 4-34: Block
Diagram for Faster
Multiplier

01 123 023

C

O

N

T

R

O

L

A (accumulator)

4-BIT FULL ADDER

1’s COMPLEMENTER

Multiplicand

St

Sh
AdSh

Cm

Cm

Product

Done

M

Multiplier

Load

Cin

B

state graph of Figure 4-35. When the multiplication is complete, the product (6 bits plus sign)
is in the lower 3 bits of A followed by B. The binary point then is in the middle of the A reg-
ister. If you wanted it between the left 2 bits, you would have to shift A and B left one place.

222 Chapter 4 Design Examples

A behavioral VHDL model for this multiplier is shown in Figure 4-36. Shifting the A and
B registers together is accomplished by the sequential statements

A <= A(3) & A(3 downto 1);
B <= A(0) & B(3 downto 1);

Although these statements are executed sequentially, A and B are both scheduled to be
updated at the same delta time. Therefore, the old value of A(0) is used when computing the
new value of B.

FIGURE 4-35: State
Graph for Faster
Multiplier

S0

S1

S2

S3

S4

S5

St/Load

M/Cm AdSh

M 9/Sh

M/AdSh
M 9/Sh

M/AdSh
M 9/Sh

M/AdSh
M 9/Sh

–/Done

St 9/0

FIGURE 4-36: Behavioral Model for 2’s Complement Multiplier

library IEEE;
use IEEE.numeric_bit.all;

entity mult2C is
 port(CLK, St: in bit;
 Mplier, Mcand : in unsigned(3 downto 0);
 Product: out unsigned (6 downto 0);
 Done: out bit);
end mult2C;

architecture behave1 of mult2C is
signal State: integer range 0 to 5;
signal A, B: unsigned(3 downto 0);
alias M: bit is B(0);
begin
 process(CLK)
 variable addout: unsigned(3 downto 0);
 begin
 if CLK'event and CLK = '1' then
 case State is
 when 0 => –– initial State
 if St = '1' then
 A <= "0000"; –– begin cycle
 B <= Mplier; –– load the multiplier

4.10 A Signed Integer/Fraction Multiplier 223

A variable addout has been de�ned to represent the 5-bit output of the adder. In states 1
through 4, if the current multiplier bit M is '1', then the sign bit of the multiplicand- followed
by 3 bits of addout are loaded into A. At the same time, the low-order bit of addout is loaded
into B along with the high-order 3 bits of B. The Done signal is turned on when control goes
to state 5, and then the new value of the product is outputted.

Before continuing with the design, test the behavioral level VHDL code to make sure
that the algorithm is correct and consistent with the hardware block diagram. At early stages
of testing, you want a step-by-step printout to verify the internal operations of the multiplier
and to aid in debugging, if required. When you think that the multiplier is functioning prop-
erly, then you only want to look at the �nal product output so that you can quickly test a
large number of cases.

Figure 4-37 shows the command �le and test results for multiplying 15/8 by 23/8. A
clock is de�ned with a 20-ns period. The St signal is turned on at 2 ns and turned off one
clock period later. By inspection of the state graph, the multiplication requires six clocks, so
the run time is set at 120 ns.

To thoroughly test the multiplier, you need to test not only the four standard cases
(11, 12, 21, and 22) but also special cases and limiting cases. Test values for the mul-
tiplicand and multiplier should include 0, the largest positive fraction, the most negative

 State <= 1;
 end if;
 when 1 | 2 | 3 => --"add/shift" states
 if M = '1' then
 addout := A + Mcand; -- add multiplicand to A and shift
 A <= Mcand(3) & addout(3 downto 1);
 B <= addout(0) & B(3 downto 1);
 else
 A <= A(3) & A(3 downto 1); –– arithmetic right shift
 B <= A(0) & B(3 downto 1);
 end if;
 State <= State + 1;
 when 4 =>
 if M = '1' then
 addout := A + not Mcand + 1;
 -- add 2's complement when sign bit of multiplier is 1
 A <= not Mcand(3) & addout(3 downto 1);
 B <= addout(0) & B(3 downto 1);
 else
 A <= A(3) & A(3 downto 1); –– arithmetic right shift
 B <= A(0) & B(3 downto 1);
 end if;
 State <= 5;
 when 5 =>
 State <= 0;
 end case;
 end if;
 end process;
 Done <= '1' when State = 5 else '0';
 Product <= A(2 downto 0) & B; –– output product
end behave1;

224 Chapter 4 Design Examples

fraction, and all 1’s. It is bene�cial to write a VHDL test bench to test the multiplier. The
test bench will provide a sequence of values for the multiplicand and the multiplier. Thus, it
provides stimuli to the system under test, the multiplier. The test bench can also check for the
correctness of the multiplier output. The multiplier being tested is treated as a component
and embedded in the test bench program. The signals generated within the test bench are
interfaced to the multiplier as shown in Figure 4-38.

FIGURE 4-37: Command File and Simulation Results for 115/8 by 23/8 2

–– command file to test signed multiplier
add list CLK St State A B Done Product
force st 1 2, 0 22
force clk 1 0, 0 10 – repeat 20
–– (5/8 * -3/8)
force Mcand 0101
force Mplier 1101
run 120

 ns delta CLK St State A B Done Product
 0 +1 1 0 0 0000 0000 0 0000000
 2 +0 1 1 0 0000 0000 0 0000000
 10 +0 0 1 0 0000 0000 0 0000000
 20 +1 1 1 1 0000 1101 0 0000000
 22 +0 1 0 1 0000 1101 0 0000000
 30 +0 0 0 1 0000 1101 0 0000000
 40 +1 1 0 2 0010 1110 0 0000000
 50 +0 0 0 2 0010 1110 0 0000000
 60 +1 1 0 3 0001 0111 0 0000000
 70 +0 0 0 3 0001 0111 0 0000000
 80 +1 1 0 4 0011 0011 0 0000000
 90 +0 0 0 4 0011 0011 0 0000000
100 +2 1 0 5 1111 0001 1 1110001
110 +0 0 0 5 1111 0001 1 1110001
120 +1 1 0 0 1111 0001 0 1110001

FIGURE 4-38: Interface
between Multiplier and
Its Test Bench

TESTER MULTIPLIER

St

Mplier

CLK

Mcand

Product
Done

Figure 4-39 shows the VHDL code for the multiplier test bench. The test sequence consists
of 11 sets of multiplicands and multipliers, provided in the Mcandarr and Mplierarr arrays.
The expected outputs from the multiplier are provided in another array, the Productarr, in
order to test the correctness of the multiplier outputs. The test values and results are placed

4.10 A Signed Integer/Fraction Multiplier 225

FIGURE 4-39: Test Bench for Signed Multiplier

library IEEE;
use IEEE.numeric_bit.all;

entity testmult is
end testmult;

architecture test1 of testmult is
component mult2C
 port(CLK, St: in bit;
 Mplier, Mcand: in unsigned(3 downto 0);
 Product: out unsigned(6 downto 0);
 Done: out bit);
end component;

constant N: integer := 11;
type arr is array(1 to N) of unsigned(3 downto 0);
type arr2 is array(1 to N) of unsigned(6 downto 0);
constant Mcandarr: arr := ("0111", "1101", "0101", "1101", "0111",
 "1000", "0111", "1000", "0000", "1111", "1011");
constant Mplierarr: arr := ("0101", "0101", "1101", "1101", "0111",
 "0111", "1000", "1000", "1101", "1111", "0000");
constant Productarr: arr2 := ("0100011", "1110001", "1110001",
 "0001001", "0110001", "1001000",
 "1001000", "1000000", "0000000",
 "0000001", "0000000");
signal CLK, St, Done: bit;
signal Mplier, Mcand: unsigned(3 downto 0);
signal Product: unsigned(6 downto 0);
begin
 CLK <= not CLK after 10 ns;
 process
 begin
 for i in 1 to N loop
 Mcand <= Mcandarr(i);
 Mplier <= Mplierarr(i);
 St <= '1';
 wait until CLK = '1' and CLK'event;
 St <= '0';
 wait until Done = '0' and Done'event;
 assert Product = Productarr(i) -- compare with expected answer
report
"Incorrect Product when multiplying" --complex report can be used
& integer’image(to_integer(unsigned(Mplier)) --using 'image for debug
 & "and"
 & integer’image(to_integer(unsigned(Mcand))) & "."
 & "Expected result was:"
 & integer’image(to_integer(unsigned(Productarr(i))))
& "and the design under verification result was:"

226 Chapter 4 Design Examples

& integer'image(to_integer(unsigned(Product)))
severity error;
 end loop;
 report "TEST COMPLETED";
 end process;
 mult1: mult2c port map(CLK, St, Mplier, Mcand, Product, Done);
end test1;

in constant arrays in the VHDL code. A component declaration is done for the multiplier.
A port map statement is used to create an instance of the multiplier. The tester also gener-
ates the clock and start signal. The for loop reads values from the Mcandarr and Mplierarr
arrays and then sets the start signal to '1'. After the next clock, the start signal is turned off.
Then the test bench waits for the Done signal. When the trailing edge of Done arrives, the
multiplier output is compared against the expected output in the array Productar. An error
is reported if the answers do not match. Since the Done signal is turned off at the same time
the multiplier control goes back to S0, the process waits for the falling edge of Done before
looping back to supply new values of Mcand and Mplier. Note that the port map statement is
outside the process that generates the stimulus. The multiplier constantly receives some set
of inputs and generates the corresponding set of outputs.

Figure 4-40 shows the command �le and simulator output. The simulator output has
been annotated to interpret the test results. The –NOtrigger together with the –Trigger done
in the list statement causes the output to be displayed only when the Done signal changes.
Without the –NOtrigger and –Trigger, the output would be displayed every time any sig-
nal on the list changed. All the product outputs are correct, except for the special case of
21 3 21 11.000 3 1.000 2 , which gives 1.000000 121 2 instead of 11. This occurs because no
representation of 11 is possible without adding another bit.

FIGURE 4-40: Command File and Simulation of Signed Multiplier

–– Command file to test results of signed multiplier
add list -NOtrigger Mplier Mcand product -Trigger done
run 1320

 ns delta mplier mcand product done
 0 +1 0101 0111 0000000 0
 90 +2 0101 0111 0100011 1 5/8 * 7/8 = 35/64
 110 +2 0101 1101 0100011 0
 210 +2 0101 1101 1110001 1 5/8 * -3/8 = -15/64
 230 +2 1101 0101 1110001 0
 330 +2 1101 0101 1110001 1 -3/8 * 5/8 = -15/64
 350 +2 1101 1101 1110001 0
 450 +2 1101 1101 0001001 1 -3/8 * -3/8 = 9/64
 470 +2 0111 0111 0001001 0
 570 +2 0111 0111 0110001 1 7/8 * 7/8 = 49/64
 590 +2 0111 1000 0110001 0
 690 +2 0111 1000 1001000 1 7/8 * -1 = -7/8
 710 +2 1000 0111 1001000 0

4.10 A Signed Integer/Fraction Multiplier 227

Next, re�ne the VHDL model for the signed multiplier by explicitly de�ning the control
signals and the actions that occur when each control signal is asserted. The VHDL code
(Figure 4-41) is organized in a manner similar to the Mealy machine model of Figure 1-17. In
the �rst process, the Nextstate and output control signals are de�ned for each present State.
In the second process, after waiting for the rising edge of the clock, the appropriate registers
are updated and the State is updated. Test the VHDL code of Figure 4-41 using the same test
�le you used previously and verify that you get the same product outputs.

 810 +2 1000 0111 1001000 1 -1 * 7/8 = -7/8
 830 +2 1000 1000 1001000 0
 930 +2 1000 1000 1000000 1 -1 * -1 = -1 (error)
 950 +2 1101 0000 1000000 0
1050 +2 1101 0000 0000000 1 -3/8 * 0 = 0
1070 +2 1111 1111 0000000 0
1170 +2 1111 1111 0000001 1 -1/8 * -1/8 = 1/64
1190 +2 0000 1011 0000001 0
1290 +2 0000 1011 0000000 1 0 * -3/8 = 0
1310 +2 0101 0111 0000000 0

FIGURE 4-41: Model for 2’s Complement Multiplier with Control Signals

–– This VHDL model explicitly defines control signals.

library IEEE;
use IEEE.numeric_bit.all;

entity mult2C is
 port(CLK, St: in bit;
 Mplier, Mcand: in unsigned(3 downto 0);
 Product: out unsigned (6 downto 0);
 Done: out bit);
end mult2C;

–– This architecture of a 4-bit multiplier for 2's complement numbers
–– uses control signals.

architecture behave2 of mult2C is
signal State, Nextstate: integer range 0 to 5;
signal A, B, compout, addout: unsigned(3 downto 0);
signal AdSh, Sh, Load, Cm: bit;
alias M: bit is B(0);
begin
 process(State, St, M)
 begin
 Load <= '0'; AdSh <= '0'; Sh <= '0'; Cm <= '0'; Done <= '0';
 case State is
 when 0 => -- initial state
 if St = '1' then Load <= '1'; Nextstate <= 1; end if;

228 Chapter 4 Design Examples

 when 1 | 2 | 3 => -- "add/shift" State
 if M = '1' then AdSh <= '1';
 else Sh <= '1';
 end if;
 Nextstate <= State + 1;
 when 4 => -- add complement if sign
 if M = '1' then -- bit of multiplier is 1
 Cm <= '1'; AdSh <= '1';
 else Sh <= '1';
 end if;
 Nextstate <= 5;
 when 5 => -- output product
 Done <= '1';
 Nextstate <= 0;
 end case;
 end process;

 compout <=not Mcand when Cm = '1' else Mcand; -- complementer
 addout <= A + compout + unsigned'(0=>Cm); -- 4-bit adder with carry in

 process (CLK)
 begin
 if CLK'event and CLK = '1' then -- executes on rising edge
 if Load = '1' then -- load the multiplier
 A <= "0000";
 B <= Mplier;
 end if;
 if AdSh = '1' then -- add multiplicand to A and shift
 A <= compout(3) & addout(3 downto 1);
 B <= addout(0) & B(3 downto 1);
 end if;
 if Sh = '1' then
 A <= A(3) & A(3 downto 1);
 B <= A(0) & B(3 downto 1);
 end if;
 State <= Nextstate;
 end if;
 end process;
 Product <= A(2 downto 0) & B;
end behave2;

4.11 Keypad Scanner
In this example, a scanner for a keypad with three columns and four rows as in Figure 4-42
is designed. The keypad is wired in matrix form with a switch at the intersection of each row
and column. Pressing a key establishes a connection between a row and column. The pur-
pose of the scanner is to determine which key has been pressed and output a binary number
N 5 N3N2N1N0, which corresponds to the key number. For example, pressing key 5 must

4.11 Keypad Scanner 229

output 0101, pressing the * key must output 1010, and pressing the # key must output 1011.
When a valid key has been detected, the scanner should output a signal V for one clock time.
Assume that only one key is pressed at a time. The design must include hardware to protect
the circuitry from malfunction due to keypad bounces.

The overall block diagram of the circuit is presented in Figure 4-43. The keypad contains
resistors that are connected to ground. When a switch is pressed, a path is established from
the corresponding column line to the ground. If a voltage can be applied on the column lines
C0, C1, and C2, then the voltage can be obtained on the row line corresponding to the key that
is pressed. One among the rows R0, R1, R2, or R3 will have an active signal.

FIGURE 4-42: Keypad
with Three Columns
and Four Rows

1 2 3

4 5 6

7 98

0* #

Divide the design into several modules, as shown in Figure 4-44. The �rst part of the
design will be a scanner that scans the rows and columns of the keypad. The keyscan module
generates the column signals to scan the keypad. The debounce module generates a signal
K when a key has been pressed and a signal Kd after it has been debounced. When a valid
key is detected, the decoder determines the key number from the row and column numbers.

Keypad

scanner,

debouncer,

& decoder

1 2 3

4 5 6

7 8 9

0* #
V

N

C2 C1 C0

R0

R1

R2

R3

Clock

FIGURE 4-43: Block
Diagram for Keypad
Scanner

FIGURE 4-44: Scanner
Modules

Keypad Debounce Keyscan Decoder

4

R3–0

4

3 C2–0

V N

Kd

K

230 Chapter 4 Design Examples

4.11.1 Scanner
The following procedure is used to scan the keypad: First apply logic 1’s to columns C0, C1,
and C2 and wait. If any key is pressed, a 1 will appear on R0, R1, R2, or R3. Then apply a 1 to
column C0 only. If any of the Ri rs is 1, a valid key is detected. If R0 is received, switch 1 was
pressed. If R1, R2, or R3 is received, switch 4, 7, or * was pressed. If so, set V 5 1 and output
the corresponding N. If no key is detected in the �rst column, apply a 1 to C1 and repeat. If
no key is detected in the second column, repeat for C2. When a valid key is detected, apply
1’s to C0, C1, and C2 and wait until no key is pressed. This last step is necessary so that only
one valid signal is generated each time a key is pressed.

4.11.2 Debouncer
As discussed in the scoreboard example, the keys must be debounced to avoid malfunctions
due to switch bounce. Figure 4-45 shows a proposed debouncing and synchronizing circuit.
The four row signals are connected to an OR gate to form signal K, which turns on when a
key is pressed and a column scan signal is applied. The debounced signal Kd will be fed to
the sequential circuit.

FIGURE 4-45:
Debouncing and
Synchronizing Circuit

R0
R1
R2
R3

CK

DA QA
K

CK

CLK

KdDB QB

4.11.3 Decoder
The decoder determines the key number from the row and column numbers using the truth
table given in Table 4-4. The truth table has one row for each of the 12 keys. The remaining
rows have don’t care outputs since you have assumed that only one key is pressed at a time.
Since the decoder is a combinational circuit, its output will change as the keypad is scanned.
At the time a valid key is detected (K 5 1 and V 5 1), its output will have the correct value
and this value can be saved in a register at the same time the circuit goes to S5.

R3 R2 R1 R0 C0 C1 C2 N3 N2 N1 N0

0 0 0 1 1 0 0 0 0 0 1
0 0 0 1 0 1 0 0 0 1 0
0 0 0 1 0 0 1 0 0 1 1
0 0 1 0 1 0 0 0 1 0 0
0 0 1 0 0 1 0 0 1 0 1
0 0 1 0 0 0 1 0 1 1 0
0 1 0 0 1 0 0 0 1 1 1
0 1 0 0 0 1 0 1 0 0 0
0 1 0 0 0 0 1 1 0 0 1
1 0 0 0 1 0 0 1 0 1 0 (*)
1 0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 1 1 0 1 1 (#)

TABLE 4-4: Truth Table for Decoder

Logic Equations for Decoder

 N3 5 R2C0 r 1 R3C1 r

 N2 5 R1 1 R2C0

 N1 5 R0C0 r 1 R2 rC2 1 R1 rR0 rC0

 N0 5 R1C1 1 R1 rC2 1 R3 rR1 rC1 r

4.11 Keypad Scanner 231

4.11.4 Controller
Figure 4-46 shows the state diagram of the controller for the keypad scanner. It waits in S1
with outputs C0 5 C1 5 C2 5 1 until a key is pressed. In S2, C0 5 1, so if the key that was
pressed is in column 0, K 5 1, and the circuit outputs a valid signal and goes to S5. Signal K
is used instead of Kd, since the key press is already debounced. If no key press is found in
column 0, column 1 is checked in S3, and if necessary, column 2 is checked in S4. In S5, the
circuit waits until all keys are released, and Kd goes to 0 before resetting.

The state diagram in Figure 4-46 works for many cases; however, it does have some
 timing problems. Let us analyze the following situations.

FIGURE 4-46: State
Graph for Keypad
Scanner KdK K 9

Kd 9K Kd 9K Kd 9+K 9

Kd 9+K 9

Kd

Kd 9

KdK/V KdK/V
KdK/V

1

K 9S1
C0C1C2

C0C1C2

S5

S2
C0

S0
0

S3
C1

S4
C2

1. Is K true whenever a button is pressed?
No. Although K is true if any one of the row signals R1, R2, R3, or R4 is true, if the column
scan signals are not active, none of R1–R4 can be true, although the button is pressed.

2. Can Kd be false when a button continues to be pressed?
Yes. Signal Kd is nothing but K delayed by two clock cycles. K can go to 0 during the scan
process even when the button is being pressed. For instance, consider the case when a key
in the rightmost column is pressed. During the scan of the �rst two columns, K goes to 0.
If K goes to 0 at any time, Kd will go to zero two cycles later. Hence, neither K nor Kd is
synonymous to pressing the button.

3. Can you go from S5 to S1 when a button is still pressed?
In the state diagram in Figure 4-46, the S4-to-S5 transition could happen when Kd is false.
Kd might have become false while scanning C0 and C1. Hence, it is possible that you may
reach back to S1 when the key is still being pressed. As an example, let us assume that a
button is pressed in column C2. This is to be detected in S4. However, during the scanning
process in S2 and S3, K is 0; hence, two cycles later Kd will be 0 even if the button stays
pressed. During the scan in S4, the correct key can be found; however, the system can reach
S5 when Kd is still 0 and a malfunction can happen. S5 is intended to sense the release of the
key. However, Kd is not synonymous to pressing the button and Kd does not truly indicate
that the button got released. Since Kd can appear when the button is still pressed, if you
reach S5 when Kd is true due to scanning activity in a previous state, the system can go from
S5 to S1 without a key release. In such a case, the same key may be read multiple times.

4. What if a key is pressed for only one or two clock cycles?
If the key is pressed and released very quickly, there would be problems, especially if
the key is in the third column. By the time the scanner reaches state S4, the key might
have been released already. The key should be pressed long enough for the scanner to go
through the longest path in the state graph from S0 to S5. This may not be a serious problem
because usually the digital system clock is much faster than any mechanical switch.

232 Chapter 4 Design Examples

These problems can be �xed by assuring that you can reach S5 only if Kd is true. A modi-
�ed state diagram is presented in Figure 4-47. Before transitioning to state S5, this circuit
waits in state S2, S3, and S4 until Kd also becomes 1.

FIGURE 4-47: Modi�ed
State Graph for Keypad
Scanner

Kd K 9

Kd 9

Kd

Kd 9

K/V K/V
1/V

1

K 9S1
C0C1C2

C0C1C2

S5

S2
C0

S0
0

S3
C1

S4
C2

4.11.5 VHDL Code
The VHDL code used to implement the design is shown in Figure 4-48. The decoder equa-
tions as well as the equations for K and V are implemented by concurrent statements. The
process implements the next state equations for the keyscan and debounce �ip-�ops.

FIGURE 4-48: VHDL Code for Scanner

entity scanner is
 port(R0, R1, R2, R3, CLK: in bit;
 C0, C1, C2: inout bit;
 N0, N1, N2, N3, V: out bit);
end scanner;

architecture behavior of scanner is
signal QA, K,Kd: bit;
signal state, nextstate: integer range 0 to 5;
begin
 K <= R0 or R1 or R2 or R3; -- this is the decoder section
 N3 <= (R2 and not C0) or (R3 and not C1);
 N2 <= R1 or (R2 and C0);
 N1 <= (R0 and not C0) or (not R2 and C2) or (not R1 and not R0 and C0);
 N0 <= (R1 and C1) or (not R1 and C2) or (not R3 and not R1 and not C1);

 process(state, R0, R1, R2, R3, C0, C1, C2, K, Kd, QA)
 begin
 C0 <= '0'; C1 <= '0'; C2 <= '0'; V <= '0';
 case state is
 when 0 => nextstate<= 1;
 when 1 => C0 <= '1'; C1 <= '1'; C2 <= '1';
 if (Kd and K) = '1' then nextstate <= 2;
 else nextstate <= 1;
 end if;
 when 2 => C0 <= '1';
 if (Kd and K) = '1' then V <= '1'; nextstate <= 5;
 elsif K = '0' then nextstate <= 3;
 else nextstate <= 2;
 end if;

4.11 Keypad Scanner 233

 when 3 => C1 <= '1';
 if (Kd and K) = '1' then V <= '1'; nextstate <= 5;
 elsif K = '0' then nextstate <= 4;
 else nextstate <= 3;
 end if;
 when 4 => C2 <= '1';
 if (Kd and K) = '1' then V <= '1'; nextstate <= 5;
 else nextstate <= 4;
 end if;
 when 5 => C0 <= '1'; C1 <= '1'; C2 <= '1';
 if Kd = '0' then nextstate <= 1;
 else nextstate <= 5;
 end if;
 end case;
 end process;

 process(CLK)
 begin
 if CLK = '1' and CLK'EVENT then
 state <= nextstate;
 QA <= K;
 Kd <= QA;
 end if;
 end process;
end behavior;

4.11.6 Test Bench for Keypad Scanner
This VHDL code would be very dif�cult to test by supplying waveforms for the inputs
R0, R1, R2, and R3, since these inputs depend on the column outputs 1C0, C1, C2 2 . A much
better way to test the scanner is by using a test bench in VHDL. The scanner you are test-
ing will be treated as a component and embedded in the test bench program. The signals
generated within the test bench are interfaced to the scanner as shown in Figure 4-49. The
test bench simulates a key press by supplying the appropriate R signals in response to the
C signals from the scanner. When test bench receives V 5 1 from the scanner, it checks to
see if the value of N corresponds to the key that was pressed.

FIGURE 4-49: Interface
for Test Bench

TEST1 SCANNER

R3–0

C2–0

V
N3–0

CLK

The VHDL code for the keypad test bench is shown in Figure 4-50. A copy of the scanner
is instantiated within the test1 architecture, and connections to the scanner are made by the
port map. The sequence of key numbers used for testing is stored in the array KARRAY. The
tester simulates the keypad operation using concurrent statements for R0, R1, R2, and R3.
Whenever C0, C1, C2, or the key number (KN) changes, new values for the Rs are computed.

234 Chapter 4 Design Examples

FIGURE 4-50: VHDL for Scanner Test Bench

library IEEE;
use IEEE.numeric_bit.all;

entity scantest is
end scantest;

architecture test1 of scantest is
component scanner
 port(R0, R1, R2, R3, CLK: in bit;
 C0, C1, C2: inout bit;
 N0, N1, N2, N3, V: out bit);
end component;

type arr is array (0 to 23) of integer; –– array of keys to test
constant KARRAY: arr := (2,5,8,0,3,6,9,11,1,4,7,10,1,2,3,4,5,6,7,8,9,10,11,0);
signal C0, C1, C2, V, CLK, R0, R1, R2, R3: bit; –– interface signals
signal N: unsigned(3 downto 0);
signal KN: integer; –– key number to test
begin
 CLK <= not CLK after 20 ns; –– generate clock signal
 –– this section emulates the keypad
 R0 <= '1' when (C0='1' and KN=1) or (C1='1' and KN=2) or (C2='1' and KN=3)
 else '0';
 R1 <= '1' when (C0='1' and KN=4) or (C1='1' and KN=5) or (C2='1' and KN=6)
 else '0';
 R2 <= '1' when (C0='1' and KN=7) or (C1='1' and KN=8) or (C2='1' and KN=9)
 else '0';
 R3 <= '1' when (C0='1' and KN=10) or (C1='1' and KN=0) or (C2='1' and KN=11)
 else '0';

 process -- this section tests scanner
 begin
 for i in 0 to 23 loop -- test every number in key array
 KN <= KARRAY(i); -- simulates keypress
 wait until (V = '1' and rising_edge(CLK));
 assert (to_integer(N) = KN) -- check if output matches
 report "Numbers don't match"
 severity error;
 KN <= 15; -- equivalent to no key pressed
 wait until rising_edge(CLK); -- wait for scanner to reset
 wait until rising_edge(CLK);
 wait until rising_edge(CLK);
 end loop;
 report "Test Complete.";
 end process;
 scanner1: scanner port map(R0,R1,R2,R3,CLK,C0,C1,C2,N(0),N(1),N(2),N(3),V);
 –– connect test1 to scanner
end test1;

4.12 Binary Dividers 235

For example, if KN 5 5 (to simulate pressing key 5), then R0R1R2R3 5 0100 is sent to the
scanner when C0C1C2 5 010. The test process is as follows:

1. Read a key number from the array to simulate pressing a key.
2. Wait until V 5 1 and the rising edge of the clock occurs.
3. Verify that the N output from the scanner matches the key number.
4. Set KN 5 15 to simulate no key pressed. (Since 15 is not a valid key number, all R’s will

go to 0.)
5. Wait until Kd 5 0 before selecting a new key.

Key presses in row order and column order are tried using the various numbers in KAR-
RAY. The test bench uses assert statements to test whether the reported number matches
the key pressed. The report statement is used to report an error if the scanner generates the
wrong key number, and it will report “Test Complete.” when all keys have been tested.

4.12 Binary Dividers
4.12.1 Unsigned Divider
Consider the design of a parallel divider for positive binary numbers. As an example, you will
design a circuit to divide an 8-bit dividend by a 4-bit divisor to obtain a 4-bit quotient. The
following example illustrates the division process:

1010 Quotient
Divisor 1101 10000111 Dividend

1101
(135 ÷ 13 = 10 with

a remainder of 5)
0111
0000

1111
1101

0101
0000
0101 Remainder

Just as binary multiplication can be carried out as a series of add and shift operations,
division can be carried out by a series of subtract and shift operations. To construct the
divider, use a 9-bit dividend register and a 4-bit divisor register, as shown in Figure 4-51. Dur-
ing the division process, instead of shifting the divisor right before each subtraction, shift the
dividend to the left. Note that an extra bit is required on the left end of the dividend register
so that a bit is not lost when the dividend is shifted left. Instead of using a separate register
to store the quotient, enter the quotient bit-by-bit into the right end of the dividend register
as the dividend is shifted left.

The preceding division example (135 divided by 13) is reworked next, showing the loca-
tion of the bits in the registers at each clock time. Initially, the dividend and divisor are
entered as follows:

236 Chapter 4 Design Examples

Subtraction cannot be carried out without a negative result, so shift before subtracting.
Instead of shifting the divisor one place to the right, shift the dividend one place to the left:

1 0 0 0 0 1 1 1
1 1 0 1

0

 Dividing line between dividend and quotient

 Note that after the shift, the rightmost position
in the dividend register is sempty.s

Subtraction is now carried out, and the �rst quotient digit of 1 is stored in the unused
position of the dividend register:

0 0 0 1 1 1 1 1 0 1 first quotient digit

Next, shift the dividend one place to the left:

0 0 1 1 1 1 1
1 1 0 1

`1 0

Since subtraction would yield a negative result, shift the dividend to the left again, and
the second quotient bit remains zero:

0 1 1 1 1 1
1 1 0 1

`1 0 0

Subtraction is now carried out, and the third quotient digit of 1 is stored in the unused
position of the dividend register:

0 0 0 1 0 1 0 1 0 1 third quotient digit

A �nal shift is carried out, and the fourth quotient bit is set to 0:

0 0 1 0 1('')''*
remainder

` 1010(')'*
quotient

The �nal result agrees with that obtained in the �rst example.
If, as a result of a division operation, the quotient contains more bits than are available

for storing the quotient, an over�ow has occurred. For the divider of Figure 4-51, an over-
�ow would occur if the quotient is greater than 15, since only 4 bits are provided to store
the quotient. It is not actually necessary to carry out the division to determine if an over�ow
condition exists, since an initial comparison of the dividend and divisor will tell if the quotient

FIGURE 4-51: Block
Diagram for Parallel
Binary Divider X8 X7 X6 X5 X3 X2 X1 X0

Sh
LdX4

Clock

Control

Subtractor
and

comparator

Dividend register

Y3 Y2 Y1 Y0
0

V
(Over�ow
indicator)

St (Start signal)

Sh

C

Su

4.12 Binary Dividers 237

will be too large. For example, if you attempt to divide 135 by 7, the initial contents of the
registers are

0 1 0 0 0 0 1 1 1
0 1 1 1

Since subtraction can be carried out with a nonnegative result, subtract the divisor from
the dividend and enter a quotient bit of 1 in the rightmost place in the dividend register.
However, you cannot do this because the rightmost place contains the least signi�cant bit of
the dividend, and entering a quotient bit here would destroy that dividend bit. Therefore,
the quotient would be too large to store in the 4 bits you have allocated for it, and there is an
over�ow condition. In general, for Figure 4-51, if initially X8X7X6X5X4 $ Y3Y2Y1Y0 (i.e., if
the left 5 bits of the dividend register exceed or equal the divisor), the quotient will be greater
than 15 and an over�ow occurs. Note that if X8X7X6X5X4 $ Y3Y2Y1Y0, the quotient is

X8X7X6X5X4X3X2X1X0

Y3Y2Y1Y0
$

X8X7X6X5X40000

Y3Y2Y1Y0
5

X8X7X6X5X4 3 16

Y3Y2Y1Y0
$ 16

The operation of the divider can be explained in terms of the block diagram of Figure
4-51. A shift signal (Sh) will shift the dividend one place to the left. A subtract signal (Su) will
subtract the divisor from the �ve leftmost bits in the dividend register and set the quotient bit
(the rightmost bit in the dividend register) to 1. If the divisor is greater than the �ve leftmost
dividend bits, the comparator output is C 5 0; otherwise, C 5 1. Whenever C 5 0, subtrac-
tion cannot occur without a negative result, so a shift signal is generated. Whenever C 5 1, a
subtract signal is generated, and the quotient bit is set to 1. The control circuit generates the
required sequence of shift and subtract signals.

Figure 4-52 shows the state diagram for the control circuit. When a start signal (St) occurs,
the 8-bit dividend and 4-bit divisor are loaded into the appropriate registers. If C is 1, the
quotient would require �ve or more bits. Since space is only provided for a 4-bit quotient,
this condition constitutes an over�ow, so the divider is stopped and the over�ow indicator
is set by the V output. Normally, the initial value of C is 0, so a shift will occur �rst, and the
control circuit will go to state S2. Then, if C 5 1, subtraction occurs. After the subtraction is
completed, C will always be 0, so the next clock pulse will produce a shift. This process con-
tinues until four shifts have occurred and the control is in state S5. Then a �nal subtraction
occurs, if necessary, and the control returns to the stop state. For this example, assume that
when the start signal (St) occurs, it will be 1 for one clock time, and then it will remain 0 until
the control circuit is back in state S0. Therefore, St will always be 0 in states S1 through S5.

FIGURE 4-52: State
Diagram for Divider
Control Circuit

St9/0 St/Load C9/Sh C/Su

C9/Sh

C/SuC9/Sh

C/Su

C 9/Sh

C9/0
C/Su

S1 S2

S3S4S5

C/V

S0
(stop)

238 Chapter 4 Design Examples

Table 4-5 gives the state table for the control circuit. Since you assumed that St 5 0 in
states S1, S2, S3, and S4, the next states and outputs are “don't cares” for these states when
St 5 1. The entries in the output table indicate which outputs are 1. For example, the entry
Sh means Sh 5 1 and the other outputs are 0.

This example illustrates a general method for designing a divider for unsigned binary
numbers, and the design can easily be extended to larger numbers such as 16 bits divided by
8 bits or 32 bits divided by 16 bits. Using a separate counter to count the number of shifts is
recommended if more than four shifts are required.

4.12.2 Signed Divider
Now design a divider for signed (2’s complement) binary numbers that divides a 32-bit divi-
dend by a 16-bit divisor to give a 16-bit quotient. Although algorithms exist to divide the
signed numbers directly, such algorithms are rather complex. So take the easy way out and
complement the dividend and divisor if they are negative; when division is complete, comple-
ment the quotient if it should be negative.

Figure 4-53 shows a block diagram for the divider. Use a 16-bit bus to load the registers.
Since the dividend is 32 bits, two clocks are required to load the upper and lower halves of the
dividend register, and one clock is needed to load the divisor. An extra sign �ip-�op is used to
store the sign of the dividend. Use a dividend register with a built-in 2’s complementer. The
subtracter consists of an adder and a complementer, so subtraction can be accomplished by
adding the 2’s complement of the divisor to the dividend register. If the divisor is negative,
using a separate step to complement it is unnecessary; simply disable the complementer and
add the negative divisor instead of subtracting its complement. The control circuit is divided
into two parts—a main control, which determines the sequence of shifts and subtracts, and
a counter, which counts the number of shifts. The counter outputs a signal K 5 1 when 15
shifts have occurred. Control signals are de�ned as follows:

LdU Load upper half of dividend from bus.
LdL Load lower half of dividend from bus.
Lds Load sign of dividend into sign �ip-�op.
S Sign of dividend.
Cm1 Complement dividend register (2’s complement).
Ldd Load divisor from bus.
Su Enable adder output onto bus (Ena) and load upper half of dividend from

bus.
Cm2 Enable complementer. (Cm2 equals the complement of the sign bit of the

divisor, so a positive divisor is complemented and a negative divisor is not.)
Sh Shift the dividend register left one place and increment the counter.
C Carry output from adder. (If C 5 1, the divisor can be subtracted from the

upper dividend.)

StC StC
State 00 01 11 10 00 01 11 10

S0 S0 S0 S1 S1 0 0 Load Load
S1 S2 S0 — — Sh V — —
S2 S3 S2 — — Sh Su — —
S3 S4 S3 — — Sh Su — —
S4 S5 S4 — — Sh Su — —
S5 S0 S0 — — 0 Su — —

TABLE 4-5: State Table
for Divider Control
Circuit

4.12 Binary Dividers 239

St Start.
V Over�ow.
Qneg Quotient will be negative. (Qneg 5 1 when the sign of the dividend and divi-

sor are different.)

FIGURE 4-53: Block
Diagram for Signed
Divider

16-Bit full adder

16-Bit complementer

Divisor

Main
control

Sign

16

Acc (Remainder) Q (Quotient)

Dividend

16 16

16

16

Cm2

St

VK

16

Cout

Ena

Cin

C Sh

Ldl
Ldu

Cm1

Data in

Ldd Lds

Cm2

Compout

Dbus

16

4-Bit
counter

S

The procedure for carrying out the signed division is as follows:

1. Load the upper half of the dividend from the bus, and copy the sign of the dividend into
the sign �ip-�op.

2. Load the lower half of the dividend from the bus.
3. Load the divisor from the bus.
4. Complement the dividend if it is negative.
5. If an over�ow condition is present, go to the done state.
6. Otherwise carry out the division by a series of shifts and subtracts.
7. When division is complete, complement the quotient if necessary, and go to the done state.

Testing for over�ow is slightly more complicated than for unsigned division. First, con-
sider the case of all positive numbers. Since the divisor and quotient are each 15 bits plus
sign, their maximum value is 7FFFh. Since the remainder must be less than the divisor, its
maximum value is 7FFEh. Therefore, the maximum dividend for no over�ow is

divisor 3 quotient 1 remainder 5 7FFFh 3 7FFFh 1 7FFEh 5 3FFF7FFFh

If the dividend is 1 larger (3FFF8000h), division by 7FFFh (or anything smaller) gives an
over�ow. Test for the over�ow condition by shifting the dividend left one place and then
comparing the upper half of the dividend (divu) with the divisor. If divu $ divisor, the
quotient would be greater than the maximum value, which is an over�ow condition. For the
preceding example, shifting 3FFF8000h left once gives 7FFF0000h. Since 7FFFh equals the

240 Chapter 4 Design Examples

divisor, there is an over�ow. On the other hand, shifting 3FFF7FFFh left gives 7FFEFFFEh,
and since 7FFEh , 7FFFh, no over�ow occurs when dividing by 7FFFh.

Another way of verifying that the dividend must be shifted left before testing for over-
�ow is as follows. If you shift the dividend left one place and then divu $ divisor, you could
subtract and generate a quotient bit of 1. However, this bit would have to go in the sign bit
position of the quotient. This would make the quotient negative, which is incorrect. After
testing for over�ow, shift the dividend left again, which gives a place to store the �rst quotient
bit after the sign bit. Since you work with the complement of a negative dividend or a nega-
tive divisor, this method for detecting over�ow will work for negative numbers, except for
the special case where the dividend is 80000000h (the largest negative value). Modifying the
design to detect over�ow in this case is left as an exercise.

Figure 4-54 shows the state graph for the control circuit. When St 5 1, the registers are
loaded. In S2, if the sign of the dividend (S) is 1, the dividend is complemented. In S3, shift
the dividend left one place, and then test for over�ow in S4. If C 5 1, subtraction is possible,
which implies an over�ow, and the circuit goes to the done state. Otherwise, the dividend
is shifted left. In S5, C is tested. If C 5 1, then Su 5 1, which implies Ldu and Ena, so the
adder output is enabled onto the bus and loaded into the upper dividend register to accom-
plish the subtraction. Otherwise, Sh 5 1 and the dividend register is shifted. This continues
until K 5 1, at which time the last shift occurs if C 5 0, and the circuit goes to S6. Then if the
sign of the divisor and the saved sign of the dividend are different, the dividend register is
complemented so that the quotient will have the correct sign.

FIGURE 4-54: State
Graph for Signed
Divider Control Circuit

–/Ldl S/Cm1 Ldd

S 9/Ldd

–/Sh

C/V

St/Ldu Lds

C/SuC/Su

K 9C 9/Sh

KC 9/Sh

C 9 Qneg 9/0

C 9 Qneg/Cm1

S0 S1 S2 S3

S5S6

S4

C 9/Sh

St 9/0
Rdy

The VHDL code for the signed divider is shown in Figure 4-55. Since the 1’s comple-
menter and adder are combinational circuits, their operation is represented by concurrent
statements. All the signals that represent register outputs are updated on the rising edge
of the clock, so these signals are updated in the process after waiting for CLK to change
to '1'. The counter is simulated by a signal, count. For convenience in listing the simula-
tor output, you a ready signal (Rdy)is added, which is turned on in S0 to indicate that the
division is completed.

You are now ready to test the divider design by using the VHDL simulator. You need
a comprehensive set of test examples that tests all the different special cases that can arise
in the division process. To start with, you need to test the basic operation of the divider for
all the different combinations of signs for the divisor and dividend (11, 12, 21, and 22).
You also need to test the over�ow detection for these four cases. Limiting cases must also
be tested, including largest quotient, zero quotient, and so on. Use of a VHDL test bench
is convenient because the test data must be supplied in sequence at certain times, and the

4.12 Binary Dividers 241

FIGURE 4-55: VHDL Model of 32-Bit Signed Divider

library IEEE;
use IEEE.numeric_bit.all;

entity sdiv is
 port(CLK, St: in bit;
 Dbus: in unsigned(15 downto 0);
 Quotient: out unsigned(15 downto 0);
 V, Rdy: out bit);
end sdiv;

architecture Signdiv of Sdiv is
signal State: integer range 0 to 6;
signal Count: unsigned(3 downto 0); -- integer range 0 to 15
signal Sign, C, Cm2: bit;
signal Divisor, Sum, Compout: unsigned(15 downto 0);
signal Dividend: unsigned(31 downto 0);
alias Acc: unsigned(15 downto 0) is Dividend(31 downto 16);
begin -- concurrent statements
 Cm2 <= not divisor(15);
 compout <= divisor when Cm2 = '0' -- 1's complementer
 else not divisor;
 Sum <= Acc + compout + unsigned'(0=>Cm2); -- adder output
 C <= not Sum(15);
 Quotient <= Dividend(15 downto 0);
 Rdy <= '1' when State = 0 else '0';
 process(CLK)
 begin
 if CLK'event and CLK = '1' then -- wait for rising edge of clock
 case State is
 when 0 =>
 if St = '1' then
 Acc <= Dbus; -- load upper dividend
 Sign <= Dbus(15);
 State <= 1;
 V <= '0'; -- initialize overflow
 Count <= "0000"; -- initialize counter
 end if;
 when 1 =>
 Dividend (15 downto 0) <= Dbus; -- load lower dividend
 State <= 2;
 when 2 =>
 Divisor <= Dbus;
 if Sign = '1' then -- two's complement Dividend if necessary
 dividend <= not dividend + 1;
 end if;
 State <= 3;
 when 3 =>
 Dividend <= Dividend(30 downto 0) & '0'; -- left shift
 Count <= Count+1; State <= 4;

242 Chapter 4 Design Examples

 when 4 =>
 if C = '1' then -- C
 v <= '1'; State <= 0;
 else -- C'
 Dividend <= Dividend(30 downto 0) & '0'; -- left shift
 Count <= Count+1; State <= 5;
 end if;
 when 5 =>
 if C = '1' then -- C
 ACC <= Sum; -- subtract
 dividend(0) <= '1';
 else
 Dividend <= Dividend(30 downto 0) & '0'; -- left shift
 if Count = 15 then State <= 6; end if; -- KC'
 Count <= Count+1;
 end if;
 when 6 =>
 state <= 0;
 if C = '1' then -- C
 Acc <= Sum; -- subtract
 dividend(0) <= '1'; State <= 6;
 elsif (Sign xor Divisor(15)) = '1' then -- C'Qneg
 Dividend <= not Dividend + 1;
 end if; -- 2's complement Dividend
 end case;
 end if;
 end process;
end signdiv;

length of time to complete the division is dependent on the test data. Figure 4-56 shows a
test bench for the divisor. The test bench contains a dividend array and a divisor array for
the test data. The notation X“07FF00BB” is the hexadecimal representation of a bit string.
The process in testsdiv �rst puts the upper dividend on Dbus and supplies a start signal. After

FIGURE 4-56: Test Bench for Signed Divider

library IEEE;
use IEEE.numeric_bit.all;

entity testsdiv is
end testsdiv;

architecture test1 of testsdiv is
component sdiv
 port(CLK, St: in bit;
 Dbus: in unsigned(15 downto 0);
 Quotient: out unsigned(15 downto 0);
 V, Rdy: out bit);
end component;

4.12 Binary Dividers 243

constant N: integer : = 12; -- test sdiv1 N times
type arr1 is array(1 to N) of unsigned(31 downto 0);
type arr2 is array(1 to N) of unsigned(15 downto 0);
constant dividendarr: arr1 := (X"0000006F", X"07FF00BB", X"FFFFFE08",
 X"FF80030A", X"3FFF8000", X"3FFF7FFF", X"C0008000", X"C0008000",
 X"C0008001", X"00000000", X"FFFFFFFF", X"FFFFFFFF");
constant divisorarr: arr2 := (X"0007", X"E005", X"001E", X"EFFA", X"7FFF",
 X"7FFF", X"7FFF", X"8000", X"7FFF", X"0001", X"7FFF", X"0000");
signal CLK, St, V, Rdy: bit;
signal Dbus, Quotient, divisor: unsigned(15 downto 0);
signal Dividend: unsigned(31 downto 0);
signal Count: integer range 0 to N;

begin
 CLK <= not CLK after 10 ns;
 process
 begin
 for i in 1 to N loop
 St <= '1';
 Dbus <= dividendarr(i) (31 downto 16);
 wait until (CLK'event and CLK = '1');
 Dbus <= dividendarr(i) (15 downto 0);
 wait until (CLK'event and CLK = '1');
 Dbus <= divisorarr(i);
 St <= '0';
 dividend <= dividendarr(i) (31 downto 0); –– save dividend for listing
 divisor <= divisorarr(i); –– save divisor for listing
 wait until (Rdy = '1');
 count <= i; –– save index for triggering
 end loop;
 end process;
 sdiv1: sdiv port map(CLK, St, Dbus, Quotient, V, Rdy);
end test1;

waiting for the clock, it puts the lower dividend on Dbus. After the next clock, it puts the
divisor on Dbus. It then waits until the Rdy signal indicates that division is complete before
continuing. Count is set equal to the loop-index, so that the change in Count can be used to
trigger the listing output.

Figure 4-57 shows the simulator command �le and output. The –NOtrigger, together
with the –Trigger count in the list statement, causes the output to be displayed only
when the count signal changes. Examination of the simulator output shows that the divider
operation is correct for all of the test cases, except for the following case:

C0008000h 4 7FFFh 5 23FFF8000h 4 7FFFh 5 28000h 5 8000h

In this case, the over�ow is turned on, and division never occurs. In general, the divider
will indicate an over�ow whenever the quotient should be 8000h (the most negative value).
This occurs because the divider basically divides positive numbers, and the largest positive
quotient is 7FFFh. If it is important to be able to generate the quotient 8000h, the over�ow
detection can be modi�ed so it does not generate an over�ow in this special case.

244 Chapter 4 Design Examples

FIGURE 4-57: Simulation Test Results for Signed Divider

–– Command file to test results of signed divider
add list -hex -NOtrigger dividend divisor Quotient V -Trigger count
run 5300

 ns delta dividend divisor quotient v count
 0 +0 00000000 0000 0000 0 0
 470 +3 0000006F 0007 000F 0 1
 910 +3 07FF00BB E005 BFFE 0 2
1330 +3 FFFFFE08 001E FFF0 0 3
1910 +3 FF80030A EFFA 07FC 0 4
2010 +3 3FFF8000 7FFF 0000 1 5
2710 +3 3FFF7FFF 7FFF 7FFF 0 6
2810 +3 C0008000 7FFF 0000 1 7
3510 +3 C0008000 8000 7FFF 0 8
4210 +3 C0008001 7FFF 8001 0 9
4610 +3 00000000 0001 0000 0 A
5010 +3 FFFFFFFF 7FFF 0000 0 B
5110 +3 FFFFFFFF 0000 0002 1 C

This chapter presented several design examples. The examples included several arithmetic
and nonarithmetic circuits. A seven-segment display, a BCD adder, a traf�c light controller,
a scoreboard, and a keypad scanner are examples of non-arithmetic circuits presented in the
chapter. It also described algorithms for addition, multiplication, and division of unsigned
and signed binary numbers. Speci�c designs such as the carry look-ahead adder and the array
multiplier were presented. Digital systems to implement these algorithms were designed.
After developing a block diagram for such a system and de�ning the required control signals,
state graphs were used to de�ne a sequential machine that generates control signals in the
proper sequence. VHDL was used to describe the systems at several different levels so that
you could simulate and test for correct operation of the systems you designed.

Problems
4.1 Design the correction circuit for a BCD adder that computes Zdigit 0 and C for S0 (see Figures 4-5 and 4-6). This

correction circuit adds “0110” to S0 if S0 . 9. This is the same as adding “0AA0” to S0, where A 5 '1' if S0 . 9.
Draw a block diagram for the correction circuit using one full adder, three half adders, and a logic circuit to
compute A. Design a circuit for A using a minimum number of gates. Note that the maximum possible value of
S0 is 10010.

4.2 (a) If gate delays are 5 ns, what is the delay of the fastest 4-bit ripple carry adder? Explain your calculation.
 (b)If gate delays are 5 ns, what is the delay of the fastest 4-bit adder? What kind of an adder will it be? Explain

your calculation.
4.3 Develop a VHDL model for a 16-bit carry look-ahead adder utilizing the 4-bit adder from Figure 4-10 as a

component.
4.4 Derive generates, propagates, group generates, group-propagates, and the �nal sum and carry out for the 16-bit

carry look ahead adder of Figure 4-9, while adding 0101 1010 1111 1000 and 0011 1100 1100 0011.

Problems 245

4.5 (a) Write down the outputs at each of the levels in the Kogge-Stone tree if the numbers in Q 4.4 are added using
a Kogge-Stone adder.

 (b) Compare the delay of the adder in Q 4.4 with Q 4.5 a.
4.6 Indicate whether the following statements are true or false.

(a) Parallel pre�x adders are carry look-ahead adders.
(b) Carry look-ahead adders are parallel pre�x adders.
(c) The Kogge-Stone adder is a carry look-ahead adder.

4.7 Develop a VHDL model for a 16-bit Kogge-Stone adder. This should be a structural model that adheres to the
tree structure of the Kogge-Stone adder.

4.8 Compute the delay of an 8-bit traditional carry look-ahead adder and an 8-bit Kogge-Stone adder, assuming only
2-input gates are available.

4.9 Compute the delays of the following assuming only 2-input gates are available.
 (i) 4-input traditional carry look-ahead adder
 (ii) 8-bit traditional carry look-ahead adder
 (iii) 16-bit traditional carry look-ahead adder

4.10 The Brent-Kung adder is a pre�x adder with the pre�x network structure given below. Develop a VHDL model
for an 8-bit Brent-Kung adder. This should be a structural model that adheres to the tree structure of the Brent-
Kung adder.

14 13 12 11 10 9 8 7 6 5 4 3 2 1 015Inputs

Outputs

1

2

3

4

C0

p15
g15

p0
g0

5

6

Ai Bi

(gi, pi)

Gx:y

(gx, px) (gy, py)

Px:y

Gi-1:0
Pi-1:0 Co

Ci

gi = AiBi
pi = Ai%Bi

Si = pi%Ci

Ci = Gi-1:0 + Pi-1:0 C0

Gx:y = gx + pxgy
Px:y = pxpy

Si

Ci Pip15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0

C16 C15 C14 C13 C12 C11 C10 C9 C8 C7 C6 C5 C4 C3 C2 C1

S15 S14 S13 S12 S11 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1 S0

4.11 The Brent-Kung adder is a pre�x adder with the structure in Problem 4.10
(a) Compare the hardware required by a Brent-Kung adder with the hardware for the Kogge-Stone adder.
(b) Compare the delay of the Brent-Kung adder with the delay of the Kogge-Stone adder. Mark the critical path

in a copy of the Brent-Kung adder �gure.

246 Chapter 4 Design Examples

4.12 (a) Write a VHDL module that describes one bit of a full adder with accumulator (the module should have two
control inputs, Ad and L) if Ad 5 1, the Y input (and carry input) are added to the accumulator, and if
L 5 1, the Y input is loaded into the accumulator.

 (b) Using the module de�ned in (a), write a VHDL description of a 4-bit subtracter with accumulator. Assume
negative numbers are represented in 1’s complement. The subtracter should have control inputs Su (subtract)
and Ld (load).

4.13 (a) Implement the traf�c-light controller of Figure 4-15 using a modulo 13 counter with added logic. The counter
should increment every clock, with two exceptions. Use a ROM to generate the outputs.

(b) Write a VHDL description of your answer to (a).
(c) Write a test bench for part (b) and verify that your controller works correctly. Use concurrent statements to

generate test inputs for Sa and Sb.
4.14 Make the necessary additions to the following state graph so that it is a proper, completely speci�ed state graph.

Demonstrate that your answer is correct. Convert the graph to a state table using 0’s and 1’s for inputs and outputs.

S0

0

S1

Z

S2

Z

AC9

B9

AC B
B C

B9C9

4.15 Write synthesizable VHDL code that will generate the given waveform (W). Use a single process. Assume that
a clock with a 1 ms period is available as an input.

4.16 A BCD adder adds two BCD numbers (each of range 0 to 9) and produces the sum in BCD form. For example, if
it adds 9 (1001) and 8 (1000) the result would be 17 (1 0111). Implement such a BCD adder using a 4-bit binary
adder and appropriate control circuitry. Assume that the 2 BCD numbers are already loaded into two 4-bit regis-
ters (A and B), and there is a 5-bit sum register (S) available. You need some kind of correction to get the sum in
the BCD form because the binary adder produces results in the range 0000 to 1111 (plus a carry in some cases). If
any addition is required for this correction, use the same adder (i.e., you can use only 1 adder). Use multiplexers
at the adder inputs to steer the appropriate numbers to the adder in each cycle. Assume a start signal to initiate
the addition, and a done signal to indicate completion.
(a) Draw a block diagram of the system. Label each component appropriately to indicate its functionality and size.
(b) Describe step-by-step the algorithm that you would use to perform the addition. Explain and illustrate the

correction step.
(c) Draw a state graph for the controller.

29 ms 43 ms
(repeat)

W 29 ms 43 ms

Problems 247

4.17 Write VHDL code for a shift register module that includes a 16-bit shift register, a controller, and a 4-bit down
counter. The shifter can shift a variable number of bits depending on a count provided to the shifter module.
Inputs to the module are a number N (indicating shift count) in the range 1 to 15, a 16-bit vector par_in, a clock,
and a start signal, St. When St 5 '1', N is loaded into the down counter, and par_in is loaded into the shift register.
Then the shift register does a cycle left shift N times, and the controller returns to the start state. Assume that St
is only '1' for one clock time. All operations are synchronous on the falling-edge of the clock.
(a) Draw a block diagram of the system and de�ne any necessary control signals.
(b) Draw a state graph for the controller (2 states).
(c) Write VHDL code for the shift-register module. Use two processes (one for the combinational part of the

circuit, and one for updating the registers).
4.18 (a) Figure 4-13 shows the block diagram for a 32-bit serial adder with accumulator. The control circuit uses a

5-bit counter, which outputs a signal K 5 1 when it is in state 11111. When a start signal (St) is received, the
registers should be loaded. Assume that St will remain 1 until the addition is complete. When the addition is
complete, the control circuit should go to a stop state and remain there until St is changed back to 0. Draw a
state diagram for the control circuit (excluding the counter).

(b) Write the VHDL for the complete system, and verify its correct operation.
4.19 A block diagram for a 16-bit 2’s complement serial subtracter is given here. When St 5 1, the registers are loaded

and then subtraction occurs. The shift counter, C, produces a signal C15 5 1 after 15 shifts. V should be set to 1
if an over�ow occurs. Set the carry �ip-�op to 1 during load in order to form the 2’s complement. Assume that
St remains 1 for one clock time.
(a) Draw a state diagram for the control (two states).
(b) Write VHDL code for the system. Use two processes. The �rst process should determine the next state and

control signals; the second process should update the registers on the rising edge of the clock.

Full
adder

X(16)

Y(16)

Carry
FF

S

D
 FF

VOV
X0
YP

S

Control

Load

C15C(4)

Shift

CLK
St

X0

YP

CA CB

XIN(16)

YIN(16)

4.20 This problem involves the design of a BCD-to-binary converter. Initially a 3-digit BCD number is placed in the
A register. When a St signal is received, conversion to binary takes place, and the resulting binary number is
stored in the B register. At each step of the conversion, the entire BCD number (along with the binary number)
is shifted one place to the right. If the result in a given decade is greater than or equal 1000, the correction circuit
subtracts 0011 from that decade. (If the result is less than 1000, the correction circuit leaves the contents of the

248 Chapter 4 Design Examples

decade unchanged.) A shift counter is provided to count the number of shifts. When conversion is complete, the
maximum value of B will be 999 (in binary). Note: B is 10 bits.
(a) Illustrate the algorithm starting with the BCD number 857, showing A and B at each step.
(b) Draw the block diagram of the BCD-to-binary converter.
(c) Draw a state diagram of the control circuit (3 states). Use the following control signals: St: start conversion;

Sh: shift right; Co: subtract correction if necessary; and C9: counter is in state 9, or C10: counter is in state 10.
(Use either C9 or C10 but not both.)

(d) Write a VHDL description of the system.
4.21 This problem involves the design of a circuit that �nds the square root of an 8-bit unsigned binary number N using

the method of subtracting out odd integers. To �nd the square root of N, we subtract 1, then 3, then 5, and so on, until
we can no longer subtract without the result going negative. The number of times we subtract is equal to the square
root of N. For example, to �nd U 27 : 27 2 1 5 26; 26 2 3 5 23; 23 2 5 5 18; 18 2 7 5 11; 11 2 9 5 2; 2 2 11
(can’t subtract). Since we subtracted 5 times, U27 5 5. Note that the �nal odd integer is 1110 5 10112, and this
consists of the square root 11012 5 510 2 followed by a 1.
(a) Draw a block diagram of the square rooter that includes a register to hold N, a subtracter, a register to hold

the odd integers, and a control circuit. Indicate where to read the �nal square root. De�ne the control signals
used on the diagram.

(b) Draw a state graph for the control circuit using a minimum number of states. The N register should be loaded
when St 5 1. When the square root is complete, the control circuit should output a done signal and wait until
St 5 0 before resetting.

4.22 This problem concerns the design of a multiplier for unsigned binary numbers that multiplies a 4-bit number by a
16-bit number to give a 20-bit product. To speed up the multiplication, a 4-by-4 array multiplier is used so that we can
multiply by 4 bits in one clock time instead of only by 1 bit at each clock time. The hardware includes a 24-bit accumula-
tor register that can be shifted right 4 bits at a time using a control signal Sh4. The array multiplier multiples 4 bits by
4 bits to give an 8-bit product. This product is added to the accumulator using an Ad control signal. When a St signal
occurs, the 16-bit multiplier is loaded into the lower part of the A register. A done signal should be turned on when the
multiplication is complete. Since both the array multiplier and adder are combinational circuits, the 4-bit multiply and
the 8-bit add can both be completed in the same clock cycle. Do NOT include the array multiplier logic in your code;
just use the overloaded “*” operator. If D and E are 4-bit unsigned numbers, D * E will compute an 8-bit product.

4 3 4 array
multiplier

8

8 8

4

Mcand

4

A[3:0]

8-bit adder

16

Mult.

A (24 bits)

Ld
Ad
Sh4

Control

St

Done

Problems 249

(a) Draw a state graph for the controller (10 states)
(b) Write VHDL code for the multiplier. Use two processes (a combinational process and a clocked process). All

signals should be of type unsigned or bit.
4.23 (a) Estimate how many AND gates and adders will be required for a 16-bit 3 16-bit array multiplier.

(b) What is the longest delay in a 16 3 16 array multiplier, assuming an AND gate delay is tg, and adder delay
(full adder and half adder) is tad?

4.24 (a) Draw the organization of an 8 3 8 array multiplier and calculate how many full adders, half adders, and AND
gates are required.

(b) Highlight the critical path in your answer to (a) (If there are many equivalent ones, highlight any one of
them).

(c) What is the longest delay in an 8 3 8 array multiplier, assuming an AND gate delay is tg 5 1 ns, and adder
delay (full adder and half adder) is tad 5 2 ns?

(d) For an 8-bit 3 8-bit add-and-shift multiplier (similar to Figure 4-25), how fast must the clock be in order to
complete the multiplication in the same time as in part (c)?

4.25 An n 3 n array multiplier, as in Figure 4-30, takes 3n – 4 adder delays 1 1 gate delay to calculate a product.
Design an array multiplier which is faster than this for n . 4. (Hint: Instead of passing carry output to the left
adder, pass it to the diagonally lower one, speeding up the critical path. This topology is called “multiplier using
carry-save adder.”

4.26 The block diagram for a multiplier for signed (2’s complement) binary numbers is shown in Figure 4-33.
Give the contents of the A and B registers after each clock pulse when multiplicand 5 21/8 and
multiplier 5 23/8.

4.27 The block diagram for a multiplier for signed (2’s complement) binary numbers is shown in Figure 4-33. Give the
contents of the A and B registers after each clock pulse when multiplicand 5 3/8 and multiplier 5 25/8.

4.28 The block diagram for a multiplier for signed (2’s complement) binary numbers is shown in Figure 4-33. Give the
contents of the A and B registers after each clock pulse when multiplicand 5 23/8 and multiplier 5 5/8.

4.29 In Section 4.10, we developed an algorithm for multiplying signed binary fractions, with negative fractions rep-
resented in 2’s complement.
(a) Illustrate this algorithm by multiplying 1.0111 by 1.101.
(b) Draw a block diagram of the hardware necessary to implement this algorithm for the case where the multi-

plier is 4 bits, including sign, and the multiplicand is 5 bits, including sign.
4.30 The objective of this problem is to use VHDL to describe and simulate a multiplier for signed binary numbers

using Booth’s algorithm. Negative numbers should be represented by their 2’s complement. Booth’s algorithm
works as follows, assuming each number is n bits including sign: Use an 1n 1 1 2 -bit register for the accumula-
tor (A) so the sign bit will not be lost if an over�ow occurs. Also, use an 1n 1 1 2 -bit register (B) to hold the
multiplier and an n-bit register (C) to hold the multiplicand.

 1. Clear A (the accumulator), load the multiplier into the upper n bits of B, clear B0, and load the multiplicand
into C.

 2. Test the lower two bits of B 1B1B0 2 .
If B1B0 5 01, then add C to A (C should be sign-extended to n 1 1 bits and added to A, using an
1n 1 1 2 -bit adder).
If B1B0 5 10, then add the 2’s complement of C to A.
If B1B0 5 00 or 11, skip this step.

 3. Shift A and B together right one place with sign extended.
 4. Repeat steps 2 and 3, n 2 1 more times.
 5. The product will be in A and B, except ignore B0.

250 Chapter 4 Design Examples

 Example for n 5 5: Multiply 29 by 213.

A B B1B0

1. Load registers. 000000 100110 10 C 5 10111
2. Add 2’s comp. of C to A. 001001

001001 100110
3. Shift A&B. 000100 110011 11
3. Shift A&B. 000010 011001 01
2. Add C to A. 110111

111001 011001
3. Shift A&B. 111100 101100 00
3. Shift A&B. 111110 010110 10
2. Add 2’s comp. of C to A. 001001

000111 010110
3. Shift A&B. 000011 101011

Final result: 0001110101 5 1117

(a) Draw a block diagram of the system for n 5 8. Use 9-bit registers for A and B, a 9-bit full adder, an 8-bit
complementer, a 3-bit counter, and a control circuit. Use the counter to count the number of shifts.

(b) Draw a state graph for the control circuit. When the counter is in state 111, return to the start state at the time
the last shift occurs (3 states should be suf�cient).

(c) Write behavioral VHDL code for the multiplier.
(d) Simulate your VHDL design using the following test cases (in each pair, the second number is the multiplier):

01100110 3 00110011
10100110 3 01100110
01101011 3 10001110
11001100 3 10011001

 Verify that your results are correct.
4.31 Design a multiplier that will multiply two 16-bit signed binary integers to give a 32-bit product. Negative numbers

should be represented in 2’s complement form. Use the following method: First complement the multiplier and
multiplicand if they are negative, multiply the positive numbers, and then complement the product if necessary.
Design the multiplier so that after the registers are loaded, the multiplication can be completed in 16 clocks.
(a) Draw a block diagram of the multiplier. Use a 4-bit counter to count the number of shifts. (The counter will

output a signal K 5 1 when it is in state 15.) De�ne all condition and control signals used on your diagram.
(b) Draw a state diagram for the multiplier control, using a minimum number of states (5 states). When the

multiplication is complete, the control circuit should output a done signal and then wait for ST 5 0 before
returning to state S0.

(c) Write a VHDL behavioral description of the multiplier without using control signals (for example, see Figure
4-35) and test it.

(d) Write a VHDL behavioral description using control signals (for example, see Figure 4-40) and test it.
4.32 This problem involves the design of a parallel adder-subtracter for 8-bit numbers expressed in sign and magni-

tude notation. The inputs X and Y are in sign and magnitude, and the output Z must be in sign and magnitude.
Internal computation may be done in either 2’s complement or 1’s complement (specify which you use), but no
credit will be given if you assume the inputs X and Y are in 1’s or 2’s complement. If the input signal Sub 5 1,

Problems 251

then Z 5 X 2 Y, else Z 5 X 1 Y. Your circuit must work for all combinations of positive and negative inputs for
both add and subtract. You may use only the following components: an 8-bit adder, a 1’s complementer (for the
input Y), a second complementer (which may be either 1’s complement or 2’s complement—specify which you
use), and a combinational logic circuit to generate control signals. Hint: 2X 1 Y 5 2 1X 2 Y 2 . Also generate an
over�ow signal that is 1 if the result cannot be represented in 8-bit sign and magnitude.
(a) Draw the block diagram. No registers, multiplexers, or tristate busses are allowed.
(b) Give a truth table for the logic circuit that generates the necessary control signals. Inputs for the table should

be Sub, Xs, and Ys in that order, where Xs is the sign of X and Ys is the sign of Y.
(c) Explain how you would determine the over�ow and give an appropriate equation.

4.33 Four push buttons (B0, B1, B2, and B3) are used as inputs to a logic circuit. Whenever a button is pushed, it is
debounced, and then the circuit loads the button number in binary into a 2-bit register (N). For example, if B2 is
pushed, the register output becomes N 5 102. The register holds this value until another button is pushed. Use a
total of two �ip-�ops for debouncing. Use a 10-bit counter as a clock divider to provide a slow clock for debounc-
ing. Kd is a signal, which is 1 when any button has been pushed and debounced.
(a) Draw a state graph (two states) to generate the signal that loads the register when Kd 5 1.
(b) Draw a logic circuit diagram showing the 10-bit counter, the 2-bit register N, and all necessary gates and

�ip-�ops.
4.34 Design a 4 3 4 keypad scanner for the following keypad layout.

1

4

7

E

2 3 A

5 6 B

C

D

98

0 F

R0

R1

R2

R3

C0 C1 C2 C3

(a) Assuming only one key can be pressed at a time, �nd the equations for a number decoder given R320
and C320, whose output corresponds to the binary value of the key. For example, the F key will return
N320 5 1111 in binary, or 15.

(b) Design a debouncing circuit that detects when a key has been pressed or depressed. Assume switch bounce
will die out in one or two clock cycles. When a key has been pressed, K 5 1 and Kd is the debounced signal.

(c) Design and draw a state graph that performs the keyscan and issues a valid pulse when a valid key has been
pressed using inputs from part (b).

(d) Write a VHDL description of your keypad scanner and include the decoder, debouncing circuit, and the
scanner.

4.35 This problem concerns the design of a divider for unsigned binary numbers that will divide a 16-bit dividend by
an 8-bit divisor to give an 8-bit quotient. Assume that the start signal 1ST 5 1 2 is 1 for exactly one clock time. If
the quotient would require more than 8 bits, the divider should stop immediately and output V 5 1 to indicate
an over�ow. Use a 17-bit dividend register and store the quotient in the lower 8 bits of this register. Use a 4-bit
counter to count the number of shifts, together with a subtract-shift controller.
(a) Draw a block diagram of the divider.
(b) Draw a state graph for the subtract-shift controller (3 states).
(c) Write a VHDL description of the divider. Use two processes, similar to Figure 4-40.
(d) Write a test bench for your divider (similar to Figure 4-55).

252 Chapter 4 Design Examples

4.36 A block diagram and state graph for a divider for unsigned binary numbers is shown below. This divider divides
a 16-bit dividend by a 16-bit divisor to give a 16-bit quotient. The divisor can be any number in the range 1 to
216 2 1. The only case where an over�ow can occur is when the divisor is 0. Control signals are de�ned as follows:
Ld1: load the divisor from the input bus; Ld2: load the dividend from the input bus and clear ACC; Sh: left shift
ACC & Dividend; Su: load the subtractor output into ACC and set the lower quotient bit to 1; K 5 1 when 15
shifts have been made. Write complete VHDL code for the divider. All signals must be of type unsigned or bit.
Use two processes.

ACC(16) Dividend(16)

Subtractor

Divisor

Control
Counter

QuotientInput

B (borrow)

Ld1

Ld1
Su

Ld2
Sh

B St

K

St/Ld1

– / Ld2

BK9/Sh

B9K9/Su

BK/0

B9K/Su
S3

S2S1

S0

– / Sh

St9/0

4.37 A block diagram for a divider that divides an 8-bit unsigned number by a 4-bit unsigned number to give a 4-bit
quotient is given below. Note that the Xi inputs to the subtractors are shifted over one position to the left. This
means that the shift-and-subtract operation can be completed in one clock time instead of two. Depending on
the borrow from the subtractor, a shift or shift-and-subtract operation occurs at each clock time, and the division
can always be completed in four clock times after the registers are loaded. Ignore over�ow. When the start signal
(St) is 1, the X and Y registers are loaded. Assume that the start signal (St) is 1 for only one clock time. Sh causes
X to shift left with 0 �ll. SubSh causes the subtractor output to be loaded into the left part of X, and at the same
time the rest of X is shifted left.

X0X1X2X3X4X5X6X7

Y0Y1Y2Y3

5-bit subtractor

Sh

SubSh

Load

Control
B

St

Load

B = borrow
0

B9

Dividend

Divisor

Problems 253

Design a Moore sequential circuit to control these lights. The circuit has three inputs LEFT, RIGHT, and HAZ.
LEFT and RIGHT come from the driver’s turn signal switch and cannot be 1 at the same time. As indicated
above, when LEFT 5 1 the lights �ash in a pattern LA on, LA and LB on, LA, LB, and LC on, all off, and then
the sequence repeats. When RIGHT 5 1, a similar sequence appears on lights RA, RB, and RC, as indicated on
the right side of the picture. If a switch from LEFT to RIGHT (or vice versa) occurs in the middle of a �ashing
sequence, the circuit should immediately go to the IDLE (lights off) state and then start the new sequence. HAZ
comes from the hazard switch, and when HAZ 5 1, all six lights �ash on and off in unison. HAZ takes precedence
if LEFT or RIGHT is also on.

Assume that a clock signal is available with a frequency equal to the desired �ashing rate.
(a) Draw the state graph (8 states).
(b) Realize the circuit using six D �ip-�ops, and make a one-hot state assignment such that each �ip-�op output

drives one of the six lights directly. (You may use LogicAid.)
(c) Realize the circuit using three D �ip-�ops, using the guidelines from Section 1.7 to determine a suitable

encoded state assignment. Note the tradeoff between more �ip-�ops and more gates in (b) and (c).
4.39 Design a controller for a car key remote control unit that controls the doors, trunk and lights of a car remotely.

The remote control includes 4 buttons, the top left button TL locks the doors, top right button TR unlocks
the doors, bottom left BL button turns the lights on/off, and the bottom right BR button controls the trunk. If
pressed less than 5 seconds the bottom right button simply locks/unlocks the trunk (if trunk is currently down)
whereas if pressed 5 seconds or longer, it unlocks and lifts the trunk up (if trunk is currently down). If trunk

(a) Draw a state graph for the controller (5 states).
(b) Complete the VHDL code given below. Registers and signals should be of type unsigned so that overloaded

operators may be used. Write behavioral code that uses a single process.

library IEEE;
use IEEE.numeric_bit.all;

entity divu is
 port(dividend: in unsigned(7 downto 0);
 divisor: in unsigned(3 downto 0);
 St, clk: in bit;
 quotient: out unsigned(3 downto 0));
end entity divu;

architecture div of divu is

4.38 An older model Thunderbird car has three left (LA, LB, LC) and three right (RA, RB, RC) tail lights which �ash
in unique patterns to indicate left and right turns.

LC LB LA RA RB RC LC LB LA RA RB RC

LEFT turn pattern RIGHT turn pattern

254 Chapter 4 Design Examples

is currently up, it brings the trunk down and locks it. You can assume outputs DL, DUL, TRL, TRUL, TRUP,
TRDWN, LON, LOFF to perform door locking, door unlocking, trunk locking, trunk unlocking, trunk lift up,
trunk down, lights on, lights off respectively. The outputs should stay on for one cycle when generated and then
go back to inactive state. The BL button makes the light on if it is currently off and vice versa. Sensor LIGHT51
indicates that lights are on and sensor TRUNKD51 indicates that trunk is down. You can assume that a clock
of 200 MHz is available.

(a) Construct a state diagram for the car key remote controller. You may assume that only one of the four
 buttons can be pressed at any given time. Discuss what hardware is assumed in the data path.

(b) Write VHDL code for the controller.
4.40 Hamming codes are used for error detection and correction in communication and memory systems. Error detec-

tion and correction capability is incorporated in these codes by inserting extra bits into the data word. Addition
of one parity bit can detect odd number of bit �ips, but no error correction is possible with one parity bit. A (7 , 4)
Hamming code has 4 bits of data but 7 bits in total including the 3 parity bits. It can detect 2 errors and correct 1
error. This code can be constructed as follows: If we denote data bits as d4d3d2d1, the encoded code word would
be d4d3d2p4d1p2p1, where p4, p2 and p1 are the added parity bits. These bits must satisfy the following condi-
tions for even parity:

p4 5 d2 XOR d3 XOR d4; c c c c c c c c c. 11 2
p2 5 d1 XOR d3 XOR d4; c c c c c c c c c. 12 2
p1 5 d1 XOR d2 XOR d4; c c c c c c c c c. 13 2

Problems 255

When the 7 bits are received/decoded, an error syndrome S3S2S1 is calculated as follows:

S3 5 p4 XOR d2 XOR d3 XOR d4; c c c c c c c c c. 14 2
S2 5 p2 XOR d1 XOR d3 XOR d4; c c c c c c c c c. 15 2
S1 5 p1 XOR d1 XOR d2 XOR d4; c c c c c c c c c. 16 2

The syndrome indicates which bit is wrong. For example, if the syndrome is 110, it indicates that bit 6 from right
end (i.e., d3) has �ipped. If S3S2S1 is 000, there is no error.
(a) Is there any error in the code word 0110111? If yes, which bit? What was the original data? What must be

the corrected code word?
(b) How will the above 6 equations get modi�ed for odd parity? Write the 6 equations for odd parity.
(c) Write VHDL code for an encoder that will generate the Hamming code from the original data (4 bits). The

inputs to the module are 4 input bits and 1 bit called PARITY which is 0 for odd parity and 1 for even parity.
(d) Write VHDL code for a decoder that will generate the original data (4 bits) from the 7-bit code word. It

should also generate the syndrome which tells whether there is an error. The inputs to the module are 7 input
bits and 1 bit called PARITY, which is 0 for odd parity and 1 for even parity.

256

C H A P T E R

5

A state machine is often used to control a digital system that carries out a step-by-step pro-
cedure or algorithm. State diagrams or state graphs with circles representing states and arcs
representing transitions have traditionally been used to specify the operation of the control-
ler state machine. As an alternative to using state graphs, a special type of �ow chart, called
a state machine chart, or SM chart, may be used to describe the behavior of a state machine.
These charts are also called algorithmic state machine charts, or ASM charts. SM charts are
often used to design control units for digital systems.

This chapter �rst describes the properties of SM charts and how they are used in the
design of state machines. Then it exhibits examples of SM charts for a multiplier and a dice
game controller. VHDL descriptions of these systems from the SM charts are constructed,
and the VHDL code to verify correct operation are simulated. Then it proceeds with the
design and shows how the SM chart can be realized with hardware. Microprogramming is
then introduced as a technique to implement the SM chart.

5.1 State Machine Charts
SM charts resemble software �ow charts. Flow charts have been very useful in software
design for decades, and in a similar fashion, SM charts have been useful in hardware design.
This is especially true in behavioral-level design entry.

SM charts offer several advantages over state graphs. It is often easier to understand the
operation of a digital system by inspection of the SM chart instead of the equivalent state graph.
A proper state graph has to obey some conditions: (1) One and exactly one transition from a state
must be true at any time, and (2) the next state must be uniquely de�ned for every input combi-
nation. These conditions are automatically satis�ed for an SM chart. An SM chart also directly
leads to a hardware realization. A given SM chart can be converted into several equivalent forms,
and different forms might naturally result in different implementations. Hence, a designer may
optimize and transform SM charts to suit the implementation style/technology that he or she is
looking for.

An SM chart differs from an ordinary �ow chart in that certain speci�c rules must be fol-
lowed in constructing the SM chart. When these rules are followed, the SM chart is equivalent
to a state graph, and it leads directly to a hardware realization.

Figure 5-1 shows the three principal components of an SM chart. The state of the system
is represented by a state box. The state box contains a state name, followed by a slash (/) and
an optional output list. After a state assignment has been made, a state code may be placed
outside the box at the top. A decision box is represented by a diamond-shaped symbol with
true and false branches. The condition placed in the box is a Boolean expression that is evalu-
ated to determine which branch to take. The conditional output box, which has curved ends,

SM CHARTS AND
MICROPROGRAMMING

5.1 State Machine Charts 257

contains a conditional output list. The conditional outputs depend on both the state of the
system and the inputs.

FIGURE 5-1: Principal
Components of an SM
Chart

state_name/
output list

xxx

(a) State box

condition

 (true
branch)

(false
branch)1 0

conditional
output list

(b) Decision box
(c) Conditional
 output box

Optional
state code

An SM chart is constructed from SM blocks. Each SM block (Figure 5-2) contains exactly
one state box, together with the decision boxes and conditional output boxes associated with
that state. An SM block has one entrance path and one or more exit paths. Each SM block
describes the machine operation during the time that the machine is in one state. When a
digital system enters the state associated with a given SM block, the outputs on the output list
in the state box become true. The conditions in the decision boxes are evaluated to determine
which paths are followed through the SM block. When a conditional output box is encoun-
tered along such a path, the corresponding conditional outputs become true. If an output is
not encountered along a path, that output is false by default. A path through an SM block
from entrance to exit is referred to as a link path.

FIGURE 5-2: Example of
an SM Block

S1/Z1 Z2

X1

Z3 Z4

X3

X2 Z5

n321

0 1

0 1

0 1

One state

One entrance path

Link
path a

Link
path b

n exit paths

SM
block

For the example of Figure 5-2, when state S1 is entered, outputs Z1 and Z2 become 1. If input
X1 5 0, Z3 and Z4 also become 1. If X1 5 X2 5 0, at the end of the state time, the machine goes
to the next state via exit path 1. On the other hand, if X1 5 1 and X3 5 0, the output Z5 is l, and
exiting to the next state will occur via exit path 3. Since Z3 and Z4 are not encountered along this
link path, Z3 5 Z4 5 0 by default.

258 Chapter 5 SM Charts and Microprogramming

A given SM block can generally be drawn in several different forms. Figure 5-3 shows
two equivalent SM blocks. In both (a) and (b), the output Z2 5 1 if X1 5 0; the next state is
S2 if X2 5 0 and S3 if X2 5 1. As illustrated in this example, the order in which the inputs are
tested may affect the complexity of the SM chart.

FIGURE 5-3: Equivalent
SM Blocks

S2/ S3/

Z2

X1

X2

X2

0 1

0 1

X1 X1

Z2 Z2

S2/

1

0

S3/

1

0

S1/Z1

0 1

(a) (b)

S1/Z1

FIGURE 5-4: Equivalent
SM Charts for a
Combinational Circuit

A

C

B
0

0

1

1

0 1

A + BC

Z1

Z1

1

0

S0 /

S0 /

(a) (b)

The SM charts of Figures 5-4(a) and (b) each represent a combinational circuit, since
there is only one state and no state change occurs. The output is Z1 5 1 if A 1 BC 5 1;
otherwise Z1 5 0. Figure 5-4(b) shows an equivalent SM chart in which the input variables
are tested individually. The output is Z1 5 1 if A 5 1 or if A 5 0, B 5 1, and C 5 1. Hence

Z1 5 A 1 A rBC 5 A 1 BC

which is the same output function realized by the SM chart of Figure 5-4(a).

Certain rules must be followed when constructing an SM block. First, for every valid
combination of input variables, there must be exactly one exit path de�ned. This is necessary
since each allowable input combination must lead to a single next state. Second, no internal
feedback within an SM block is allowed. Figure 5-5 shows incorrect and correct ways of draw-
ing an SM block with feedback.

5.1 State Machine Charts 259

FIGURE 5-5: SM Block
with Feedback

0

1

S0 /

X
0

1

S0 /

X

(a) Incorrect (b) Correct

As shown in Figure 5-6(a), an SM block can have several parallel paths that lead to
the same exit path, and more than one of these paths can be active at the same time. For
example, if X1 5 X2 5 1 and X3 5 0, the link paths marked with dashed lines are active, and
the outputs Z1, Z2, and Z3 are 1. Although Figure 5-6(a) would not be a valid �ow chart for
a program for a serial computer, it presents no problems for a state machine implementa-
tion. The state machine can have a multiple-output circuit that generates Z1, Z2, and Z3 at
the same time. Figure 5-6(b) shows a serial SM block, which is equivalent to Figure 5-6(a).
In the serial block, only one active link path between entrance and exit is possible. For any
combination of input values, the outputs will be the same as in the equivalent parallel form.
The link path for X1 5 X2 5 1 and X3 5 0 is shown with a dashed line, and the outputs
encountered on this path are Z1, Z2, and Z3. Regardless of whether the SM block is drawn in
serial or parallel form, all the tests take place within one clock time. The rest of this text uses
only the serial form for SM charts.

FIGURE 5-6: Equivalent
SM Blocks

X1

Z2

Z2

0

1

X2

Z3

Z3

X3

Z4

Z4

1

0

1

0

S0/Z1

S0/Z1

X1 X2 X3

000

1 1 1

(a) Parallel form

(b) Serial form

It is easy to convert a state graph for a sequential machine to an equivalent SM chart.
The state graph of Figure 5-7(a) has both Moore and Mealy outputs. The equivalent SM
chart has three blocks—one for each state. The Moore outputs 1Za, Zb, Zc 2 are placed in
the state boxes since they do not depend on the input. The Mealy outputs 1Z1, Z2 2 appear

260 Chapter 5 SM Charts and Microprogramming

in conditional output boxes since they depend on both the state and input. In this example,
each SM block has only one decision box, since only one input variable must be tested. For
both the state graph and SM chart, Zc is always 1 in state S2. If X 5 0 in state S2, Z1 5 1
and the next state is S0. If X 5 1, Z2 5 1 and the next state is S2. A state assignment
1S0 5 00, S1 5 01, S2 5 11 2 has been added next to the state boxes.

FIGURE 5-7: Conversion
of a State Graph to an
SM Chart

0/0 1/Z2
S0 S1 S2

1/0 1/0

0/0

0/Z1

Za Zb Zc

(a) State graph

S0/Za

S2/Zc

S1/Zb

Z1 Z2

X

10

X

X

1

1

0

0

00

01

11

Link 1

Link 2

Link 3

(b) Equivalent SM chart

FIGURE 5-8: Timing
Chart for Figure 5-7 Clock

State

X

Za

Zb

Zc

Z1

Z2

S0 S1 S2 S2 S0 S0

Figure 5-8 shows a timing chart for the SM chart of Figure 5-7 with an input sequence
X 5 1, 1, 1, 0, 0, 0. In this example, all state changes occur immediately after the rising
edge of the clock. Since the Moore outputs 1Za, Zb, Zc 2 depend on the state, they can
change only immediately following a state change. The Mealy outputs 1Z1, Z2 2 can change
immediately after a state change or an input change. In any case, all outputs will have their
correct values at the time of the active clock edge.

5.2 Derivation of SM Charts 261

5.2 Derivation of SM Charts
The method used to derive an SM chart for a sequential control circuit is similar to that used
to derive the state graph. First, draw a block diagram of the system you are controlling. Next,
de�ne the required input and output signals to the control circuit. Then construct an SM
chart that tests the input signals and generates the proper sequence of output signals. This
section, gives two examples of derivation of SM charts.

5.2.1 Binary Multiplier
The �rst example is an SM chart for control of the binary multiplier shown in Figures 4-25
and 4-28(a). The add-shift control generates the required sequence of add and shift signals.
The counter counts the number of shifts and outputs K 5 1 just before the last shift occurs.
The SM chart for the multiplier control (Figure 5-9) corresponds closely to the state graph
of Figure 4-28(c). In state S0, when the start signal St is 1, the registers are loaded. In S1, the
multiplier bit M is tested. If M 5 1, an add signal is generated and the next state is S2. If
M 5 0, a shift signal is generated and K is tested. If K 5 1, this will be the last shift and the
next state is S3. In S2, a shift signal is generated, since a shift must always follow an add. If
K 5 1, the circuit goes to S3 at the time of the last shift; otherwise, the next state is S1. In S3,
the done signal is turned on.

Conversion of an SM chart to a VHDL process is straightforward. A case statement can
be used to specify what happens in each state. Each condition box corresponds directly to an if
statement (or an elsif). Figure 5-10 shows the VHDL code for the SM chart in Figure 5-9. Two
processes are used. The �rst process represents the combinational part of the circuit, and the sec-
ond process updates the state register on the rising edge of the clock. The signals Load, Sh, and
Ad are turned on in the appropriate states, and they must be turned off when the state changes.
A convenient way to do this is to set them all to 0 at the start of the process. This VHDL code

FIGURE 5-9: SM Chart
for Binary Multiplier S0 /

St

Load

S1/

M

Sh

K
S2/Sh

Ad

S3/Done K

1

1
1

0

0

0

0

1

262 Chapter 5 SM Charts and Microprogramming

FIGURE 5-10: Behavioral VHDL for Multiplier Controller (SM Chart of Figure 5-9)

entity Mult is
 port(CLK, St, K, M: in bit;
 Load, Sh, Ad, Done: out bit);
end Mult;

architecture SMbehave of Mult is
signal State, Nextstate: integer range 0 to 3;
begin
 process(St, K, M, State) -- start if state or inputs change
 begin
 Load <= '0'; Sh <= '0'; Ad <= '0'; Done <= '0';
 case State is
 when 0 =>
 if St = '1' then -- St (state 0)
 Load <= '1';
 Nextstate <= 1;
 else Nextstate <= 0; -- St'
 end if;
 when 1 =>
 if M = '1' then -- M (state 1)
 Ad <= '1';
 Nextstate <= 2;
 else -- M'
 Sh <= '1';
 if K = '1' then Nextstate <= 3; -- K
 else Nextstate <= 1; -- K'
 end if;
 end if;
 when 2 =>
 Sh <= '1'; -- (state 2)
 if K = '1' then Nextstate <= 3; -- K
 else Nextstate <= 1; -- K'
 end if;
 when 3 =>
 Done <= '1'; -- (state 3)
 Nextstate <= 0;
 end case;
 end process;
 process(CLK)
 begin
 if CLK = '1' and CLK'event then
 State <= Nextstate; -- update state on rising edge
 end if;
 end process;
end SMbehave;

5.2 Derivation of SM Charts 263

only models the controller. It assumes the presence of adders and shifters (shift registers) in the
architecture and generates the appropriate signals to load the registers, to add and/or to shift.

5.2.2 A Dice Game
As a second example of SM chart construction, you will design an electronic dice game. This
game is popularly known as craps in the United States. The game involves two dice, each of
which can have a value between 1 and 6. Two counters are used to simulate the roll of the
dice. Each counter counts in the sequence 1, 2, 3, 4, 5, 6, 1, 2, Thus, after the “roll” of the
dice, the sum of the values in the two counters will be in the range 2 through 12. The rules
of the game are as follows:

1. After the �rst roll of the dice, the player wins if the sum is 7 or 11. The player loses if the
sum is 2, 3, or 12. Otherwise, the sum the player obtained on the �rst roll is referred to as
a point, and he or she must roll the dice again.

2. On the second or subsequent roll of the dice, the player wins if the sum equals the point,
and he or she loses if the sum is 7. Otherwise, the player must roll again until he or she
�nally wins or loses.

Figure 5-11 shows the block diagram for the dice game. The inputs to the dice game come
from two push buttons, Rb (roll button) and Reset. Reset is used to initiate a new game. When
the roll button is pushed, the dice counters count at a high speed, so the values cannot be read
on the display. When the roll button is released, the values in the two counters are displayed.

FIGURE 5-11: Block
Diagram for Dice Game

Adder

Display Display

1-to-6
Counter

1-to-6
Counter

Point
register

Comparator

Test
logic

Control
Win

Lose

Rb

Reset

Roll

D7

D711

D2312

Eq

Sp

Sum

Dice Game module

Figure 5-12 shows a �ow chart for the dice game. After rolling the dice, the sum is tested.
If it is 7 or 11, the player wins; if it is 2, 3, or 12, he or she loses. Otherwise the sum is saved
in the point register, and the player rolls again. If the new sum equals the point, the player
wins; if it is 7, he or she loses. Otherwise, the player rolls again. If the Win light or the Lose
light is not on, the player must push the roll button again. After winning or losing, he or she
must push Reset to begin a new game. Assume at this point that the push buttons are properly
debounced and that changes in Rb are properly synchronized with the clock. A method for
debouncing and synchronization was discussed in Chapter 4.

The components for the dice game shown in the block diagram (Figure 5-11) include
an adder, which adds the two counter outputs, a register to store the point, test logic to

264 Chapter 5 SM Charts and Microprogramming

FIGURE 5-12: Flow
Chart for Dice Game

Roll dice

Sum =
7 or 11

Sum =
2, 3, or 12

Store sum in
point register

Roll dice

Sum =
Point

Sum = 7

Lose

Reset
Reset

Win

NY

N Y

NY

NY
N Y

Y

N

determine conditions for win or lose, and a control circuit. Input signals to the control circuit
are de�ned as follows:

D7 5 1 if the sum of the dice is 7

 D711 5 1 if the sum of the dice is 7 or 11

 D2312 5 1 if the sum of the dice is 2, 3, or 12

Eq 5 1 if the sum of the dice equals the number stored in the point register

Rb 5 1 when the roll button is pressed

 Reset 5 1 when the reset button is pressed

Outputs from the control circuit are de�ned as follows:

Roll 5 1 enables the dice counters

Sp 5 1 causes the sum to be stored in the point register

Win 5 1 turns on the win light

 Lose 5 1 turns on the lose light

The Rb and Roll signals may look synonymous; however, they are different. You are
using electronic dice counters, and Roll is the signal to let the counters continue to count. Rb
is a push-button signal requesting that the dice be rolled. Thus, Rb is an input to the control
circuit, while Roll is an output from the control circuit. When the control circuit is in a state
looking for a new roll of the dice, whenever the push button is pressed (i.e., Rb is activated),
the control circuit will generate the Roll signal to the electronic dice.

Now convert the �ow chart for the dice game to an SM chart for the control circuit
using the control signals de�ned above. Figure 5-13 shows the resulting SM chart.

5.2 Derivation of SM Charts 265

FIGURE 5-13: SM Chart
for Dice Game

S0 /

Rb

Rb

D711

S3 / Lose

Reset

Sp

S4 /

Rb

S5 /Roll

Rb

Eq

S2 / Win

1 0
1

0

1

1

1

0

0

D2312

D7

Reset

S1 /Roll

0
1

1

0
1

0
1

0

1

0

0

The control circuit waits in state S0 until the roll button is pressed 1Rb 5 1 2 . Then, it goes
to state S1, and the roll counters are enabled as long as Rb 5 1. As soon as the roll button is
released 1Rb 5 0 2 , D711 is tested. If the sum is 7 or 11, the circuit goes to state S2 and turns
on the Win light; otherwise, D2312 is tested. If the sum is 2, 3, or 12, the circuit goes to state
S3 and turns on the Lose light; otherwise, the signal Sp becomes 1 and the sum is stored in
the point register. It then enters S4 and waits for the player to “roll the dice” again. In S5,
after the roll button is released, if Eq 5 1, the sum equals the point and state S2 is entered to
indicate a win. If D7 5 1, the sum is 7 and S3 is entered to indicate a loss. Otherwise, control
returns to S4 so that the player can roll again. When in S2 or S3, the game is reset to S0 when
the Reset button is pressed.

Instead of using an SM chart, you could construct an equivalent state graph from the
�ow chart. Figure 5-14 shows a state graph for the dice game controller. The state graph has
the same states, inputs, and outputs as the SM chart. The arcs have been labeled consistently
with the rules for proper state graphs given in Section 4.5. Thus, the arcs leaving state S1 are
labeled Rb, Rb rD711, Rb rD r711, D2312, and Rb rD r711D r2312.

Before proceeding with the design, it is important to verify that the SM chart (or state
graph) is correct. Write a behavioral VHDL description based on the SM chart and then

266 Chapter 5 SM Charts and Microprogramming

FIGURE 5-14: State
Graph for Dice Game
Controller

S0

S4

S3
S2 S1

S5

Rb9/0

Rb/0 Rb/Roll

Reset 9/0

Reset 9/0
Rb9D711/0

Rb9 Eq/0

Rb9/0

Win Lose

Rb/0

Rb/Roll

Reset/0 Reset/0

Rb9 Eq9 D7/0

Rb9 D711D2312/Sp9

9 Rb9 Eq9 D7/0

Rb9 D711D2312/09

write a test bench to simulate the roll of the dice. Initially, write a dice game module that
contains the control circuit, point register, and comparator (see Figure 5-11). Later add the
counters and adder so that you can simulate the complete dice game.

The VHDL code for the dice game in Figure 5-15 corresponds directly to the SM chart
of Figure 5-13. The case statement in the �rst process tests the state, and in each state nested
if-then-else (or elsif) statements are used to implement the conditional tests. In State 1 the
Roll signal is turned on when Rb is 1. If all conditions test false, Sp is set to 1 and the next
state is 4. In the second process, the state is updated after the rising edge of the clock, and if
Sp is 1, the sum is stored in the point register.

FIGURE 5-15: Behavioral Model for Dice Game Controller

entity DiceGame is
 port(Rb, Reset, CLK: in bit;
 Sum: in integer range 2 to 12;
 Roll, Win, Lose: out bit);
end DiceGame;

architecture DiceBehave of DiceGame is
signal State, Nextstate: integer range 0 to 5;
signal Point: integer range 2 to 12;
signal Sp: bit;
begin
 process(Rb, Reset, Sum, State)
 begin
 Sp <= '0'; Roll <= '0'; Win <= '0'; Lose <= '0';

5.2 Derivation of SM Charts 267

 case State is
 when 0 => if Rb = '1' then Nextstate <= 1; end if;
 when 1 =>
 if Rb = '1' then Roll <= '1';
 elsif Sum = 7 or Sum = 11 then Nextstate <= 2;
 elsif Sum = 2 or Sum = 3 or Sum = 12 then Nextstate <= 3;
 else Sp <= '1'; Nextstate <= 4;
 end if;
 when 2 => Win <= '1';
 if Reset = '1' then Nextstate <= 0; end if;
 when 3 => Lose <= '1';
 if Reset = '1' then Nextstate <= 0; end if;
 when 4 => if Rb = '1' then Nextstate <= 5; end if;
 when 5 =>
 if Rb = '1' then Roll <= '1';
 elsif Sum = Point then Nextstate <= 2;
 elsif Sum = 7 then Nextstate <= 3;
 else Nextstate <= 4;
 end if;
 end case;
 end process;

 process(CLK)
 begin
 if CLK'event and CLK = '1' then
 State <= Nextstate;
 if Sp = '1' then Point <= Sum; end if;
 end if;
 end process;
end DiceBehave;

You are now ready to test the behavioral model of the dice game. It is not convenient
to include the counters that generate random numbers in the initial test, since you want to
specify a sequence of dice rolls that will test all paths on the SM chart. You could prepare a
simulator command �le that would generate a sequence of data for Rb, Sum, and Reset. This
would require careful analysis of the timing to make sure that the input signals change at the
proper time. A better approach for testing the dice game is to design a VHDL test bench
module to monitor the output signals from the dice game module and supply a sequence of
inputs in response.

Figure 5-16 shows the DiceGame connected to a module called GameTest. GameTest
needs to perform the following functions:

1. Initially supply the Rb signal.
2. When the DiceGame responds with a Roll signal, supply a Sum signal, which represents

the sum of the two dice.
3. If no Win or Lose signal is generated by the DiceGame, repeat steps 1 and 2 to roll again.
4. When a Win or Lose signal is detected, generate a Reset signal and start again.

268 Chapter 5 SM Charts and Microprogramming

FIGURE 5-17: SM Chart
for Dice Game Test

T0 / Rb

Sum = Sumarray (i)
i = i + 1

T1 /

Reset

Roll

Win or
Lose

0

1

0

1

T2 /

i $ N T3 / (Stop)1

0

FIGURE 5-16: Dice
Game with Test Bench

GameTest DiceGame

Rb

Reset

CLK

Sum

Roll

Win

Lose

Figure 5-17 shows an SM chart for the GameTest module. Rb is generated in state T0.
When DiceGame detects Rb, it goes to S1 and generates Roll. When GameTest detects
Roll, the Sum that represents the next roll of the dice is read from Sumarray(i) and i is incre-
mented. When the state goes to T1, Rb goes to 0. The DiceGame goes to S2, S3, or S4, and
GameTest goes to T2. The Win and Lose outputs are tested in state T2. If Win or Lose is
detected, a Reset signal is generated before the next roll of the dice. After N rolls of the dice,
GameTest goes to state T3, and no further action occurs.

GameTest (Figure 5-18) implements the SM chart for the GameTest module. It contains
an array of test data, a concurrent statement that generates the clock, and two processes.

5.2 Derivation of SM Charts 269

The �rst process generates Rb, Reset, and Tnext (the next state) whenever Roll, Win, Lose, or
Tstate changes. The second process updates Tstate (the state of GameTest). When running
the simulator, for the sake of brevity display only one line of output for each roll of the dice.
To facilitate this, add a signal Trig1, which changes every time state T2 is entered.

FIGURE 5-18: Dice Game Test Module

entity GameTest is
 port(Rb, Reset: out bit;
 Sum: out integer range 2 to 12;
 CLK: inout bit;
 Roll, Win, Lose: in bit);
end GameTest;
architecture dicetest of GameTest is
signal Tstate, Tnext: integer range 0 to 3;
signal Trig1: bit;
type arr is array(0 to 11) of integer;
constant Sumarray:arr := (7, 11, 2, 4, 7, 5, 6, 7, 6, 8, 9, 6);
begin
 CLK <= not CLK after 20 ns;
 process(Roll, Win, Lose, Tstate)
 variable i: natural; -- i is initialized to 0
 begin
 case Tstate is
 when 0 => Rb <= '1'; -- wait for Roll
 Reset <= '0';
 if i >= 12 then Tnext <= 3;
 elsif Roll = '1' then
 Sum <= Sumarray(i);
 i := i + 1;
 Tnext <= 1;
 end if;
 when 1 => Rb <= '0'; Tnext <= 2;
 when 2 => Tnext <= 0;
 Trig1 <= not Trig1; -- toggle Trig1
 if (Win or Lose) = '1' then
 Reset <= '1';
 end if;
 when 3 => null; -- Stop state
 end case;
 end process;

 process(CLK)
 begin
 if CLK = '1' and CLK'event then
 Tstate <= Tnext;
 end if;
 end process;
end dicetest;

270 Chapter 5 SM Charts and Microprogramming

FIGURE 5-19: Tester for DiceGame

entity tester is
end tester;

architecture test of tester is
component GameTest
 port(Rb, Reset: out bit;
 Sum: out integer range 2 to 12;
 CLK: inout bit;
 Roll, Win, Lose: in bit);
end component;
component DiceGame
 port(Rb, Reset, CLK: in bit;
 Sum: in integer range 2 to 12;
 Roll, Win, Lose: out bit);
end component;

signal rb1, reset1, clk1, roll1, win1, lose1: bit;
signal sum1: integer range 2 to 12;
begin
 Dice: Dicegame port map (rb1, reset1, clk1, sum1, roll1, win1, lose1);
 Dicetest: GameTest port map (rb1, reset1, sum1, clk1, roll1, win1, lose1);
end test;

FIGURE 5-20: Simulation and Command File for Dice Game Tester

add list /dicetest/trig1 -NOTrigger sum1 win1 lose1 /dice/point
run 2000

 ns delta trig1 sum1 win1 lose1 point
 0 10 0 2 0 0 2
 100 13 0 7 1 0 2
 260 13 0 11 1 0 2
 420 13 0 2 0 1 2
 580 12 1 4 0 0 4
 740 13 1 7 0 1 4
 900 12 0 5 0 0 5
 1060 12 1 6 0 0 5
 1220 13 1 7 0 1 5
 1380 12 0 6 0 0 6
 1540 12 1 8 0 0 6
 1700 12 0 9 0 0 6
 1860 13 0 6 1 0 6

The tester (Figure 5-19) connects the DiceGame and GameTest components so that the
game can be tested. Figure 5-20 shows the simulator command �le and output. The listing is
triggered by Trig1 once for every roll of the dice. The run 2000 command runs for more than
enough time to process all the test data.

5.3 Realization of SM Charts 271

5.3 Realization of SM Charts
Methods used to realize SM charts are similar to the methods used to realize state graphs. As
with any sequential circuit, the realization will consist of a combinational subcircuit, together
with �ip-�ops for storing the state of the circuit. In some cases, it may be possible to identify
equivalent states in an SM chart and eliminate redundant states using the same method as
was used for reducing state tables. However, an SM chart is usually incompletely speci�ed in
the sense that all inputs are not tested in every state, which makes the reduction procedure
more dif�cult. Even if the number of states in an SM chart can be reduced, it is not always
desirable to do so, since combining states may make the SM chart more dif�cult to interpret.

Before deriving next state and output equations from an SM chart, a state assignment
must be made. The best way of making the assignment depends on how the SM chart is real-
ized. If gates and �ip-�ops (or the equivalent PLD realization) are used, the guidelines for
state assignment given in Section 1.7 may be useful. If programmable gate arrays are used, a
one-hot assignment may be best, as explained in Section 6.9.

As an example of realizing an SM chart, consider the SM chart in Figure 5-21.

FIGURE 5-21:
Example SM Chart for
Implementation S0/Za

S2/Zc

S1/Zb

Z1 Z2

X

10

X

X

1

1

0

0

00

01

11

Link 1

Link 2

Link 3

The state assignment is AB 5 00 for S0, AB 5 01 for S1, and AB 5 11 for S2. After a state
assignment has been made, output and next state equations can be read directly from the
SM chart. Since the Moore output Za is 1 only in state 00, Za 5 A rB r. Similarly, Zb 5 A rB
and Zc 5 AB. The conditional output Z1 5 ABX r, since the only link path through Z1 starts
with AB 5 11 and takes the X 5 0 branch. Similarly, Z2 5 ABX. There are three link paths
(labeled link 1, link 2, and link 3 in Figure 5-21), which terminate in a state that has B 5 1.
Link 1 starts with a present state AB 5 00, takes the X 5 1 branch, and terminates on a state
in which B 5 1. Therefore, the next state of B 1B1 2 equals 1 when A rB rX 5 1. Link 2 starts
in state 01, takes the X 5 1 branch, and ends in state 11, so B1 has a term A rBX. Similarly,

272 Chapter 5 SM Charts and Microprogramming

B1 has a term ABX from link 3. The next state equation for B thus has three terms corre-
sponding to the three link paths:

B1 5 A rB rX 1 A rBX 1 ABX
link 1 link 2 link 3

Similarly, two link paths terminate in a state with A 5 1, so

A1 5 A rBX 1 ABX

These output and next state equations can be simpli�ed with Karnaugh maps using the
unused state assignment 1AB 5 10 2 as a “don’t care” condition.

As illustrated above for �ip-�ops A and B, the procedure for deriving the next state equa-
tion for a �ip-�op Q from the SM chart is as follows:

1. Identify all of the states in which Q 5 1.
2. For each of these states, �nd all the link paths that lead into the state.
3. For each of these link paths, �nd a term that is 1 when the link path is followed. That is,

for a link path from Si to Sj, the term will be 1 if the machine is in state Si and the condi-
tions for exiting to Sj are satis�ed.

4. The expression for Q1 (the next state of Q) is formed by OR’ing together the terms
found in step 3.

5.3.1 Implementation of Binary Multiplier Controller
Next, consider the SM chart for the multiplier control repeated here, in Figure 5-22.
You can realize this SM chart with two D �ip-�ops and a combinational circuit. Assume that the
state assignments are AB 5 00 for S0, AB 5 01 for S1, AB 5 10 for S2, and AB 5 11 for S3.

FIGURE 5-22: SM
Chart for Multiplier
Controller

S0
/

St

Load

S1/

M

Sh

K
S2/Sh

Ad

S3/Done K

1

1
1 0

0

0

0

1

5.3 Realization of SM Charts 273

The logic equations for the multiplier control and the next state equations can be
derived by tracing link paths on the SM chart and then simplifying the resulting equations.
First, consider the control signals. Load is true only in S0 and only if St is true. Hence,
Load 5 S0St 5 A rB rSt. Similarly, Ad is true only in S1 and only if M is true. Hence,
Ad 5 A rBM. Done is a Moore output in S3, and hence Done 5 S3 5 AB. In summary, the
logic equations for the multiplier control are

Load 5 A rB rSt

Sh 5 A rBM r 1K r 1 K 2 1 AB r 1K r 1 K 2 5 A rBM r 1 AB r

Ad 5 A rBM

Done 5 AB

The next state equations can be derived by inspection of the SM chart and considering
the state assignments. A is true in states S2 and S3. State S2 is the next state when current
state is S1 and M is true 1A rBM 2 . State S3 is the next state when current state is S1, M is false,
and K is true 1A rBM rK 2 and when current state is S2 and K is true 1AB rK 2 . Hence, you can
write that

A1 5 A rBM rK 1 A rBM 1 AB rK 5 A rB 1M 1 K 2 1 AB rK

Similarly, derive the next state equation for B by inspection of the ASM diagram:

B1 5 A rB rSt 1 A rBM r 1K r 1 K 2 1 AB r 1K r 1 K 2 5 A rB rSt 1 A rBM r 1 AB r

The multiplier controller can be implemented in a hardwired fashion by two �ip-�ops
and a few logic gates. The logic gates implement the next state equations and control signal
equations. The circuit can be implemented with discrete gates or in a PLA, CPLD, or FPGA.

Table 5-1 illustrates a state transition table for the multiplier control. Each row in the table
corresponds to one of the link paths in the SM chart. Since S0 has two exit paths, the table has
two rows for present state S0. The �rst row corresponds to the St 5 0 exit path, so the next
state and outputs are 0. In the second row, St 5 1, so the next state is 01 and the other outputs
are 1000. Since St is not tested in states S1, S2, and S3, St is a “don’t care” in the correspond-
ing rows. The outputs for each row can be �lled in by tracing the corresponding link paths on
the SM chart. For example, the link path from S1 to S2 passes through conditional output Ad,
so Ad 5 1 in this row. Since S2 has a Moore output Sh, Sh 5 1 in both of the rows for which
AB 5 10.

The design may also be implemented with ROM. If it has to be implemented using the
ROM method, you can calculate the size of the ROM as follows. There are �ve different

A B St M K A1 B1 Load Sh Ad Done

S0 0 0 0 — — 0 0 0 0 0 0
0 0 1 — — 0 1 1 0 0 0

S1 0 1 — 0 0 0 1 0 1 0 0
0 1 — 0 1 1 1 0 1 0 0
0 1 — 1 — 1 0 0 0 1 0

S2 1 0 — — 0 0 1 0 1 0 0
1 0 — — 1 1 1 0 1 0 0

S3 1 1 — — — 0 0 0 0 0 1

TABLE 5-1: State
Transition Table for
Multiplier Control

274 Chapter 5 SM Charts and Microprogramming

inputs to the combinational circuit here (A, B, St, M, and K). Hence, the ROM will have
32 entries. The combinational circuit should generate six signals (four control signals plus two
next states). Hence, each entry has to be 6 bits wide. Thus, this design can be implemented
using a 32 3 6 ROM and two D �ip-�ops. If the combinational logic is implemented with
a PLA instead of a ROM, the PLA table is the same as the state transition table. The PLA
would have 5 inputs, 6 outputs, and 8 product terms.

If a ROM is used, the table must be expanded to 25 5 32 rows since there are �ve inputs.
To expand the table, the dashes in each row must be replaced with all possible combinations
of 0’s and l’s. If a row has n dashes, it must be replaced with 2n rows. For example, the �fth
row in Table 5-1 would be replaced with the following 4 rows:

FIGURE 5-23:
Realization of Dice
Game Controller

Q
CK

D

Q
CK

D

Q
CK

D

Clock

Rb

Reset

D711

D7

D2312

Eq

Win
Lose
Roll
Sp

C

B

A

A+

B

+

C

+

Comb.
Circuit

0 1 0 1 0 1 0 0 0 1 0
0 1 0 1 1 1 0 0 0 1 0
0 1 1 1 0 1 0 0 0 1 0
0 1 1 1 1 1 0 0 0 1 0

The added entries are printed in boldface.

5.4 Implementation of the Dice Game
You can realize the SM chart for the dice game (Figure 5-13) using combinational circuitry
and three D �ip-�ops, as shown in Figure 5-23. Use a straight binary state assignment. The
combinational circuit has nine inputs and seven outputs. Three of the inputs correspond to
current state, and three of the outputs provide the next state information. All inputs and out-
puts are listed at the top of Table 5-2. The state transition table has one row for each link path
on the SM chart. In state ABC 5 000, the next state is A1B1C1 5 000 or 001, depending on

5.4 Implementation of the Dice Game 275

the value of Rb. Since state 001 has four exit paths, the table has four corresponding rows.
When Rb is 1, Roll is 1, and there is no state change. When Rb 5 0 and D711 is 1, the next
state is 010. When Rb 5 0 and D2312 5 1, the next state is 011. For the link path from state
001 to 100, Rb, D711, and D2312 are all 0, and Sp is a conditional output. This path corresponds
to row 4 of the state transition table, which has Sp 5 1 and A1B1C1 5 100. In state 010,
the Win signal is always on, and the next state is 010 or 000, depending on the value of Reset.
Similarly, Lose is always on in state 011. In state 101, A1B1C1 5 010 if Eq 5 l; otherwise,
A1B1C1 5 011 or 100, depending on the value of D7. Since states 110 and 111 are not used,
the next states and outputs are don’t cares when ABC 5 110 or 111.

Use Table 5-2 and derive equations for the control signals and the next state equations.
The required equations can be derived from Table 5-2, using the method of map-entered
variables (see Chapter 1) or using a CAD program such as LogicAid. These equations can
also be derived by tracing link paths on the SM chart and then simplifying the resulting equa-
tions using the “don’t care” next states.

Figure 5-24 shows K-maps for A1, B1, and Win, which were plotted directly from the
table. Since A, B, C, and Rb have assigned values in most of the rows of the table, these four
variables are used on the map edges, and the remaining variables are entered within the map.
(Chapter 1 described the K-map technique that uses map-entered variables.) E1, E2, E3, and
E4 on the maps represent the expressions given below the maps. From the A1 column in the
table, A1 is 1 in row 4, so enter D r711D r2312 in the ABCRb 5 0010 square of the map. To save
space, de�ne E1 5 D r711D r2312 and place E1 in the square. Since A1 is 1 in rows 11, 12, and
16, 1’s are placed on the map squares ABCRb 5 1000, 1001, and 1011. From row 13, place
E2 5 D r7Eq r in the 1010 square. In rows 7 and 8, Win is always 1 when ABC 5 010, so 1’s
are plotted in the corresponding squares of the Win map.

ABC Rb Reset D7 D711 D2312 Eq A1 B1 C1 Win Lose Roll Sp
 1 000 0 — — — — — 0 0 0 0 0 0 0
 2 000 1 — — — — — 0 0 1 0 0 0 0
 3 001 1 — — — — — 0 0 1 0 0 1 0
 4 001 0 — — 0 0 — 1 0 0 0 0 0 1
 5 001 0 — — 0 1 — 0 1 1 0 0 0 0
 6 001 0 — — 1 — — 0 1 0 0 0 0 0
 7 010 — 0 — — — — 0 1 0 1 0 0 0
 8 010 — 1 — — — — 0 0 0 1 0 0 0
 9 011 — 1 — — — — 0 0 0 0 1 0 0
10 011 — 0 — — — — 0 1 1 0 1 0 0
11 100 0 — — — — — 1 0 0 0 0 0 0
12 100 1 — — — — — 1 0 1 0 0 0 0
13 101 0 — 0 — — 0 1 0 0 0 0 0 0
14 101 0 — 1 — — 0 0 1 1 0 0 0 0
15 101 0 — — — — 1 0 1 0 0 0 0 0
16 101 1 — — — — — 1 0 1 0 0 1 0
17 110 — — — — — — — — — — — — —
18 111 — — — — — — — — — — — — —

TABLE 5-2: State
Transition Table (PLA
Table) for Dice Game

276 Chapter 5 SM Charts and Microprogramming

The resulting equations are

A1 5 A rB rC Rb rD r711D r2312 1 AC r 1 ARb 1 AD r7Eq r (5-1)

B1 5 A rB rC Rb r 1D711 1 D2312 2 1 BReset r 1 AC Rb r 1Eq 1 D7 2

C1 5 B rRb 1 A rB rC D r711D2312 1 BC Reset r 1 AC D7Eq r

Win 5 BC r

 Lose 5 BC

Roll 5 B rCRb

Sp 5 A rB rC Rb rD r711D r2312

These equations can be implemented in any standard technology (using discrete gates, PALs,
GALs, CPLDs, or FPGAs).

The dice game controller can also be realized using a ROM. A ROM (LUT) implementa-
tion of the game controller will need 512 entries (since there are 9 inputs). Each entry must
be 7 bits wide (3 bits for next states and 4 bits for outputs). The ROM is very large because of
the large number of inputs involved. The ROM method is hence not very desirable for state
machines with a large number of inputs.

Now write a data�ow VHDL model for the dice game controller based on the block dia-
gram of Figure 5-11 and Equations (5-1). The corresponding VHDL architecture is shown
in Figure 5-25. The process updates the �ip-�op states and the point register when the rising

FIGURE 5-24: Maps
Derived from Table 5-2

E1

00 01 11 10

00

01

11

10

CRb

AB

1

1

E2

1

X

X

X

X

00 01 11

Win

00

01

11

10

CRb

AB

E3 E4

R9

R9

R9

R9

A1 B

1

X

X

X

X

1

1 X

X

X

00 01 11 1010

00

01

11

10

CRb

AB

X

 E1 5 D r711D r2312 R 5 Reset

 E2 5 D r7Eq r E3 5 D711 1 D r711D2312 5 D711 1 D2312

 E4 5 Eq 1 Eq rD7 5 Eq 1 D7

FIGURE 5-25: Data�ow Model for Dice Game (Based on Equations (5-1))

architecture Dice_Eq of DiceGame is
signal Sp,Eq,D7,D711,D2312: bit:= '0';
signal DA,DB,DC,A,B,C: bit:='0';
signal Point: integer range 2 to 12;
begin
 process(CLK)
 begin
 if CLK = '1' and CLK'event then
 A <= DA; B <= DB; C <= DC;

5.4 Implementation of the Dice Game 277

edge of the clock occurs. Generation of the control signals and D �ip-�op input equations
is done using concurrent statements. In particular, D7, D711, D2312, and Eq are implemented
using conditional signal assignments. As an alternative, all the signals and D input equations
could have been implemented in a process with a sensitivity list containing A, B, C, Sum,
Point, Rb, D7, D711, D2312, Eq, and Reset. If the architecture of Figure 5-25 is used with the
test bench of Figure 5-19, the results are identical to those obtained with the behavioral
architecture in Figure 5-15.

To complete the VHDL implementation of the dice game, add two modulo-6 counters as
shown in Figures 5-26 and 5-27. The counters are initialized to 1, so the sum of the two dice will
always be in the range 2 through 12. When Cnt1 is in state 6, the next clock sets it to state 1, and
Cnt2 is incremented (or Cnt2 is set to 1 if it is in state 6).

This section has illustrated one way of realizing an SM chart. The implementation can use
discrete gates, a PLA, a ROM, or a PAL. Alternative procedures are available that make it
possible to reduce the size of the PLA or ROM by adding some components to the circuit.
These methods are generally based on transformation of the SM chart to different forms and
techniques, such as microprogramming.

FIGURE 5-26: Counter for Dice Game

entity Counter is
 port(Clk, Roll: in bit;
 Sum: out integer range 2 to 12);
end Counter;

architecture Count of Counter is
signal Cnt1, Cnt2: integer range 1 to 6:= 1;
begin
 process(Clk)
 begin
 if Clk = '1' then
 if Roll = '1' then

 if Sp = '1' then Point <= Sum; end if;
 end if;
 end process;
 Win <= B and not C;
 Lose <= B and C;
 Roll <= not B and C and Rb;
 Sp <= not A and not B and C and not Rb and not D711 and not D2312;
 D7 <= '1' when Sum = 7 else '0';
 D711 <= '1' when (Sum = 11) or (Sum = 7) else '0';
 D2312 <= '1' when (Sum = 2) or (Sum = 3) or (Sum = 12) else '0';
 Eq <= '1' when Point = Sum else '0';
 DA <= (not A and not B and C and not Rb and not D711 and not D2312) or
 (A and not C) or (A and Rb) or (A and not D7 and not Eq);
 DB <= ((not A and not B and C and not Rb) and (D711 or D2312)) or
 (B and not Reset) or ((A and C and not Rb) and (Eq or D7));
 DC <= (not B and Rb) or (not A and not B and C and not D711 and D2312) or
 (B and C and not Reset) or (A and C and D7 and not Eq);
end Dice_Eq;

278 Chapter 5 SM Charts and Microprogramming

5.5 Microprogramming
Figure 4-1 illustrated that a digital system can be viewed as comprised of two parts: the data
path and the controller. The controller can be implemented in different methods. Micropro-
gramming is a technique to implement the control unit of a digital system, the other popular
method being hardwiring. In order to realize a control unit, inspect the state diagram or SM
chart, write the logic equations for the control outputs and the next states, and implement
the state machine using gates and �ip-�ops. Sections 5.3 and 5.4 demonstrated this process
for the binary multiplier and the dice game, respectively. This method of implementation is
called hardwiring, to indicate that the control signals are generated using �xed (hardwired)
logic circuitry.

 if Cnt1 = 6 then Cnt1 <= 1; else Cnt1 <= Cnt1 + 1; end if;
 if Cnt1 = 6 then
 if Cnt2 = 6 then Cnt2 <= 1; else Cnt2 <= Cnt2 + 1; end if;
 end if;
 end if;
 end if;
 end process;
 Sum <= Cnt1 + Cnt2;
end Count;

FIGURE 5-27: Complete Dice Game

entity Game is
 port(Rb, Reset, Clk: in bit;
 Win, Lose: out bit);
end Game;

architecture Play1 of Game is
component Counter
 port(Clk, Roll: in bit;
 Sum: out integer range 2 to 12);
end component;

component DiceGame
 port(Rb, Reset, CLK: in bit;
 Sum: in integer range 2 to 12;
 Roll, Win, Lose: out bit);
end component;

signal roll1: bit;
signal sum1: integer range 2 to 12;
begin
 Dice: Dicegame port map (Rb, Reset, Clk, sum1, roll1, Win, Lose);
 Count: Counter port map (Clk, roll1, sum1);
end Play1;

5.5 Microprogramming 279

In contrast, an alternative approach called microprogramming has been developed for
designing control units for complex digital systems. Proposed by Maurice Wilkes in 1951,
microprogramming is building a special computer for executing the algorithmic �ow chart
describing the controller of a system. This development stemmed from the separation of
architecture and controller, which were described at the beginning of Chapter 4. Once the
architecture and controller are clearly delineated, the controller �ow chart systematically
speci�es all the controller signals that should be generated at each time during the �ow of
control from the reset state through each of the other states. By inspection of the SM chart
for the shift and add binary multiplier in Figure 5-28(a), you can write pseudocode for the
multiplier controller operation, as illustrated in Figure 5-28(b). This multiplier was presented
in detail in Chapter 4.

FIGURE 5-28: SM Chart
and Operation Flow of
the Multiplier

S0/

St

Load

S1/

M

Sh

K
S2/Sh

Ad

S3/Done K

1

1

0

0

0

1 0

1

S0: if St is true, produce Load Signal and go to S1,
 else return to S0
S1: if M is true, produce Ad and go to S2,
 else produce Sh, check whether K is 1;
 if K is 1 go to S3;
 if K is 0, go to S1;
S2: produce Sh;
 if K = 0, go to S1;
 else go to S3;
S3: produce Done and go to S0

(b) Pseudo code representing the operation of the
multiplier controller

(a) SM chart for Multiplier

280 Chapter 5 SM Charts and Microprogramming

History of Microprogramming
1951: Maurice Wilkes published a paper on microprogramming while working on the
EDSAC computer at Cambridge University.

1957: The Cambridge University group tested the �rst microprogrammed computer.

Late 1950s, Early 1960s: Many early vacuum tube–based and transistor–based computers
used microprogramming. Cambridge University’s EDSAC-2, EMIDEC 1100, LEO III
(UK), Glottingen G1a (Germany), ZUSE Z22, and Telefunken TR4 are examples.

1965: IBM 360/Model 30 engineers suggest using microprogramming so it could execute
IBM 1401 programs. The idea is that there would be a manual switch that would select an
extra control store that would enable the same hardware to execute IBM 1401 programs.
The same ALU (data path) could be made to behave like another computer by changing
the control store.

Late 1960s: Many computers were built with microprogrammed control units. Most mod-
els of IBM 370 and all models of DEC PDP 11 were microprogrammed.

1978: DEC started selling VAX 11/780 constructed with 4K entry control store (each
entry 5 96 bits) plus an optional 1K writeable control store that could be programmed
by the buyer.

Mid-1970s: Microprogrammed microprocessors started to emerge. Intel 8080 and Zilog
Z80 were microprogrammed 8-bit processors.

Maurice Wilkes

EDSAC (Electronic Delay Storage Automatic Computer)

Sc
ie

nc
e

&
 S

oc
ie

ty
 P

ic
tu

re
 L

ib
ra

ry

/ C
on

tr
ib

ut
or

 /
G

et
ty

 I
m

ag
es

P
op

pe
rf

ot
o

/ C
on

tr
ib

ut
or

 /
G

et
ty

 I
m

ag
es

5.5 Microprogramming 281

Such a description of the controller easily makes us see the correspondence of the con-
troller activity to a normal computer program. Microprogramming developed from exactly
this realization.

If a memory can store all control signals and the next state information corresponding
to each state for each input condition, you should be able to realize the controller by just
“sequencing” through the memory. For this reason, microprogrammed controllers are also
often called sequencers. The memory that stores the control words is called the control store
or microprogram memory.

Microprogramming seemed extremely attractive in an era where the complexity of digital
systems was growing prohibitively. Since debugging was done manually in those days, it was
very hard to identify and correct errors. The systematic nature of microprogramming made
debugging systems easier. Changes to systems can be implemented relatively easily. Errors
can be identi�ed and corrected easily. All of these factors made microprogramming very
popular.

The disadvantage of microprogramming is that it is slow. A memory access is required to
access the control word from the control store. Hardwiring results in faster systems because
hardwired control signals are generated by logic gates, and they are typically faster than
memory. One should not interpret microprogramming as programming a microcomputer or
microprocessor. It is a very unique and systematic way of implementing the control logic of
a digital system. Not only microcomputers/microprocessors, but any digital system can be
microprogrammed. The term program existed before the invention of microprogramming,
and the name stemmed from the fact that this technique is programming a control unit inside
a digital system in a very systematic manner.

Early microprocessors such as Intel 8086 and Motorola 68000 were microprogrammed.
These microprocessors supported a variety of memory addressing modes with base registers
and index registers. They allowed operands to be accessed directly from memory and results
be written directly to memory. Many complex instructions that performed a series of funda-
mental operations were available on these processors. Microprogramming was convenient
when the control signals for the several operations needed for a complex instruction could
be systematically speci�ed in the microprogram word. It would have been extremely hard to
implement these microprocessors with hardwiring.

Many things have changed since then. In the late 1970s, it was observed that in many
microprocessors, more than half of the chip area was spent in the controller (i.e., the data
path of the processor occupied less than half the chip area). The complexity of the micro-
processors led researchers and designers to the RISC (Reduced Instruction Set Computing)
era. RISC microprocessors are simpler, have fewer memory addressing modes, and need sim-
pler control units. Computer-aided design (CAD) tools have improved, and the designers’

1978: Two 16-bit microprocessors used microprogramming: the Intel 8086 and the Motorola
68000. The Intel 8086 contained a 504 entry control store, where each entry was a 21-bit
microinstruction. The Motorola 68000 contained a two-level microcoding implementation.
Each microcode entry contained a 10-bit jump address or a 9-bit “nanoinstruction” address.
The nanoinstruction can be thought of as microcode inside a microcode. The nanoinstruction
together with some decoding circuitry generated the control signals to be fed to the ALU.

1980s: Early RISC processors such as the MIPS R2000 and Sun SPARC emerged. They
used hardwired control units. The simplicity of the RISC processors made this possible.
Complex microprocessors such as x86 continue to use microcoding in some form.

282 Chapter 5 SM Charts and Microprogramming

capability to debug has improved. Today microprogramming may be used only for micropro-
cessors with complex instruction set architectures (ISAs); however, it is a powerful concept
and a very elegant one.

Microprogramming can be implemented in a variety of ways. The general idea is to store
a control word corresponding to each state. The control word is also called a microinstruc-
tion. The microinstruction speci�es the outputs to be generated. It also speci�es where the
next microinstruction can be found. This corresponds to the state transitions in the state
diagram or SM chart.

5.5.1 Two-Address Microcode
Figure 5-29 illustrates a suitable hardware arrangement for a typical microprogram imple-
mentation. Each ROM location stores a control word or microinstruction. The only inputs to
the ROM come from the state register. A multiplexer with each of the inputs can be used to
selectively test at most one variable in each state. This multiplexer is used to indicate whether
the selected control signal (as indicated by TEST) is true or false. Another multiplexer is
used to select which next state should control branch to. This technique is called two-address
microcoding because the next states corresponding to both true and false conditions of the
test signal are explicitly speci�ed in the microinstruction.

FIGURE 5-29: Typical
Hardware Arrangement
for Microprogramming

TEST NSF NST OUTPUT

MUX
Inputs

Register

MUX..
.

Microprogram ROM
(Control store)

The ROM output has four �elds: TEST, NSF, NST, and OUTPUT. TEST controls the
input MUX, which selects one of the inputs to be tested in each state. If this input is 0 (false),
then the second MUX selects the NSF �eld as the next state. If the input is 1 (true), it selects
the NST �eld as the next state. The OUTPUT bits correspond to the control signals. Note
that in order to use this hardware arrangement, the SM chart must have only Moore outputs,
since the outputs can be a function only of the state.

SM Chart Transformations for Microprogramming
Transformations are performed on the SM chart to facilitate easy and ef�cient micropro-
gramming. You do not want a naïve look-up table method where all combinations of inputs
and present states are directly speci�ed. Hence it is important to transform the SM chart in
such a way that only one entry is required per state. Some of the transformations do increase
the number of states; however, the achieved microprogram size is still signi�cantly smaller
than the ROM size in a naïve LUT method.

Eliminate Conditional Outputs
It is desirable to construct the controller as a Moore machine so that there will be no condi-
tional output signals. If output signals are conditional on some inputs, you should store control

5.5 Microprogramming 283

signals corresponding to different combinations of inputs. Hence, the �rst step in transforming
a state diagram or SM chart for easy microprogramming is to convert it into a Moore state
machine. Any Mealy machine can be converted into a Moore machine by adding an appropri-
ate number of additional states.

Allow Only Single Qualifier per State
The inputs that are tested in each state of the state machine are called quali�ers in the micro-
program literature. For example, in Figure 5-28, St, M, and K are quali�ers. States S0 and S2
contain only one quali�er, but state S1 tests quali�ers M and K. The multiple quali�ers in S1
led to nested if statements in the pseudocode in Figure 5-28. Microprogramming can be done
with multiple quali�ers per state; however, it is simpler to implement microprogramming
when only one variable is tested in each state.

Thus, microprogramming becomes easy if the following two transformations are done
on SM charts:

1. Eliminate all conditional outputs by transforming to a Moore machine
2. Test only one input (quali�er) in each state

Let us transform the SM chart of the multiplier for microprogramming. First, convert it
to a Moore machine by adding a state for each conditional output (i.e., each oval in the SM
chart). That results in additional states S01 in state S0 for the conditional output Load, S11 in
the original state S1 for the conditional output Ad, and S12 in S1 for the conditional output
Sh. Fortunately, no more than one quali�er is tested in any state. The modi�ed SM chart is
shown in Figure 5-30.

FIGURE 5-30: Multiplier
SM Chart with No
Conditional Outputs
(Derived from
Figure 5-28)

S0
/

St

S1/

M

K

K

S12
/Sh

S3
/Done

1

1

1 0

0

0

0

1

S11/Ad

S2
/Sh

S01/

Load

284 Chapter 5 SM Charts and Microprogramming

The corresponding actions can be described by the following pseudocode:

S0: if St is true, go to S01,
 else go to S0;
S01: produce Load; Go to S1;
S1: if M is true, go to S11, else go to S12;
S11: produce Ad; go to S2;
S12: produce Sh; if K = 0, go to S1; else go to S3;
S2: produce Sh;
 if K=0, go to S1;
 else go to S3;
S3: produce Done; go to S0;

At this stage, the transformed SM chart can be inspected for eliminating redundant states.
Can states S11 and S2 be combined? Since the add operation has to be performed before
shift, the Ad control signal should appear ahead of the Sh control signal. Hence, S11 and S2
cannot be combined.

Now inspect states S12 and S2. States S12 and S2 perform exactly the same tasks and have
the same next states. Hence, they can be combined. This is an example of potential state
minimizations after the transformation. Denote the new combined state as S2. The improved
SM chart is shown in Figure 5-31.

The microprogram will look as in Table 5-3, assuming a straight binary state assignment
in the sequence S0, S01, S1, S11, S2, and S3. Since there are three inputs, St, M, and K, a 4-to-1
MUX will be suf�cient to select the appropriate quali�er. The multiplexer connections are
assumed to be as in Figure 5-32.

FIGURE 5-31:
Modi�ed Multiplier
SM Chart After State
Minimization is Applied
to Figure 5-30

S0 /

St

S1/

M

K

S2/Sh

S3/Done

1

1

0

0

0

1

S11/Ad

S01/Load

5.5 Microprogramming 285

Look at the �rst row in Table 5-3. It corresponds to state S0, which is encoded as 000.
The input tested is St. Since St is connected to input 0 of the multiplexer, the TEST �eld for
this row is 00. If St is false, the next state is S0, leading to 000 in the NSF �eld. If St is true,
the next state is S01, leading to the 001 bits in the NST �eld. The control signals Load, Ad,
Sh, and Done are 0 in state S0.

The microcode for state S01 is shown in the second row. State S01 generates the Load
signal, and the controller transitions to state S1. No input signals are tested. In the multiplexer
in Figure 5-32, provide a value of '1' to the last unused muliplexer input. Mark the TEST �eld
as 11, corresponding to the last input of the multiplexer. In state S1, input signal M is tested.
Since M is connected to input 1 of the multiplexer, the TEST �eld for the third row is 01. In
a similar fashion, all rows of Table 5-3 are �lled.

Since there are six states, three �ip-�ops will be required. The ROM that stores this
microprogram will need six entries, one for each state. Each entry will need 12 bits, including
2 bits for TEST, 3 bits for NSF, 3 for NST, and 4 bits for control signals Load, Ad, Sh, and
Done. ABC represents the address at which the microinstruction is stored.

The hardware arrangement in Figure 5-29 is for microprogramming with two next state
addresses and single quali�er per state. Single quali�er microprogramming means that only
one input can be tested in a state. Two-address microcoding means that next states for both
possible input values (i.e., next state if the input is true (NST) and next state if the input is
false (NSF)), are explicitly speci�ed in the control word. (Figure 5-29 could be modi�ed to
allow Mealy outputs by replacing the OUTPUT �eld with OUTPUTF and OUTPUTT, and
adding a MUX to select one of the two output �elds.)

5.5.2 Single-Qualifier, Single-Address Microcode
In the microprogram of Table 5-3, each microinstruction can specify two potential next
states, the next state if the input is true and the next state if the input is false. The microcode
for the different states can be located in any sequence because the next microinstruction for
each state is speci�ed without assuming any default �ow of control.

State ABC TEST NSF NST Load Ad Sh Done

S0 000 00 000 001 0 0 0 0

S01 001 11 010 010 1 0 0 0

S1 010 01 100 011 0 0 0 0

S11 011 11 100 100 0 1 0 0

S2 100 10 010 101 0 0 1 0

S3 101 11 000 000 0 0 0 1

TABLE 5-3: Two-
Address Microprogram
for Multiplier. Both
NST and NSF Specified
(Corresponds to
Figure 5-29)

FIGURE 5-32:
4-to-1 MUX for
Microprogramming
the Multiplier (Two-
Address Microcode)

0

1

2

3

MUX

St

M

TEST

K

1

286 Chapter 5 SM Charts and Microprogramming

The aforementioned microprogram resembles software, but in conventional programs,
control �ows in sequence except when branch and jump instructions alter the control �ow. If
a branch is not taken, control simply �ows to the next instruction. If you could take advan-
tage of a similar structure, each microprogram entry would need to specify only one next
state address.

Consider what to do in order to make the default next state be the state located in the
next row. The state assignments should be such that, if the quali�er (input) is false, the next
state should be the current state incremented by 1. The next state when the quali�er is true is
the only next state explicitly speci�ed in the microcode. If the quali�er is false, control simply
goes to the next row to get the succeeding microinstruction.

This type of microprogram can be implemented using the hardware arrangement shown
in Figure 5-33. Since control normally just advances to the next location, a counter can be
effectively used. This counter is analogous to a program counter (PC) in a microprocessor.
The counter points to the current state of the controller, analogous to a PC pointing to the
next instruction to be fetched. Each ROM location stores a control word or microinstruction.
The OUTPUT bits correspond to the control signals. The TEST bits specify the quali�er
being tested, and the NST bits indicate the target microinstruction if the quali�er is true.
A multiplexer is used to indicate whether the selected control signal (as indicated by TEST)
is true or false. If the quali�er is false, the counter increments to point to the next micro-
instruction. This corresponds to the default next state. If the quali�er is true, the counter
should load the NST bits as the location of the next microinstruction. This is the explicitly
speci�ed next state. A counter with parallel load capability is the ideal building block for
this module. The multiplexer selects the relevant quali�er and its output is used to decide
whether the counter should count sequentially or load the next state indicated by NST.

FIGURE 5-33:
Microprogrammed
System with Single-
Address Microcode

TEST NST OUTPUT

MUX
Inputs

Counter

..
.

Data Load Count

Load/Count9

Next
state
(true)

Microprogram ROM
(Control store)

The state assignment for the single-address microcoding has to be done care-fully.
(In contrast, in the two-address microcoding that was discussed earlier, any state assignment
was acceptable.) In the current technique, the assignments should meet the condition that
for every state, one of the next states should be current state’s assignment incremented by
one (the default next state). For each condition box, for the false branch, the next state must
be assigned in sequence, if possible. If this is not possible, extra states (called X-states) must
be added. The required number of X-states can be reduced by assigning long strings of states
in sequence. To facilitate this, it may be necessary to complement some of the variables that
are tested.

Figure 5-34 illustrates the modi�ed SM chart for a binary multiplier with a serial state
assignment for single-address microcoding. For state S0, input St is complemented, so that S01
can be the default next state, as in Figure 5-34(a). If input St is not complemented, an extra

5.5 Microprogramming 287

state will be required as in Figure 5-34(b). State S2 is the default successor for state S1. In
state S2, use K r, so that S3 can be the default successor to S2. Thus, in Figure 5-34(a), states
S0, S01, S1, S2, and S3 can be assigned sequential values from 0 to 4. The explicit next state,
corresponding to the quali�er being true, can have any assignment. Assign 5 to state S11. If
variable K was used instead of K r, an extra state would be required on the path from S2 to
S1, when K equals 0. As Figure 5-34(b) illustrates, two extra states will be required if input
variables cannot be complemented.

FIGURE 5-34: Modi�ed
SM Chart for Binary
Multiplier with Serial
State Assignment
for Single-Address
Microcoding

S01/Load

2

5

S0 /

St

S1/

M

K

S2/Sh

S3/Done

1

0

0

0

1

1

S11/Ad

0

1

2

3

4

5
SX/

6

SY/

7

S0 /

St 9

S1/

M

K 9

S2/Sh

S3/Done

1

0

0

0

1

1

S11/Ad

S01/Load

0

1

3

4

(a) (b)

Table 5-4 illustrates the single-address microprogram for the multiplier. The modi�ed
SM chart, with the minimum number of states (Figure 5-34(a)), is used. Since there are three
inputs, St r, M, and K r, a 4-to-1 MUX will be suf�cient to select the appropriate quali�er. The
multiplexer connections are assumed to be as in Figure 5-35.

The single-address microprogram in Table 5-4 consists of six entries of 9 bits each in con-
trast to the two-address microprogram in Table 5-3, which needs six entries of 12 bits each.

State ABC TEST NST Load Ad Sh Done

S0 000 00 000 0 0 0 0

S01 001 11 010 1 0 0 0

S1 010 01 101 0 0 0 0

S2 011 10 010 0 0 1 0

S3 100 11 000 0 0 0 1

S11 101 11 011 0 1 0 0

TABLE 5-4: Single-
Address Microprogram
for Multiplier (Only
NST Specified)

288 Chapter 5 SM Charts and Microprogramming

If the multiplier controller is implemented by a standard ROM (LUT) method, the ROM
size must be 32 3 6. There are four states, necessitating two �ip-�ops and two next state
equations. There are three inputs St, M, and K. Hence, the state table for this state machine
will have 32 rows. There will be two next state equations and four outputs, necessitating 6 bits
in each entry. A comparison of the ROM (LUT) method with the microcoded implementa-
tions is shown in Table 5-5. If the state machine had a large number of inputs, the size of the
ROM in naïve LUT method will be prohibitively large.

Size of ROM

Method # entries 3 width # bits

ROM method with original SM chart 32 3 6 192 bits
Two-address microcode 6 3 12 72 bits
Single-address microcode 6 3 9 54 bits

TABLE 5-5: Comparison
of Different
Implementations of the
Multiplier Control

FIGURE 5-35:
Multiplexer for
Microprogramming
the Multiplier (Single-
Address Microcode)

0

1

2

3

MUX

St9

M

TEST

Load/Count9

1

K 9

Is microcode hardware or software?

Once the control unit of a processor is implemented as microcode, a question arises as
to whether it is hardware or software. If it is hardware, it has to be protected by patents;
whereas, if it is software, it could be protected by copyrights. In a case between NEC
and Intel (Hinckley 1987, Contreras 1990) in the Northern District of California, NEC
argued that the microcode portion of the Intel 8086/8088 processors is not subject to
copyright protection.

The case stemmed from an Intel-NEC agreement allowing NEC to make and sell the
Intel 8086/8088 chips. In the early days of x86, Intel entered into agreements with com-
panies such as NEC, giving them the rights to be a second-source for the Intel chips.
In those days, the military and big companies like IBM would not use parts that had
only a single manufacturer. Intel had to arrange other sources for their products if the
Intel processors were to be used in the IBM PC. While making the Intel 8086/8088
chips, NEC used the 8086/8088 designs to create its own versions of Intel-compatible
microprocessor chips such as the NEC V20 and V30. Intel charged NEC with violation
of its microcode copyrights. NEC brought suit that Intel microcode was not protectable
by copyright.

After one and a half years of intense arguments, the court ruled in 1986 that the micro-
code in Intel processors is copyrightable material.

5.5 Microprogramming 289

5.5.3 Microprogramming the Dice Controller
Let us realize the dice controller described earlier by microprogramming. It can be micropro-
grammed using two-address microcoding or single-address microcoding.

Two-Address Microcode Implementation for the Dice Controller
First consider the two-address microcoding of the dice controller using the hardware
arrangement in Figure 5-29. In order to perform microcoding, modify the SM chart. First, all
the outputs must be converted to Moore outputs. Second, only one input variable must be

FIGURE 5-36: SM Chart
with Moore Outputs
and One Quali�er per
State

Reset

Rb

Rb
01

D711

D2312
Reset

Rb

0

Rb
01

Eq

D7

S0 /

S1/Roll

S11/

S12/

S13/Sp

S2/Win

S3/Lose
S4/

S5/Roll

S51/

S52/

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0000

0001

0010

0100 0011

0101

01100111

1000

1001

1010

290 Chapter 5 SM Charts and Microprogramming

tested in each state. This corresponds directly to the block diagram of Figure 5-29, since the
TEST �eld can select only one input to test in each state and the output depends only on the
state. Figure 5-36 shows a modi�ed version of the dice game SM chart.

Next, derive the microprogram (Table 5-6) using a straight binary state assignment.
The variables Rb, D711, D2312, Eq, D7, and Reset must be tested, so use an 8-to-1 MUX
(Figure 5-37). When TEST 5 001, Rb is selected, and so on. In state S13 the next state is
always 0111, so NSF 5 NST 5 0111 and the TEST �eld is a “don’t care.” Each row in the
ROM table corresponds to a link path on the SM chart. For example, in S2, the test �eld 110
selects Reset. If Reset 5 0, NSF 5 0100 is selected, and if Reset 5 1, NST 5 0000 is selected.
In S2, the output Win 5 1, and the other outputs are 0.

Single-Address Microcode for the Dice Controller
Single-address microcode will use the hardware as in the block diagram of Figure 5-33. This
circuit uses a counter instead of the state register. Only one target, the NST �eld, is speci-
�ed. The TEST �eld selects one of the inputs to be tested in each state. If the selected input
is 1 (true), the NST �eld is loaded into the counter. If the selected input is 0, the counter is
incremented.

State ABCD TEST NSF NST Roll Sp Win Lose

S0 0000 001 0000 0001 0 0 0 0
S1 0001 001 0010 0001 1 0 0 0
S11 0010 010 0011 0100 0 0 0 0
S12 0011 011 0101 0110 0 0 0 0
S2 0100 110 0100 0000 0 0 1 0
S13 0101 xxx 0111 0111 0 1 0 0
S3 0110 110 0110 0000 0 0 0 1
S4 0111 001 0111 1000 0 0 0 0
S5 1000 001 1001 1000 1 0 0 0
S51 1001 100 1010 0100 0 0 0 0
S52 1010 101 0111 0110 0 0 0 0

TABLE 5-6: Two-
Address Microprogram
for Dice Game

FIGURE 5-37: MUX
for Two-Address
Microcoding of Dice
Game

0

1

2

3

4

5
6

7

MUX

Rb

D711

D2312

Eq

D7

Reset

TEST

5.5 Microprogramming 291

This method requires that the SM chart be modi�ed, as shown in Figure 5-38, and that
the state assignment be made in a serial fashion. If serial state assignment is not possible,
extra states are added. The required number of X-states can be reduced by assigning long
strings of states in sequence. To facilitate this, it may be necessary to complement some of
the variables that are tested. In Figure 5-38, Rb and Reset have each been complemented in
two places, and the 0 and 1 branches have been interchanged accordingly. With this change,

FIGURE 5-38: SM
Chart with Serial State
Assignment and Added
X-State

Reset 9

Rb9

Rb

D711

D2312
Reset 9

Rb9

Rb
01

Eq

D79

S0 /

S1/Roll

S11/

S12/

S13/Sp

S2/Win

S3/Lose

S4/

S5/Roll

S51/

S52/

SX/

0

0

0

1

1

1

0000

0001

0010

1111 0011

0100

0101 1001

1010
0110

0111

1000

0 1 1 0

1 0

0 1

1 0

0 11 0

0 1

1 0

0 1

1 0

292 Chapter 5 SM Charts and Microprogramming

states 0000, 0001, . . . , 1000 are in sequence. S3 has been assigned 1001, and before adding an
X-state, NSF was 0000 and NST was 1001, so neither next state was in sequence. Therefore,
X-state SX was added with a sequential assignment 1010; the next state of SX is always 0000.
If you assign 1011 to S2, the next states would be 1011 and 0000, and neither next state would
be in sequence. You could solve the problem by adding an X-state. A better approach is to
assign 1111 to S2, as shown. Since incrementing 1111 goes to 0000, one of the next states is in
sequence, and no X-state is required.

The inputs tested by the MUX in Figure 5-39 are similar to Figure 5-37, except D7 and
Reset have been complemented, and both Rb and Rb r are needed. Since NST is always 0000
in state Sx, a 1 input to multiplexer is needed. The corresponding microprogram ROM table
is given in Table 5-7.

A comparison of the naïve LUT (ROM) method implementation with the micro-
programmed implementations is given in Table 5-8. The ROM method with original SM
chart (Figure 5-13) needs 29 entries because it needs three state variables and six inputs.

FIGURE 5-39: MUX
for Single-Address
Microcoding of Dice
Game

Rb9 0

1

2

3

4

5
6

7

MUX

Rb

D711

D2312

Eq

1

TEST

Load / Count 9

D79

Reset9

State ABCD TEST NST Roll Sp Win Lose

S0 0000 000 0000 0 0 0 0
S1 0001 001 0001 1 0 0 0
S11 0010 010 1111 0 0 0 0
S12 0011 011 1001 0 0 0 0
S13 0100 111 0101 0 1 0 0
S4 0101 000 0101 0 0 0 0
S5 0110 001 0110 1 0 0 0
S51 0111 100 1111 0 0 0 0
S52 1000 101 0101 0 0 0 0
S3 1001 110 1001 0 0 0 1
Sx 1010 111 0000 0 0 0 0
S2 1111 110 1111 0 0 1 0

TABLE 5-7:
Microprogram for Dice
Game with Single-
Address Microcoding

5.5 Microprogramming 293

The three next state variables and four outputs necessitate 7 bits in each entry. The two-
address microcode entry is based on Table 5-6 and the single-address microcode entry is
based on Table 5-7.

The methods you have just studied for implementing SM charts are examples of micro-
programming. The counter in Figure 5-33 is analogous to the program counter in a computer,
which provides the address of the next instruction to be executed. The ROM output is a
microinstruction, which is executed by the remaining hardware. Each microinstruction is like
a conditional branch instruction that tests an input and branches to a different address if the
test is true; otherwise, the next instruction in sequence is executed. The output �eld in the
microinstruction has bits that control the operation of the hardware.

Size of ROM

Method # entries 3 width # bits

ROM method with original SM chart 512 3 7 3584 bits
Two-address microcode 11 3 15 165 bits
Single-address microcode 12 3 11 132 bits

TABLE 5-8: Comparison
of Different
Implementations of
Dice Controller

0

0

0

0 1

X1

S0/Z1

X1

S1/Z2

X3

S2/Z1

0

1

1

1

1

1

0

X2

S3/Z1 Z2

X3

S4/Z2

X3

S5/Z1 Z2

Implement the following SM chart, using single-address microprogramming. Do not invert inputs. Add extra states if
necessary. Assume that the MUX inputs are 1, X1, X2, and X3.

E X A M PLE

294 Chapter 5 SM Charts and Microprogramming

Answer: Single-address microprogramming needs serial state assignment so that the 0-path for each decision box has an
assignment serial to the previous state. The following are conditions to be satis�ed for serial state assignment.

a. S0, S1, S2 must be in serial order to satisfy the 0-path from S0 for each decision box.
b. S3, S4, S5 must be in serial order to satisfy the 0-path from S3 for each decision box.
c. S2 and S0 must be in serial order.
d. S5 and S0 must be in serial order.

It will not be possible to ful�ll both (c) and (d) at the same time. Hence an extra state has to be added for either condi-
tion (c) or condition (d).
A potential solution uses assignment 7 for S5 and 0 for S0. It satis�es condition (d) in this manner, and then conditions
(a) and (b) are satis�ed with serial assignments to match as follows:

S05000
S15001
S25010
S35101
S45110
S55111
SX5011 (SX is an extra state in the path between S2 to S0)

Another potential solution assigns state numbers as follows:

S05011
S15100
S25101
S35000
S45001
S55010
SX5110 (SX is an extra state in the path from S2 to S0)

0

011

100

101

010110

001

000

0

0

0 1

X1

S0/Z1

X1

S1/Z2

X3

S2/Z1

0

1

1

1

1

1

0

X2

S3/Z1 Z2

X3

S4/Z2

X3

S5/Z1 Z2SX

The microcode for this solution assuming that the MUX inputs are 1, X1, X2, and X3 is given below. Test 00: 1; Test 01:
X1; Test 10: X2; Test 11: X3

5.6 Linked State Machines 295

5.6 Linked State Machines
When a sequential machine becomes large and complex, it is desirable to divide the machine up
into several smaller machines that are linked together. Each of the smaller machines is easier to
design and implement. Also, one of the submachines may be “called” in several different places
by the main machine. This is analogous to dividing a large software program into procedures
that are called by the main program.

Figure 5-40 shows the SM charts for two serially linked state machines. The main machine
(machine A) executes a sequence of “some states” until it is ready to call the submachine
(machine B). When state SA is reached, the output signal ZA activates machine B. Machine
B then leaves its idle state and executes a sequence of “other states.” When it is �nished, it
outputs ZB before returning to the idle state. When machine A receives ZB, it continues to
execute “other states.” Figure 5-40 assumes that the two machines have a common clock.

FIGURE 5-40: SM
Charts for Serially
Linked State Machines

SOME
STATES

SA/ZA

ZB

OTHER
STATES

IDLE

ZA

OTHER
STATES

SB/ZB

0

1

1

0

Machine A
(calling machine)

Machine B
(called machine)

Address Test NST Z1 Z2
000 10 100 1 1
001 11 101 0 1
010 11 010 1 1
011 01 000 1 0
100 01 001 0 1
101 11 010 1 0
110 00 011 0 0

The microcode ROM is 7 entries 3 7 bits.

If the naïve ROM method was used, the ROM size would be 64 3 5 bits. The circuit has 26 possible inputs (3-bit FF state,
3 inputs) and 5 output functions (3-bit next state, 2 outputs), so a 26 3 5 bit ROM is required. It uses 320 bits of storage
instead of the 49 bits needed in microprogramming.

296 Chapter 5 SM Charts and Microprogramming

As an example of using linked state machines, split the SM chart of Figure 5-13 into
two linked SM charts. In Figure 5-13, Rb is used to control the roll of the dice in states S0
and S1 and in an identical way in states S4 and S5. Since this function is repeated in two
places, it is logical to use a separate machine for the roll control (Figure 5-41(b)). Use
of the separate roll control allows the main dice control (Figure 5-41(a)) to be reduced
from six states to four states. The main control generates an En_roll (enable roll) signal

FIGURE 5-41: Linked
SM Charts for Dice
Game

Roll

Rb
0

1

RbDn_roll
0 1

Dn_roll
0

1

D711

0

D2312

0

Sp

Dn_roll

1

Eq
1

D7

1

Reset

(a) Main dice game control (b) Roll control

T2 / Win

0

1

Reset

T3 / Lose

0

1

1

1

0

0

0

T0 / En_roll

T1 / En_roll

En_roll
0

1

S0 /

S1/

00

11

10

01

Problems 297

in T0 and then waits for a Dn_roll (done rolling) signal before continuing. Similar action
occurs in T1. The roll control machine waits in state S0 until it gets an En_roll signal from
the main dice game control. Then, when the roll button is pressed 1Rb 5 1 2 , the machine
goes to S1 and generates a Roll signal. It remains in S1 until Rb 5 0, in which case the
Dn_roll signal is generated, and the machine goes back to state S0.

This chapter described a procedure for digital system design based on SM charts. An SM
chart is equivalent to a state graph, but it is usually easier to understand the system operation
by inspection of the SM chart. After you draw a block diagram for a digital system, you can
represent the control unit by an SM chart. Next you can write a behavioral VHDL description
of the system based on this chart. Using a test bench written in VHDL, you should simulate
the VHDL code to verify that the system functions according to speci�cations. After making
any necessary corrections to the VHDL code and SM chart, you can proceed with the detailed
logic design of the system. Describing the system operation, in terms of control signals and
logic equations, allows you to easily verify that the design is correct.

Also presented in this chapter were techniques for implementing control units: hardwir-
ing and microprogramming. How logic equations can easily be derived by tracing link paths
on an SM chart was demonstrated. Hardwired control units was easily implemented from
these equations, followed by microprogramming. In microprogramming, control words are
stored in the microprogram memory. The size of the microprogram is reduced by transform-
ing the SM chart into a form in which only one input is tested in each state. For complex
systems, you can split the control unit into several sections by using linked state machines.

Problems
5.1 (a) Construct an SM chart equivalent to the following state table. Test only one variable in each decision box.

Try to minimize the number of decision boxes.
(b) Write a VHDL description of the state machine based on the SM chart.

Present
State

Next State Output 1Z1Z2 2
X1X2 5 00 01 10 11 X1X2 5 00 01 10 11

S0 S3 S2 S1 S0 00 10 11 01
S1 S0 S1 S2 S3 10 10 11 11
S2 S3 S0 S1 S1 00 10 11 01
S3 S2 S2 S1 S0 00 00 01 01

5.2 Construct an SM chart that is equivalent to the following state table. Test only one variable in each decision box.
Try to minimize the number of decision boxes. Show Mealy and Moore outputs on the SM chart.

Present
State

Next State Output 1Z1Z2Z3 2
X1X2 5 00 01 10 11 X1X2 5 00 01 10 11

S0 S1 S1 S1 S1 000 100 110 010
S1 S1 S1 S0 S0 001 001 001 001

298 Chapter 5 SM Charts and Microprogramming

5.3 An association has 15 voting members. Executive meetings of this association can be held only if more than half
(i.e., at least 8) the members are present (i.e., 8 is the minimum quorum required to hold meetings). Classi�ed mat-
ters can be discussed and voted on only if two-thirds the members are present. The chairman can cast two votes if the
quorum is met, but an even number of members (including the chairman are present). Above the room door there
are three lights GREEN, BLUE, and RED to indicate the quorum status. Derive an SM chart for a system that will
indicate whether minimum quorum is met (GREEN), classi�ed matters can be discussed (BLUE) or quorum met,
but even members (RED). GREEN and RED lights may be present at the same time or GREEN, BLUE, and RED
lights may be present simultaneously.

Assume that there is a single door to the meeting room and that it is �tted with two photocells. One photocell
(PHOTO1) is on the inner side of the door and the other (PHOTO2) is on the outer side. Light beams shine on
each photocell, producing a false output from the cell; a true output from a photocell arises when the light beam
is interrupted. Assume that once a person starts through a door, the process is completed before another one can
enter or leave (i.e., only one person enters or leaves at a time). If PHOTO1 is followed by PHOTO2, a sequencer
generates a LEAVE signal, and if PHOTO2 is followed by PHOTO1, the sequencer generates an ENTER signal.
At most, one ENTER or LEAVE will be true at any time. Assume that these signals will be true until you read
them. Basically you read the signal and provide a signal to the door controller indicating that the door is READY
to let the next person in or out.
(a) Draw a block diagram for the data section of this circuit. Assume that ENTER and LEAVE signals are avail-

able for you (i.e., you do not need to generate them for this part of the question).
(b) Draw an SM chart for the controller. Write the steps required to accomplish the design. De�ne all control

signals used.
(c) Draw an SM chart for a circuit that generates ENTER and LEAVE.

5.4 (a) Draw the block diagram for a divider that divides an 8-bit dividend by a 5-bit divisor to give a 3-bit quotient.
The dividend register should be loaded when St 5 1.

(b) Draw an SM chart for the control circuit.
(c) Write a VHDL description of the divider based on your SM chart. Your VHDL should explicitly generate

the control signals.
(d) Give a sequence of simulator commands that would test the divider for the case 93 divided by 17.

5.5 Draw an SM chart for the BCD to binary converter of Problem 4.13.
5.6 Draw an SM chart for the square root circuit of Problem 4.14.
5.7 Draw an SM chart for the binary multiplier of Problem 4.22.
5.8 Design a binary-to-BCD converter that converts a 10-bit binary number to a 3-digit BCD number. Assume that

the binary number is , 5 999. Initially the binary number is placed in register B. When a St signal is received,
conversion to BCD takes place, and the resulting BCD number is stored in the A register (12 bits). Initially A
contains 0000 0000 0000. The conversion algorithm is as follows: If the digit in any decade of A is . 5 0101,
add 0011 to that decade. Then shift the A register together with the B register one place to the left. Repeat until
10 shifts have occurred. At each step, as the left shift occurs, this effectively multiplies the BCD number by 2 and
adds in the next bit of the binary number.
(a) Illustrate the algorithm by converting 100011101 to BCD.
(b) Draw the block diagram of the binary-to-BCD converter. Use a counter to count the number of shifts. The

counter should output a signal C10 after 10 shifts have occurred.
(c) Draw an SM chart for the converter (3 states).
(d) Write a VHDL description of the converter.

5.9 Design a multiplier for 16-bit binary integers. Use a design similar to Figures 4-33 and 4-34.
(a) Draw the block diagram. Add a counter to the control circuit to count the number of shifts.
(b) Draw the SM chart for the controller (3 states). Assume that the counter outputs K 5 1 after 15 shifts have

occurred.
(c) Write VHDL code for your design.

5.10 The block diagram for an elevator controller for a building with two �oors is shown below. The inputs FB1 and
FB2 are �oor buttons in the elevator. The inputs CALL1 and CALL2 are call buttons in the hall. The inputs FS1
and FS2 are �oor switches that output a 1 when the elevator is at the �rst-or second-�oor landing. Outputs UP
and DOWN control the motor, and the elevator is stopped when UP 5 DOWN 5 0. N1 and N2 are �ip-�ops
that indicate when the elevator is needed on the �rst or second �oor. R1 and R2 are signals that reset these �ip-
�ops. DO 5 1 causes the door to open, and DC 5 1 indicates that the door is closed. Draw an SM chart for the
elevator controller (four states).

Storage
circuit

Elevator
control
circuit

Storage
circuit

FB1

CALL1

FB2

CALL2

R2

R1N1

N2

Door
mechanism

UP

DOWN

DO

DC

FS1

FS2

Problems 299

5.11 Write a test bench for the elevator controller of Problem 5.10. The test bench has two functions: to simulate the
operation of the elevator (including the door operation) and to provide a sequence of button pushes to test the
operation of the controller.

To simulate the elevator: if the elevator is on the �rst �oor 1FS1 5 1 2 and an UP signal is received, wait 1
second and turn off FS1; then wait 10 seconds and turn on FS2; this simulates the elevator moving from the �rst
�oor to the second. Similar action should occur if the elevator is on the second �oor 1FS2 5 1 2 and a DOWN
signal is received. When a door open signal is received 1DO 5 1 2 , set door closed (DC) to 0, wait 5 seconds, and
then set DC 5 1.

Test sequence: CALL1, 2, FB2, 4, FB1, 1, CALL2, 10, FB2
Assume each button is held down for 1 s and then released. The numbers between buttons are the delays in

seconds between button pushes; this delay is in addition to the 1 s the button is held down.
Complete the following test bench:

entity test_el is
end test_el;

architecture eltest of test_el is
 component elev_control
 port(CALL1, CALL2, FB1, FB2, FS1, FS2, DC, CLK: in bit;
 UP, DOWN, DO: out bit);
 end component;

300 Chapter 5 SM Charts and Microprogramming

5.12 For the following SM chart:

S0/

X2

Z1

X1

Z2

S1/Z1

X3Z3 X2

S2/Z1

X1

1 0

0 1

0

1

0

1

0

1

(a) Draw a timing chart that shows the clock, the state (S0, S1, or S2), the inputs (X1, X2, and X3), and the outputs.
The input sequence is X1 X2 X3 5 011,101,111,010,110,101,001. Assume that all state changes occur on the rising
edge of the clock, and the inputs change between clock pulses.

(b) Use the state assignment S0: AB 5 00; S1: AB 5 01; S2: AB 5 10. Derive the next state and output equations
by tracing link paths. Simplify these equations using the don’t care state 1AB 5 11 2 .

(c) Realize the chart using a PLA and D �ip-�ops. Give the PLA table (state transition table).
(d) If a ROM is used instead of a PLA, what size ROM is required? Give the �rst �ve rows of the ROM table.

Assume a naïve ROM method is used (i.e., a full look-up table).
5.13 For the given SM chart:

X3

1

0

Z2 Z3

S2/

S0/

X1

S1/Z3

0

Z1

X5

X2

1

0 1

X4

1

0

001 (Q3 Q2 Q1)

010 100

1

0

(a) Complete the following timing diagram (assume that X1 5 1, X2 5 0, X3 5 0, X5 5 1, and X4 is as shown). Flip-
�ops change state on falling edge of clock.

Clock

X4

Q2

Q3

Z3

(b) Using the given one-hot state assignment, derive the minimum next state and output equations by inspection
of the SM chart.

(c) Write a VHDL description of the digital system.
5.14 (a) Draw an SM chart that is equivalent to the state graph of Figure 4-46.

(b) If the SM chart is implemented using a PLA and three �ip-�ops (A, B, C), give the PLA-table (state transition
table). Use a straight binary state assignment.

(c) Give the equation for A1 determined by inspection of the PLA table.
(d) If a one-hot state assignment is used, give the next state and output equations.

5.15 (a) Write VHDL code that describes the following SM chart. Assume that state changes occur on the falling edge
of the clock. Use two processes.

S0/0

X1

Z2

S1/Z1

X2

Z3

X3

S2/0

X2

Z1

X1

Z3

0

1

1

1

1

1
0

0

0

0

Problems 301

302 Chapter 5 SM Charts and Microprogramming

(c) Complete the following timing diagram.

5.16 Realize the following SM chart using a ROM with a minimum number of inputs, a multiplexer, and a loadable
counter (like the 74163). The ROM should generate NST. The multiplexer inputs are selected as shown in the
table beside the SM chart.
(a) Draw the block diagram.
(b) Convert the SM chart to the proper format. Add a minimum number of extra states.
(c) Make a suitable state assignment and give the �rst �ve rows of the ROM table.
(d) Write a VHDL description of the system using a ROM.

S0/Z3

X1

Z2

01

X2

Z1

X3

X2

1

1

1

0

0

0

S1/ S2/

T1 T2
00
01
10
11

1
X1
X2
X3

5.17 Realize the SM chart of Problem 5.16 using the two-address microprogramming structure shown in Figure 5-29.
(a) Convert the SM chart to the proper form by adding a minimum number of states to the given chart.
(b) Write the microprogram required to implement the circuit.

Clock
X1
X2
X3

State
Z1
Z2
Z3

S0

(b) The SM chart is to be implemented using a PLA and two �ip-�ops (A and B). Complete the state transition
table (PLA table) by tracing link paths. Find the equation for A1 by inspection of the PLA table

A B X1 X2 X3 A1 B1 Z1 Z2 Z3

(c) What is the size of the ROM required for microprogramming?
(d) What is the size of the ROM if no microprogram is used, but the traditional ROM method is used to imple-

ment the original SM chart?
5.18 The following SM chart is to be realized using the two-address microprogramming structure shown in Figure 5-29.

(a) Convert the SM chart to the proper form by adding a minimum number of states to the given diagram. Make
a suitable state assignment.

(b) Write the microprogram required to implement this SM chart.
(c) Draw a block diagram showing how the SM chart can be realized using a ROM, multiplexers, and �ip-�ops.

5.19 (a) What are the conditions an SM chart must satisfy in order to realize it using single-address microprogram-
ming with a counter, ROM, and multiplexer as in Figure 5-33?

(b) Give the modi�ed SM chart and the required state assignment if the SM chart of Problem 5.16 is realized
with this kind of microprogramming.

5.20 (a) What are the conditions an SM chart must satisfy in order to realize it, using single-address microprogram-
ming with a counter, ROM, and multiplexer as in Figure 5-33?

(b) Give the modi�ed SM chart and the required state assignment if the SM chart of Problem 5.18 is realized
with this kind of microprogramming.

X1

X2 X3

Z1

Z2

S2/Z3

S3/Z2

X1

X2

1 0

0

1 0

1

1 0

0 1

S0/

S1/

Problems 303

Qc Qb Qa T1 T0 CF BF AF CT BT AT Z1 Z2 Z3

0 0 0

304 Chapter 5 SM Charts and Microprogramming

5.21 Realize the SM chart given here using a ROM, counter, and a 4-to-1 multiplexer.

Z2

0

S2/Z3
X3

X1

10

1

S1 Z2

S0

X1

X2
0 1Z1

0 1

(a) Draw a block diagram. Show the MUX inputs.
(b) Change the SM chart to the proper form. Mark required changes on the following chart.
(c) Make a suitable state assignment. Give the �rst six rows of the ROM table.

5.22 Realize the SM chart of Problem 5.20 using the two-address microprogramming hardware structure shown in
Figure 5-29.
(a) Convert the SM chart to the proper form by adding a minimum number of states to the given diagram. What

are the changes needed?
(b) Write the microcode for implementing this state machine using the indicated hardware. You may indicate

states in the microcode using the state names S0, S1, and so on instead of using a bit assignment. Indicate the
MUX connections (inputs) necessary to understand your microcode.

(c) What is the size of the microcode ROM? Explain your calculation.
(d) If the given (original) SM chart is implemented using a traditional ROM method, how big a ROM is needed?

Explain your calculation.

S0/Z1

X1

S1/Z2

X1

S2/Z1

X3

S3/Z1 Z2

X2

S4/Z2

X3

S5/Z1 Z2

X3

1

1

1

1

1

0

0

10

0

0

0

5.23 The following SM chart is to be realized using two-address microprogramming.

Problems 305

 Draw the hardware needed and write the microcode. What is the size of the microprogram ROM?
5.24 Given the following ASM chart,

S0/Z1

X1

Z3

10

X2

Z2

X3

X2

1

1

1

0

0

0

S1/Z3 S2/Z4

(a) Derive the next state and output equations, assuming the following state assignment: S0 5 00, S1 5 01, S2 5 10.
(b) Convert the ASM chart to a form where it can be implemented by single-address microprogramming, with

only next state true (NST) speci�ed in the microprogram. Show the new SM chart and show the new state
assignments.

(c) Write the single-address microprogram required to implement this circuit.
(d) What is the size of the microprogram ROM for single-address microprogramming of the modi�ed SM chart?

306 Chapter 5 SM Charts and Microprogramming

5.25 (a) Convert the state diagram in Figure 1-20 (sequence detector) to an SM chart. You can assume the state
 assignments as in Table 1-4.

(b) What is the size of the ROM if this circuit is implemented using the naïve ROM method? Specify the answer
as number of entries 3 width of an entry.

(c) Draw the hardware and write the microprogram to implement this SM chart using two-address micropro-
gramming. Specify the answer as number of entries 3 width of an entry.

(d) Draw the hardware and write the microprogram to implement this SM chart using single-address micropro-
gramming. Specify the answer as number of entries 3 width of an entry.

(e) Compare the hardware needed for this circuit in (b), (c), and (d) with the hardwired control unit solution
given in Chapter 1.

5.26 (a) Convert the state diagram in Figure 1-23 (BCD to Excess-3 Code Converter) to an SM chart. You can assume
the state assignments as in Figure 1-24.

(b) What is the size of the ROM if this circuit is implemented using the naïve ROM method? Specify the answer
as number of entries 3 width of an entry.

(c) Draw the hardware and write the microprogram to implement this SM chart using two-address micropro-
gramming. Specify the answer as number of entries 3 width of an entry.

(d) Draw the hardware and write the microprogram to implement this SM chart using single-address micropro-
gramming. Specify the answer as number of entries 3 width of an entry.

(e) Compare the hardware needed for this circuit in (b), (c), and (d) with the hardwired control unit solution
given in Chapter 1.

5.27 (a) Convert the state diagram in Figure 4-20 (Scoreboard) to an SM chart.
(b) What is the size of the ROM if this circuit is implemented using the naïve ROM method? Specify the answer

as number of entries 3 width of an entry.
(c) Draw the hardware and write the microprogram to implement this SM chart using two-address micropro-

gramming. Specify the answer as number of entries 3 width of an entry.
(d) Draw the hardware and write the microprogram to implement this SM chart using single-address

 microprogramming. Specify the answer as number of entries 3 width of an entry.
(e) Compare the hardware needed for this circuit in (b), (c), and (d).

5.28 The SM charts for three linked machines are given below. All state changes occur during the falling edge of a
common clock. Complete a timing chart including ST, Wa, A, B, C, and D. All state machines start in the state
with an asterisk (*).

P0/ST*

1

0

P1/Wa

A B
1 0

S0/A*

ST

S1/D

C

S2/

C

T0/B*

ST

T1/C

D

T2/B

0 0

0

0

0

1

1

1

1 1

Problems 307

D

R

1

0

T0/

T1/P

T2/P

D

R

0

1

P

1

0

S0/

S1/

S2/D

5.29 SM charts for two linked state machines are shown below. Machine T starts in state T0, and machine S starts in
S0. Draw a timing chart that shows CLK, the states of T and S, and signals P, R, and D for 10 clocks. All state
changes occur on the rising edge of the clock.

X1

A

1

0

S0/

S1/

B
0

1

S2/Z1

A

1

0

T0/Z2

X2

1

0

T1/

B

CLK
X1
X2
S
T
A
B
Z1

S0

Z2

T0

5.30 The SM charts for two linked state machines are given below.
(a) Complete the timing diagram given below.
(b) For the SM chart on the left, make a one-hot state assignment, and derive D �ip-�op input equations and

output equations by inspection.

308

C H A P T E R

6

This chapter describes various issues related to implementing designs in FPGAs. A few
simple designs are hand-mapped into FPGA building blocks to illustrate tradeoffs arising
from the structure of the basic FPGA building block. Shannon’s expansion for decomposi-
tion of large functions into smaller functions is presented. Issues of the one-hot method of
state assignment, which is particularly suitable for FPGA-like technology, are discussed. The
design �ow is described, and synthesis, mapping, and placement issues are discussed brie�y.
Features of several commercial FPGAs appear in discussions and examples, but the FPGA
family is not covered. Instead of presenting the entire architecture of particular commercial
chips, the basic principles are presented in a general fashion. Once you understand the fun-
damentals, you will be able to refer to manufacturers’ data books and Web pages for more
detailed descriptions of the particular devices you want to use/understand in more detail.

6.1 Implementing Functions in FPGAs
Typically behavioral, RTL, or structural models of designs are created in a language such
as VHDL or Verilog, and automatic CAD software is used to synthesize, map, partition,
place, and route the design into an FPGA. To understand issues associated with partitioning
a design into an FPGA, some small components using FPGAs are designed in this section.

Assume that we want to design a 4-to-1 multiplexer using an FPGA whose logic block is
represented by Figure 6-1(a). This building block contains two 4- variable function genera-
tors, X and Y, and two �ip-�ops. The X function generator can generate any functions of
X1, X2, X3, and X4. Similarly, the Y function generator can create any function of Y1, Y2, Y3,
and Y4. Latched or unlatched forms of the generated functions can be brought to the output
of the logic block. The latched outputs are QX and QY; the combinational outputs are X and
Y. Assuming that the multiplexer inputs are I0, I1, I2, and I3, and that the multiplexer selects
are S1 and S0, the output equation for the multiplexer can be written as follows:

 M 5 S1 rS0 rI0 1 S1 rS0I1 1 S1S0 rI2 1 S1S0I3 (6-1)

A 4-to-1 multiplexer can be decomposed into three 2-to-1 multiplexers as illustrated in
Figure 6-1(b):

 M1 5 S0 rI0 1 S0I1

 M2 5 S0 rI2 1 S0I3

A third 2-to-1 multiplexer must now be used to create the output of the 4-to-1 multiplexer:

M 5 S1 rM1 1 S1M2

DESIGNING WITH FIELD
PROGRAMMABLE GATE ARRAYS

6.1 Implementing Functions in FPGAs 309

FIGURE 6-1:
(a) Example Building
Block for an FPGA;
(b) 4-to-1 Multiplexer
Using 2-to-1
Multiplexers

LUT4

X1

X2

X3

X4

Y1

Y2

Y3

Y4

QX

X

QY

Y

X Function
generator

LUT4

Y Function
generator

FF
D

R

S
Q

FF
D

R

S
Q

CE

CE

(a)

2-to-1
MUX

2-to-1
MUX

2-to-1

MUX
S0

S0

S1

I0

I1

I2

I3

0

1

(b)

M1

M2

M

The output is the same as the expected output of the 4-to-1 multiplexer (M). Two of the
2-to-1 multiplexers (M1 and M2) can be implemented in one logic block, and a second logic
block can be used to implement the third multiplexer (M). Thus, two logic blocks will be
required to implement a 4-to-1 multiplexer using this type of logic block. The functions gen-
erated by the �rst logic block are

 X 5 M1 5 S0 rI0 1 S0I1

 Y 5 M2 5 S0 rI2 1 S0I3

Only half of the second logic block is used. The X function generator creates the function

M 5 S1 rM1 1 S1M2

The path used by M1 and M2 is highlighted in Figure 6-2. The �ip-�ops are unused in
this design.

Many modern FPGAs use a four-input look-up table (LUT) as a basic building block.
Many designers refer to this building block as LUT4. It can implement a function (1-bit) of
any four variables. It takes 16 bits of SRAM in order to realize the four-input LUT using the
SRAM technology.

FIGURE 6-2:
Highlighting Paths for
a 4-to-1 Mux

LUT4

X1

X2

X3

X4

Y1

Y2

Y3

Y4

X1

X2

X3

X4

Y1

Y2

Y3

Y4

QX

X

QY

Y

X Function
generator

LUT4

Y Function
generator

LUT4

QX

X

QY

Y

X Function
generator

LUT4

Y Function
generator

22

2

I0
I1
S0

I2
I3
S0

M1

M2

M

FF
D

R

S
Q

FFD

R

S
Q

FFD

R

S
Q

FFD

R

S
Q

S111
CE

CE CE

CE

310 Chapter 6 Designing with Field Programmable Gate Arrays

What are the contents of the look-up tables implementing the multiplexers in Figure 6-2?

Answer:

As illustrated in the �gure, three look-up tables are used to implement functions M1, M2, and M. All of them are essen-
tially 2-to-1 multiplexers. Assuming X1 and Y1 are the LSBs and X4 and Y4 are the MSBs of the LUT addresses, one can
create the truth tables for each LUT as shown. When S0 is 0, the output (X) equals I0, and when S0 is 1, the output equals
I1. Denote the three LUTs as LUT-M1, LUT-M2, and LUT-M.

E X A M PLE

Inputs Output

X4 X3 1S0 2 X2 1I1 2 X1 1I0 2 X
x 0 0 0 0
x 0 0 1 1
x 0 1 0 0
x 0 1 1 1
x 1 0 0 0
x 1 0 1 0
x 1 1 0 1
x 1 1 1 1

The MSB of each LUT is unused. The contents of the �rst 8 locations of the LUT should be duplicated for the next
eight locations, since irrespective of the value of X4, it can be expected to behave like a 2-to-1 multiplexer. Hence, the
contents of LUT-M1 are the following:

LUT-M1 – 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1

Since all three LUTs in Figure 6-2 are implementing 2-to-1 multiplexers, they have identical contents for the input
connections shown. The contents of the second and third LUTs are the following:

LUT-M2 – 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1
LUT-M – 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1

Some FPGAs provide two 4-variable function generators and a method to combine the
output of the two function generators. Consider the logic block in Figure 6-3. This program-
mable logic block has nine logic inputs (X1, X2, X3, X4, Y1, Y2, Y3, Y4, and C). It can generate
two independent functions of four variables:

f1 1X1, X2, X3, X4 2 and f2 1Y1, Y2, Y3, Y4 2

The logic block can also generate a function Z, which depends on f1, f2, and C. Several
programmable multiplexers are used to select what is brought out at the combinational out-
puts (Xout, Yout) and the sequential outputs (QX, QY). The block can generate any func-
tion of �ve variables in the form Z 5 f1 1F1, F2, F3, F4 2 # C r 1 f2 1F1, F2, F3, F4 2 # C. It can also
generate some functions of six, seven, eight, and nine variables. A Xilinx FPGA from the
past, the XC4000, uses a similar structure for its logic blocks.

6.1 Implementing Functions in FPGAs 311

FIGURE 6-3: Example
Programmable Logic
Block with Three
Look-Up Tables

C

X

Z

Y

LUT4

X Function
generator

LUT4

Y Function
generator

X1

X2

X3

X4

Y1

Y2

Y3

Y4

FF

QX

Xout

QY

Yout

D QS

R

FF
D QS

R

= Programmable MUX

CE

CE

Z Function
generator

LUT3

Now consider the implementation of a 4-to-1 multiplexer using this FPGA building block.
A 4-to-1 multiplexer can be implemented using a single logic block of this FPGA, as highlighted
in Figure 6-4. The X function generator (LUT4) implements the function M1 5 S0 rI0 1 S0I1,
the Y function generator (LUT4) implements the function M2 5 S0 rI2 1 S0I3, and the Z
function generator implements the function M 5 S1 rM1 1 S1M2. The input C is used to
feed in select signal S1 for use in the Z function generator. This design needs no �ip-�ops or
latches.

Often, there are many ways to map the same design. The 4-to-1 multiplexer (shown in
Figure 6-4) was generated using the C input of the block. The multiplexer can be created

FIGURE 6-4: A 4-to-1
Multiplexer in a
Programmable Logic
Block with Three
Function Generators

S0

I0

I1

S1

S0

I2

I3

C

X

Z

Y

LUT4

X Function
generator

LUT4

Y Function
generator

X1

X2

X3

X4

Y1

Y2

Y3

Y4

FF

QX

Xout

QY

Yout

D Q
S

R

FFD Q
S

R

= Programmable MUX

CE

CE

Z Function
generator

LUT3

312 Chapter 6 Designing with Field Programmable Gate Arrays

even without using the C input. The �rst two terms of the multiplexer’s equation (Equa-
tion (6-1)) have four variables S0, S1, I0 and I1. The third and fourth terms of the equation
have four variables S0, S1, I2, and I3. Thus, a four-variable function generator can imple-
ment the �rst two terms, and another four-variable function generator can implement
the third and fourth terms. However, now the outputs of the two four-variable function
generators need to be combined. The Z function generator can be used for this purpose.
In this case, the X function generator (LUT4) generates the function

 F1 5 S1 rS0 rI0 1 S1 rS0I1 (6-1a)

which is the �rst half of the function in Equation (6-1). The Y function generator (LUT4)
generates the function

 F2 5 S1S0 rI2 1 S1S0I3 (6-1b)

which is the second half of the function in Equation (6-1). The Z function generator (LUT3)
performs an OR function of the F1 and F2 functions

 Z 5 F1 1 F2 (6-2)

In this case, the C input is not required. This is an example of how mapping soft-ware has
choices in the mapping of circuitry into resources available in the target technology.

The preceding example illustrated that it is very expensive to create multiplexers using
LUTs. Three 4-input function generators (LUTs) are required to create a 4-to-1 multi-
plexer. Since 16 SRAM cells are required to create a four-variable function generator, 48
memory cells are required to create a 4-to-1 multiplexer using the FPGA building block
in Figure 6-2.

Eight memory cells are required to create a three-variable function generator (LUT3).
Hence, the multiplexer in Figure 6-3 needs 40 memory cells (16 cells for X, 16 cells for Y,
and 8 cells for Z). The contents of these memory cells are part of what we need to download
into the FPGA in order to program it.

When the programmable logic block of an FPGA is a large unit with the ability to
realize a fairly complex multivariable function, it is possible that a large part of each logic
block may go unused. Consider an example. Assume that you have to design a 4-bit circu-
lar shift register in an FPGA, whose building block is similar to the one in Figure 6-1(a). In
a circular shift register, the output of the rightmost �ip-�op is fed back to the input of the
leftmost �ip-�op. Such a shift register is also called a ring counter. Since four �ip-�ops are
required for a 4-bit shift register, two such basic building blocks will be required to realize
this circuit. The four next state equations are D1 5 Q4, D2 5 Q1, D3 5 Q2, and D4 5 Q3.
Two next state equations can be realized using the combinatorial function generators
in one logic block. Figure 6-5(b) highlights the active paths for the shift register. The X
function generator is used to generate D1 5 Q4 and the Y function generator is used to
generate D2 5 Q1.

Notice that the four-variable function generators are largely unused in this example,
because the next state equations for the �ip-�ops are rather simple; they depend only on the
current state of the preceding �ip-�op (i.e., a single-variable function). However, even if a
function generator is used for a single-variable function, the rest of the function generator
cannot be used for anything else.

6.1 Implementing Functions in FPGAs 313

FIGURE 6-5: (a) Circular
Shift Register;
(b) Implementation
Using Simple FPGA
Building Block

D1 Q D2 Q D4 Q

CLK

Q1 Q2 Q4

FF1 FF2 FF3

D3 Q
Q3

FF3

D1 = Q4

D2 = Q1

D3 = Q2

D4 = Q3

(a)

LUT4

X1

X2

X3

X4

Y1

Y2

Y3

Y4

QX

X

QY

Y

X Function
generator

LUT4

Y Function
generator

LUT4

QX

X

QY

Y

X Function
generator

LUT4

Y Function
generator

FF
D

R

S Q

FF
D

R

S Q

FF
D

R

S Q

FF
D

R

S Q

1

D1

D2

D3

D4

Q1

Q2

Q3

Q4

CE

CECE

CE

X1

X2

X3

X4

Y1

Y2

Y3

Y4

(b)

How many programmable logic blocks similar to the one in Figure 6-1(a) will be required to create a 3-to-8 decoder?

Answer:

4. A 3-to-8 decoder has three inputs and eight outputs. Each output will need a three-variable function generator. Since
what is available in the logic block in Figure 6-1(a) is a four-variable function generator, we will have to use one such
function generator to create one output. Thus, eight function generators (i.e., eight 4-input LUTs) will be required to
create a 3-to-8 decoder. One logic block shown in Figure 6-1(a) can generate two outputs. So four such programmable
logic blocks will be required to create a 3-to-8 decoder.

If the LUTs are SRAM based, 128 SRAM cells are required to implement the 3-to-8 decoder using the LUT-based
FPGA. This decoder will only need eight 3-input AND gates and three inverters, if implemented using logic gates. Thus,
LUTs are very expensive for implementing certain functions.

E X A M PLE

Some FPGAs use multiplexers and gates as a basic building block. Some FPGAs (e.g.,
the Xilinx Spartan) provide LUTs and multiplexers. The mapping software looks at the
resources available in the target technology (i.e., the speci�c FPGA that is used) and trans-
lates the design into the available building blocks.

314 Chapter 6 Designing with Field Programmable Gate Arrays

6.2 Implementing Functions Using Shannon’s Decomposition
Shannon’s expansion theorem can be used to decompose functions of large numbers of
 variables into functions of fewer variables. In the previous section, we decomposed a 4-to-1
multiplexer into 2-to-1 multiplexers in order to implement it in a logic block with four-
variable function generators. Shannon’s expansion offers a general decomposition technique
for any function.

Let us illustrate Shannon’s decomposition for realizing any six-variable function
Z(a, b, c, d, e, f). First, expand the function as follows:

Z 1a, b, c, d, e, f 2 5 a r # Z 10, b, c, d, e, f 2 1 a # Z 1 l, b, c, d, e, f 2 5 a rZ0 1 aZ1 (6-3)

We can verify that Equation (6-3) is correct by �rst setting a to 0 on both sides and
then setting a to 1 on both sides. Since the equation is true for both a 5 0 and a 5 1, it is
always true. Equation (6-3) leads directly to the circuit of Figure 6-6(a), which uses two
cells to realize Z0 and Z1. Half of a third cell is used to realize the three-variable function,
Z 5 a rZ0 1 aZ1.

As an example, consider the following function:

Z 5 abcd ref r 1 a rb rc rdef r 1 b rcde rf

Setting a 5 0 gives

Z0 5 0 # bcd ref r 1 1 # b rc rdef r 1 b rcde rf 5 b rc rdef r 1 b rcde rf

and setting a 5 1 gives

Z1 5 1 # bcd ref r 1 0 # b rc rdef r 1 b rcde rf 5 bcd ref r 1 b rcde rf.

Since Z0 and Z1 are �ve-variable functions, each of them needs a �ve-input LUT.
 Irrespective of the number of terms in a function, as long as there are only �ve variables, it
can be realized by one �ve-input LUT. Then a 2-to-1 multiplexer or another LUT5 will be
required to generate Z from Z0 and Z1.

FIGURE 6-6: Realization
of Six-Variable
Functions Using
(a) Five-Variable and
(b) Four-Variable
Function Generators

b

c

d

e
f

b

c

d

e
f

Z0

Z1

Z

a

Y0

Y1

Y2

Y3

Z0

a

b

Z1

a

b

Z

5 variable
function
generator

4 variable
function
generator

4 variable
function
generator

4 variable
function
generator

4 variable
function
generator

4 variable
function
generator

4 variable
function
generator

5 variable
function
generator

(a) (b)

c

d

e
f

c

d

e
f

c

d

e
f

c

d

e
f

6.2 Implementing Functions Using Shannon’s Decomposition 315

If only four-input LUTs are available, the �ve-variable functions should be further
decomposed into four-variable functions. This can be done by applying Shannon’s expansion
theorem twice, �rst expanding about a and then expanding about b. Or it can be done in one
step by decomposing into four component functions as follows:

 Z 1a, b, c, d, e, f 2 5 a rb r # Z 10, 0, c, d, e, f 2 1 a rb # Z 10, 1, c, d, e, f 2
 1 ab r # Z 11, 0, c, d, e, f 2 1 ab # Z 11, 1, c, d, e, f 2

 5 a rb r # Y0 1 a rb # Y1 1 ab r # Y2 1 ab # Y3 (6-4)

Figure 6-6(b) illustrates the realization of a general six-variable function using four-
variable functions.

Now let us consider the decomposition of function

 Z 5 abcd ref r 1 a rb rc rdef r 1 b rcde rf

into four-variable functions. Let us apply Shannon’s expansion around a and b.

 ● Substituting a 5 b 5 0 gives Y0 5 c rdef r 1 cde rf
 ● Substituting a 5 0, b 5 1 gives Y1 5 0
 ● Substituting a 5 1, b 5 0 gives Y2 5 cde rf,
 ● Substituting a 5 b 5 1 gives Y3 5 cd ref r

In a general implementation, seven 4-variable function generators will be required to imple-
ment a six-variable function as in Figure 6-6(b). However, in this example, one of the four-
variable functions obtained by decomposing is the null function, which results in a simpler
function:

Z 5 a rb r # Y0 1 ab r # Y2 1 ab # Y3

Five 4-variable function generators will be suf�cient to implement this function, one
each for Y0, Y2, and Y3, one for generating Z1 5 ab r # Y2 1 ab # Y3, and another one
for generating a rb r # Y0 1 Z1. Figure 6-7 illustrates the implementation of the function
Z 5 abcd ref r 1 a rb rc rdef r 1 b rcde rf, using only four-variable function generators.

FIGURE 6-7:
Example Function
Implementation Using
Four-Variable Function
Generators

Z

Z1

Y0
4 variable
function
generator

c

d

e
f

4 variable
function
generator

c

d

e
f

4 variable
function
generator

c

d

e
f

Y2

Y3

a

b 4 variable
function
generator

a

b 4 variable
function
generator

316 Chapter 6 Designing with Field Programmable Gate Arrays

Any seven-variable function can be realized with six or fewer LUT5s. The expansion for
a general seven-variable function is

 Z 1a, b, c, d, e, f, g 2 5 a rb r # Z 10, 0, c, d, e, f, g 2 1 a rb # Z 10, 1, c, d, e, f, g 2
 1 ab r # Z 11, 0, c, d, e, f, g 2 1 ab # Z 11, 1, c, d, e, f, g 2

 5 a rb r # Y0 1 a rb # Y1 1 ab r # Y2 1 ab # Y3 (6-5)

Here Y0, Y1, Y2, and Y3 are �ve-variable functions of c, d, e, f, and g. Equation (6-5) can be
obtained by applying the expansion theorem twice, �rst expanding about a and then expanding
about b. As an example, consider the seven-variable function:

Z 5 c rde rfg 1 bcd re rfg r 1 a rc rdef rg 1 a rb rd ref rg r 1 ab rdefg r

 ● Substituting a 5 b 5 0 gives Y0 5 c rde rfg 1 c rdef rg 1 d ref rg r
 ● Substituting a 5 0, b 5 1 gives Y1 5 c rde rfg 1 cd re rfg r 1 c rdef rg
 ● Substituting a 5 1, b 5 0 gives Y2 5 c rde rfg 1 defg r
 ● Substituting a 5 b 5 1 gives Y3 5 c rde rfg 1 cd re rfg r

This function can be implemented using six 5-variable function generators. Four of the func-
tion generators will implement the functions, Y0, Y1, Y2, and Y3. A �fth function generator
implements the four-variable function, Z0 5 a rb r # Y0 1 a rb # Y1, and the remaining function
generator implements a �ve-variable function, Z 5 Z0 1 ab r # Y2 1 ab # Y3.

Shannon’s decomposition allows us to decompose an n-variable function into two n 2 1
variable functions and multiplexers. As we saw in the earlier part of this chapter, it is very inef-
�cient to realize multiplexers using LUTs. As the number of variables (n) increases, the number
of look-up tables required to realize an n-variable function increases rapidly. Availability of
multiplexers can greatly reduce the number of LUTs needed. For this reason, some FPGAs
provide multiplexers in addition to LUT4s.

Implement a seven-variable function using four-input LUTs and 2-to-1 multiplexers.

Answer:

Shannon’s expansion can be used to obtain the following decompositions:

 7-variable function generator 5 two 6-variable function generators
 1 a 2-to-1 mux c (i)

 6-variable function generator 5 two 5-variable function generators
 1 a 2-to-1 mux c (ii)

 5 variable function generator 5 two 4-variable function generators
 1 a 2-to-1 mux c (iii)

Substituting (iii) into (ii), we obtain
 6-variable function generator 5 four 4-variable function generators

 1 three 2-to-1 muxes c (iv)

Substituting (iv) into (i), we obtain

7-variable function generator 5 eight 4-variable function generators
1 seven 2-to-1 muxes

Thus a seven-variable function can be implemented as in Figure 6-8.

E X A M PLE

6.2 Implementing Functions Using Shannon’s Decomposition 317

If only four-variable LUTs are available, a seven-variable function needs �fteen
4- variable LUTs. A 2-to-1 multiplexer is cheaper than a four-input LUT, and hence it is
implemented using eight 4-input LUTs and seven 2-to-1 multiplexers in Figure 6-8.

The Xilinx Spartan FPGA is an example of an FPGA that provides multiplexers in addi-
tion to the general four-variable LUTs. A logic unit in these FPGAs is called a slice, and a
slice may be represented in a simple fashion as in Figure 6-9. It contains two 4-input LUTs
and three 2-to-1 multiplexers (plus other logic not shown here). A seven-variable function
can be realized, using four such slices, as in Figure 6-10. Dotted lines are used to indicate
each slice.

As another example, let us generate a parity function using four-variable function gen-
erators. The parity function is de�ned as

F 5 A ! B ! C ! D ! E

which has 16 terms when expanded to a sum of products, but it is a �ve-variable function.
Any �ve-variable function can be decomposed into two 4-variable functions using Shannon’s
expansion and can be realized using two 4-input LUTs and a 2-to-1 multiplexer. Two four-
variable function generators are suf�cient for this speci�c function because it can be broken
down into a 4-variable parity function and an XOR with the �fth variable.

FIGURE 6-8: A Seven-
Variable Function
Using Four-Input LUTs
and 2-to-1 Muxes

Mux

LUT4
4

D, E, F, G

LUT4
4

D, E, F, G
C

Mux

LUT4
4

D, E, F, G

LUT4
4

D, E, F, G
C

Mux

B

Mux

LUT4
4

D, E, F, G

LUT4
4

D, E, F, G
C

Mux

LUT4
4

D, E, F, G

LUT4
4

D, E, F, G
C

Mux

B

Mux

A

Z

318 Chapter 6 Designing with Field Programmable Gate Arrays

FIGURE 6-10:
Implementing a Seven-
Variable Function
Using Four Xilinx
Spartan Slices

Mux

LUT4
4

D, E, F, G

LUT4
4

D, E, F, G
C

Mux

LUT4
4

D, E, F, G

LUT4
4

D, E, F, G
C

Mux

B

Mux

LUT4
4

D, E, F, G

LUT4
4

D, E, F, G
C

Mux

LUT4
4

D, E, F, G

LUT4
4

D, E, F, G
C

Mux

B

Mux

A

Z

FIGURE 6-9: Simpli�ed
View of a Xilinx
Spartan Slice

Mux

LUT4
4

LUT4
4

Mux
A

B

BY

FX

G

F

BX

X

D Q

CE

D Q

CE

YQ

Y

XQ

F5

6.3 Carry Chains in FPGAs 319

6.3 Carry Chains in FPGAs
The most naïve method for creating an adder with FPGAs is to use FPGA logic blocks to
generate the sum and carry for each bit. A four-variable look-up table (which is the standard
building block nowadays) can generate the sum, and another LUT4 will typically be required
to realize the carry equation. The carry output from each bit has to be forwarded to the
next bit using interconnect resources. But since addition is a fundamental and commonplace
operation, many FPGAs provide dedicated circuitry for generating and propagating carry
bits to subsequent higher bits. Typically, a dedicated carry chain is implemented. As an
example, consider the carry chain illustrated in Figure 6-11. Each LUT generates the sum

FIGURE 6-11: Carry
Chains for Fast
Addition

Carry-in

Programmable
LUT

Dedicated
Carry Chain

FFa1
b1

s1

Logic Block 1

Programmable
LUT

Dedicated
Carry Chain

FFa2
b2

s2

Logic Block 2

Carry

Programmable
LUT

Dedicated
Carry Chain

FFan
bn

sn

Logic Block n

Carry

Programmable
LUT

Dedicated
Carry Chain

FF Carry-Out

Logic Block n+1

Carry

320 Chapter 6 Designing with Field Programmable Gate Arrays

bit of the corresponding input bits (a, b, and carry-in). The carry chain generates the carry
in parallel and feeds it using the dedicated interconnect to the LUT implementing the sum
of the next bit.

Without such a carry chain, an n-bit adder typically will take 2n logic blocks (if a logic
block is an LUT4), whereas with the carry chain, n logic blocks (albeit with additional dedi-
cated circuitry) are suf�cient. Dedicated circuitry generates the carry and routes it directly to
the next LUT4. The hardware for the carry generation will be unused in many circuits, but
because addition is a common operation, it is generally worthwhile to include such circuitry
in the FPGA logic block.

6.4 Cascade Chains in FPGAs
Some FPGAs contain support for cascading outputs from FPGA blocks in series. The com-
mon types of cascading are the AND con�guration and the OR con�guration. Instead of
using separate function generators to perform AND or OR functions of logic block outputs,
the output from one logic block can be directly fed to the cascade circuitry to create AND
or OR functions of the logic block outputs. Figure 6-12 illustrates the cascade chains in an
example FPGA that uses four-input LUTs for function generation. So if an OR operation
of 32 variables is desired, you can accomplish this using eight logic blocks. Each logic block
will generate a four-variable OR, and the cascading OR gate can be used to OR the output
from the previous logic block. Cascading AND and exclusive OR gates are also provided in
some FPGAs. In look-up table–based FPGAs, these types of cascade chains may be called
LUT chains.

How many logic blocks with LUT4s will be needed to create a 32-variable AND function with and without the AND
cascade chain?

Answer:

Without the AND cascade chain, 11 logic blocks will be needed. Eight logic blocks can be used to make AND of
4- variables each, resulting in 8 sub-functions. These 8 functions can be fed to 2 logic blocks and then another logic block
will be needed to generate the overall AND. With the AND cascade chain, only 8 logic blocks will be needed. The AND
cascade chain will be used to AND the outputs of the 8 logic blocks.

E X A M PLE

Register Chains in FPGAs: In many FPGAs, the only input to the �ip �ops in the logic
blocks is through the LUTs or logic elements. That is why in Figure 6-5, the shift register
has to use the LUT to simply act as a wire passing the input via the LUT to the �ip �op.
Additionally the logic block in Figure 6-5 cannot implement any other circuitry. However,
some FPGAs such as the Altera Stratix IV contain support for register chains without
using the LUTs, as illustrated in Figure 6-12(c). There is a separate register chain input
to the �ip-�op, and it is possible to use the LUT for other logic functions and route their
outputs using the combinational outputs X and Y, potentially increasing the utilization of
the FPGA blocks.

6.4 Cascade Chains in FPGAs 321

FIGURE 6-12: Example
Cascade Chains (a)
AND Cascade Chain
(b) OR Cascade Chain
(c) Register Cascade
Chain

LUT F1

Logic block 1

4

LUT
F2

Logic block 2

4

LUT
Fn

F1

F2

Fn

Logic block n

4

AND Cascade Chain

F

F = F1• F2• . . . • Fn F = F1 + F2 + . . . + Fn

LUT

Logic block 1

4

LUT

Logic block 2

4

LUT

Logic block n

4

OR Cascade Chain

F

Input from
LUT-6

Input from
LUT-6

CLK
Input to
Reg Chain

Output from
Reg Chain

FF0

FF1

X

XQ

YQ

Y

How many logic blocks with 2 LUT4s and 2 �ip-�ops per block will be needed to create a 4-bit shift register and four
4-variable functions (a) a logic block without register chain (b) a logic block without register chain.

Answer:

(a) Without the register chain, a total of 4 blocks will be needed. Two logic blocks are required for the shift register �ip-
�ops. When the LUTs and �ip-�ops are used for the shift register as in Figure 6-5, no more functions can be implemented

E X A M PLE

322 Chapter 6 Designing with Field Programmable Gate Arrays

6.5 Examples of Logic Blocks in Commercial FPGAs
Three examples of commercial FPGA logic blocks are provided in this section. They are from
Xilinx, Altera, and Microsemi. The Xilinx and Altera architectures both use 6- variable look-
up tables as their basic building block. For Microsemi, an architecture that uses 4- variable
lookup table, and another one that uses multiplexers and gates are presented.

The Xilinx Kintex Configurable Logic Block
The Xilinx Kintex FPGA uses four copies of a basic block called a slice, illustrated in
 Figure 6-13, to form a Con�gurable Logic Block (CLB). CLB is the Xilinx terminology for
the programmable logic block in their FPGAs. The Kintex uses 6-variable lookup tables in
contrast to the LUT4s used in the Xilinx Virtex and Spartan FPGAs.

Each LUT6 can be used to generate one 6-variable function or two 5- variable functions.
The 6-variable function is generated by combining two 5-variable functions using a 2-to-1
multiplexer. There are 2 outputs from the LUT6, namely O6 and O5. One of the outputs
(O6) can use up to six input variables. The second output (O5) can use only up to �ve input
variables. It should be noted that these are not independent variables or independent func-
tions. Five of the variables are common between O6 and O5 and the function O5 has to be a
sub-function of the function O6. There are three external outputs from the slice, AMUX, A
and AQ, but only two of them can be used simultaneously. One of the outputs, A is a combi-
national output, while the AQ output is always a registered output. The AMUX output can
be either combinational or registered. The O6 function can be brought out through any of

using the same blocks. Two additional logic blocks will be needed for the four logic functions. (b) Two blocks are
 suf�cient because the �ip-�ops will get used for the shift register using the register chain. The LUTs in the same logic
blocks are unused even after the shift-register is implemented, and there are two combinational outputs per block. So the
same two blocks that implemented the shift register can implement the four logic functions as well.

FIGURE 6-13: Simpli�ed
View of the Xilinx
Kintex “Slice” (1/4 of a
CLB)

D6

D5-D1

Cin

Cout

D Q

D Q

AMUX/AQ

A

AQ

multiplexers,

carry chain

and

other control

logic

LUT6

LUT5

LUT5

0
1

O6

O5

5

6.5 Examples of Logic Blocks in Commercial FPGAs 323

the three output lines, however, the O5 output can be brought out only via AMUX and AQ.
There are several multiplexers and other gates to allow this routing. The slices also support
carry chaining. The Kintex chips use two slight variations of this slice structure, which they
call SLICEL and SLICEM.

The Altera Stratix IV Logic Module
Altera’s name for its basic logic block is the Logic Module (LM). Figure 6-14 illustrates a
simpli�ed view of the logic block of the Altera Stratix IV FPGA. Each LM contains two
6-variable look-up tables (LUTs) and two �ip-�ops. Each LUT6 has two independent
inputs four shared inputs. Basically a pair of LUTs share four of the inputs as illustrated in
 Figure 6-14. It can implement two functions of six variables. The output can come out directly
from the combinational logic or from the �ip-�op. There are two 1-bit built-in adders with
carry-chaining. Another special feature of the Stratix IV logic module is the register chaining
which allows to create shift registers or other types of �ip-�op arrays and to use the �ip-�ops
separately from the LUTs. Since the �gure is a simpli�ed view, many details are left out. The
Stratix V logic module is similar, except that four �ip �ops exist per logic module instead of
the two in Stratix IV.

FIGURE 6-14: Simpli�ed
View of the Altera
Stratix IV Logic
Module

2

2

4

LUT-6

LUT-6

Adder0

FF1

Cin

Input to
reg chain CLK

X

Y

XQ

YQ

Cout

Output from
reg chain

Adder1

FF0

The Microsemi Fusion VersaTile
Microsemi also makes FPGAs which are LUT based, but in the interest of showing a build-
ing block which is very different from the typical LUT-based architecture, the building block
in the Microsemi Fusion architecture, consisting of multiplexers and gates is illustrated in

324 Chapter 6 Designing with Field Programmable Gate Arrays

Figure 6-15. Microsemi calls their basic block the VersaTile. The VeraTile block has four
inputs, X1, X2, X3, and Xc. as illustrated in Figure 6-15. Each VersaTile can be con�gured to
be any of the following:

 ● a 3-input logic function;
 ● a latch with a clear or set;
 ● a D-�ip-�op with clear or set; or
 ● a D �ip-�op with Enable, Clear or Set.

When used as a 3-input logic function, the inputs are X1, X2, and X3. When used for the
latch/�ip-�op, input X2 is typically used for the clock. Inputs X1 and Xc are used for �ip-�op
enable and clear signals. The logic block provides duplicate outputs tailored for fast local
connections or ef�cient long-line connections, but for simplicity we only show one output in
Figure 6-15. The VersaTile is of signi�cantly �ner grain than the 4-input LUTs in many other
FPGAs. The granularity of this building block is comparable to that of standard gate arrays
(i.e., traditional gate arrays which are mask programmable).

6.6 Dedicated Memory in FPGAs
Many applications need memory. It could be for storing a table of constants to be used as
coef�cients during processing, or it could be for implementing instruction and data memo-
ries for an embedded processor that you are designing using the FPGA. Early FPGAs did
not contain any dedicated memory. Designers typically interfaced the FPGAs to external

FIGURE 6-15: Simpli�ed View of the Microsemi Fusion and ProAS1C Logic Block (© 2006 Microsemi Corporation)

Switch (�ash connection)

X3

X2
Inputs:
X3—Data
X2—Clock
X1—CLR/Enable
XC—CLR

X1

XC

OUTPUT

0
1

0
1

0
1

0
1

B
as

ed
 o

n
M

ic
ro

se
m

i

6.6 Dedicated Memory in FPGAs 325

memory chips when memory was desired. As chip densities have increased, FPGA designers
started to incorporate dedicated memory on FPGA chips, eliminating the need to interface
them with external memory chips.

Modern FPGAs include 16K to 60M bits of dedicated memory. Table 6-1 presents the
amount of dedicated RAM in some FPGAs. As an example, the Xilinx Kintex-5 contains up
to 34M bits of dedicated memory. Similarly, the Altera Stratix IV contains 13M to 53M bits
of memory. The Microsemi Fusion contains 27 to 270K bits of memory. The dedicated mem-
ory is typically implemented using a few (4-1000) large blocks of dedicated SRAM located
in the FPGA. The memory is typically built from basic building blocks of sizes such as 4Kb,
9Kb, 20Kb, 144Kb, or 512Kb. Some FPGAs provide parity bits in the embedded RAM. The
parity bits are included when calculating the dedicated RAM size in the literature from some
vendors; other vendors exclude the parity bits and count only the usable dedicated RAM.
Figure 6-16 indicates a typical organization for the dedicated RAM blocks. In many FPGAs,
they are situated outside the region of the logic block arrays (e.g., Xilinx Virtex/Spartan and
Microsemi Fusion). In some FPGAs (e.g., Altera Stratix), there are columns of memory in a
few different locations in the FPGA. In many FPGAs, the SRAM blocks are of one size (e.g.,
18Kb in Xilinx Virtex), but some FPGAs use multiple types of memory building blocks in the
same chip. For instance, the Altera Stratix IV contains 9Kb and 144Kb memory blocks. The
dedicated memory on the Xilinx FPGAs is called block RAM.

A key feature of the dedicated RAM on modern FPGAs is the ability to adjust the width
of the RAM. As shown in Table 6-1, there are several tiles or blocks of memory. They can be
placed in various ways to achieve different aspect ratios. Let us assume that there are 32K bits
of SRAM provided as blocks of RAM. This RAM can be used as 32K 3 1, 16K 3 2, 8K 3 4,
or 4K 3 8. Thus, the width of the RAM can be adjusted depending on the needs of the

FPGA Family Dedicated RAM size (Kbits) Organization

Xilinx Kintex 7 4680–34380 270–1910 18Kb blocks
135–955 36Kb blocks

Xilinx Artix 7 1800–13140 100–730 18Kb blocks
50–365 36Kb blocks

Xilinx Virtex 6 5616–38304 312–2128 18Kb blocks
156–1064 36Kb blocks

Xilinx Virtex 5 1152–18576 64–1032 18Kb blocks
32–516 36Kb blocks

Xilinx Spartan 3E 72–648 4–36 18Kb blocks

Xilinx Spartan 6 216–4824 12–268 18Kb blocks

Altera Stratix V 13760–53200 688–2660 20Kb blocks

Altera Stratix IV 6462–20736 462–1280 9Kb blocks
16–64 144Kb blocks

Altera Cyclone IV 540–6480 60–720 9Kb blocks

Altera Arria V GT 10510–24140 1051–2414 10Kb blocks

Altera Arria II GZ 11366–16794 1235–1248 9Kb blocks
24–36 144Kb blocks

Lattice SC 1054–7987 56–424 18Kb blocks

Microsemi Fusion 27–270 6–60 4Kb blocks

TABLE 6-1: Size of
Dedicated RAM in
Example FPGAs

326 Chapter 6 Designing with Field Programmable Gate Arrays

application. One application may need byte-wide memories; another application may need
64-bit-wide memories.

LUT-based FPGAs offer another alternative for memory. If only small amounts of
memory are required, it is possible to create that memory using the bits in the LUTs (i.e.,
without using the dedicated memory). As you know, a four-variable LUT contains 16 bits
of storage. You can create small amounts of memory by combining the storage cells from
the LUTs. Two 4-input LUTs (as in Figure 6-17) can be used to create a 32 3 1 memory or
a 16 3 2 memory. When used as a 32 3 1 memory, there must be �ve address lines and one
data line (i.e., D1 and D2 must be connected). The top LUT must be enabled when the MSB
of the address is 0, and the bottom LUT must be enabled when the MSB of the address is 1.
This can be done using the highest bit of the address and an inverter. When used as a 16 3 2
memory, both LUTs are enabled, and data lines D1 and D2 are brought out in parallel.

FIGURE 6-16:
Embedded RAMs in
FPGAs

Array of
Logic Blocks

SRAM Blocks

SRAM Blocks

FIGURE 6-17: Creating
Memory from LUTs

D1

EN

Address [3:0]

D2

EN

4-input
LUT

16 3 1
RAM()

4-input
LUT

16 3 1
RAM()

FF

FF

6.6 Dedicated Memory in FPGAs 327

Memory created from LUT cells is called distributed memory (in Xilinx terminology). As
the term indicates, this memory is distributed throughout the chip inside the logic blocks. A
disadvantage of distributed memory is that once the LUT memory is used in this fashion, the
logic block is generally unusable. The LUT memory can be used as asynchronous memory; it
can also be combined with the logic block �ip-�ops to create synchronous memory. Table 6-2
presents the amount of LUT-based memory available in some FPGAs.

6.6.1 VHDL Models for Inferring Memory in FPGAs
Embedded memory on FPGAs can be instantiated using behavioral VHDL models. Memo-
ries can be synchronous or asynchronous. An asynchronous read operation means that the
data from the addressed location is available on the output bus after the access time, irre-
spective of the clock. In contrast, in synchronous memory, read and write control lines will
have an impact only if the clock is active. In some memories, write is synchronous and read
is asynchronous.

Modern synthesis tools are capable of inferring embedded memory from high-level con-
structs. Figure 6-18 illustrates VHDL code that creates a synchronous-write, asynchronous-
read memory. The memory array is represented by an array of unsigned vectors. Since
Address is typed as an unsigned vector, it must be converted to an integer in order to index
the memory array; hence, the IEEE.numeric_bit library and its conversion functions are
used. A data type called RAM is de�ned as an array of 128 elements, each of which is 32 bits.
The signal DATAMEM is of type RAM. The memory array is not initialized here; however, it
may be initialized to any desired values. The write operation is performed inside the process,
and only at the positive edge of the clock. The read operation is outside the process; hence
it occurs irrespective of the clock. Synthesis using current Xilinx tools results in distributed
memory for this code. Distributed memory is ideal for asynchronous memory, since the LUT
generates its output asynchronously. In contrast, the code in Figure 6-19 infers block RAM.

FPGA Family LUT Based RAM (Kb) No. of LUTs

Xilinx Kintex 7 838–6788 41000–298600

Xilinx Artix 7 400–2888 63400–134600

Xilinx Virtex 6 1045–8280 46560–474240

Xilinx Virtex 5 320–3420 19200–207360

Xilinx Virtex 4 96–987 12288–126336

Xilinx Virtex-II 8–1456 512–93184

Xilinx Spartan 3E 15–231* 1920–29504

Altera Stratix V 2781–11225 44496–179600

Altera Stratix IV 195–2242** 12480–143520

Altera Cyclone II 72–1069** 4608–68416

Altera Arria V 1200–8064 76800–516096

Altera Arria II 705–4007 45125–256500

Lattice SC 245–1884 15200–115200

Lattice ECP2 12–136 6000–68000

TABLE 6-2: LUT-based
RAM in some FPGAs

* does not use all of the LUTs as distributed RAM
** calculated from LUT counts

328 Chapter 6 Designing with Field Programmable Gate Arrays

FIGURE 6-18: Behavioral VHDL Code That Typically Infers LUT-Based Memory

library IEEE;
use IEEE.numeric_bit.all;

entity Memory is
 port(Address: in unsigned(6 downto 0);
 CLK, MemWrite: in bit;
 Data_In: in unsigned(31 downto 0);
 Data_Out: out unsigned(31 downto 0));
end Memory;

architecture Behavioral of Memory is
type RAM is array (0 to 127) of unsigned(31 downto 0);
signal DataMEM: RAM; -- no initial values
begin
 process(CLK)
 begin
 if CLK'event and CLK = '1' then
 if MemWrite = '1' then
 DataMEM(to_integer(Address)) <= Data_In; -- Synchronous Write
 end if;
 end if;
 end process;

 Data_Out <= DataMEM(to_integer(Address)); -- Synchronous Read
end Behavioral;

FIGURE 6-19: Behavioral VHDL Code That Typically Infers Dedicated Memory

library IEEE;
use IEEE.numeric_bit.all;

entity Memory is
 port(Address: in unsigned(6 downto 0);
 CLK, MemWrite: in bit;
 Data_In: in unsigned(31 downto 0);
 Data_Out: out unsigned(31 downto 0));
end Memory;

architecture Behavioral of Memory is
type RAM is array (0 to 127) of unsigned(31 downto 0);
signal DataMEM: RAM; -- no initial values
begin
 process(CLK)
 begin
 if CLK'event and CLK = '1' then
 if MemWrite = '1' then
 DataMEM(to_integer(Address)) <= Data_In; -- Synchronous Write
 end if;
 end if;
 end process;
 Data_Out <= DataMEM(to_integer(Address)); -- Asynchronous Read
end Behavioral;

6.6 Dedicated Memory in FPGAs 329

In this code sequence, the read statement appears inside the process, and read also happens
only at the clock edge.

If the ROM method is used for implementing circuits, the synthesis tools may infer RAM
in order to implement the look-up tables. As an example, consider the creation of a 4 3 4
multiplier using a look-up table method, as illustrated by the VHDL code in Figure 6-20.
Since it uses the look-up table method, the product values for each of the input combinations
are stored in a look-up table. Since the multiplicand and multiplier are 4 bits each, there are
256 possible combinations of inputs. A constant array is used to store the product array. The
multiplicand is 0000 for the �rst 16 entries; hence the product is 0 for the �rst 16 entries.
The multiplicand is 0001 for the next 16 entries; hence the product ranges from 0 to 15
 (decimal) as the multiplier changes from 0 to 15. VHDL code for this multiplier is presented
in Figure 6-20. If this code is synthesized, current Xilinx tools infer distributed RAM to store
the product values. Distributed RAM is inferred to implement asynchronous reads since the
LUTs in the logic blocks can continuously update the outputs as the inputs change. No clock
is required. However, it might be desirable to store the arrays in the dedicated block RAM,

FIGURE 6-20: Look-Up Table–Based 4 3 4 Multiplier

library IEEE;
use IEEE.numeric_bit.all;

entity LUTmult is
 port(Mplier, Mcand: in unsigned(3 downto 0);
 Product: out unsigned(7 downto 0));
end LUTmult;

architecture ROM1 of LUTmult is
type ROM is array (0 to 255) of unsigned(7 downto 0);
constant PROD_ROM: ROM: =
 (x"00", x"00", x"00", x"00", x"00", x"00", x"00", x"00", x"00", x"00", x"00", x"00", x"00", x"00", x"00", x"00",
 x"00", x"01", x"02", x"03", x"04", x"05", x"06", x"07", x"08", x"09", x"0A", x"0B", x"0C", x"0D", x"0E", x"0F",

 x"00", x"02", x"04", x"06", x"08", x"0A", x"0C", x"0E", x"10", x"12", x"14", x"16", x"18", x"1A", x"1C", x"1E",

 x"00", x"03", x"06", x"09", x"0C", x"0F", x"12", x"15", x"18", x"1B", x"1E", x"21", x"24", x"27", x"2A", x"2D",

 x"00", x"04", x"08", x"0C", x"10", x"14", x"18", x"1C", x"20", x"24", x"28", x"2C", x"30", x"34", x"38", x"3C",

 x"00", x"05", x"0A", x"0F", x"14", x"19", x"1E", x"23", x"28", x"2D", x"32", x"37", x"3C", x"41", x"46", x"4B",

 x"00", x"06", x"0C", x"12", x"18", x"1E", x"24", x"2A", x"30", x"36", x"3C", x"42", x"48", x"4E", x"54", x"5A",

 x"00", x"07", x"0E", x"15", x"1C", x"23", x"2A", x"31", x"38", x"3F", x"46", x"4D", x"54", x"5B", x"62", x"69",

 x"00", x"08", x"10", x"18", x"20", x"28", x"30", x"38", x"40", x"48", x"50", x"58", x"60", x"68", x"70", x"78",

 x"00", x"09", x"12", x"1B", x"24", x"2D", x"36", x"3F", x"48", x"51", x"5A", x"63", x"6C", x"75", x"7E", x"87",

 x"00", x"0A", x"14", x"1E", x"28", x"32", x"3C", x"46", x"50", x"5A", x"64", x"6E", x"78", x"82", x"8C", x"96",

 x"00", x"0B", x"16", x"21", x"2C", x"37", x"42", x"4D", x"58", x"63", x"6E", x"79", x"84", x"8F", x"9A", x"A5",

 x"00", x"0C", x"18", x"24", x"30", x"3C", x"48", x"54", x"60", x"6C", x"78", x"84", x"90", x"9C", x"A8", x"B4",

 x"00", x"0D", x"1A", x"27", x"34", x"41", x"4E", x"5B", x"68", x"75", x"82", x"8F", x"9C", x"A9", x"B6", x"C3",

 x"00", x"0E", x"1C", x"2A", x"38", x"46", x"54", x"62", x"70", x"7E", x"8C", x"9A", x"A8", x"B6", x"C4", x"D2",

 x"00", x"0F", x"1E", x"2D", x"3C", x"4B", x"5A", x"69", x"78", x"87", x"96", x"A5", x"B4", x"C3", x"D2", x"E1");

begin
Product <= PROD_ROM(to_integer(Mplier&Mcand)); -- read Product LUT
end ROM1;

330 Chapter 6 Designing with Field Programmable Gate Arrays

especially if we do not want to waste LUTs for realizing memory. If the read operation is
made synchronous, as in

process(CLK)
begin
 if CLK'event and CLK = '1' then
 Product <= PROD_ROM(to_integer(Mplier & Mcand));
 -- read Product LUT (Synchronously)
 end if;
end process;

current synthesis tools from Xilinx infer dedicated block RAM to store the 256 product
values.

6.7 Dedicated Multipliers in FPGAs
Many modern FPGAs provide dedicated multipliers. Suppose that a designer wants a
16 3 16 multiplier. If dedicated multipliers are not provided, several programmable logic
blocks will be used to create the 16 3 16 multiplier. Such a multiplier will be expensive in
terms of the number of blocks and interconnect resources used; it will also be slow due to
the switches involved in interconnecting the parts of the multiplier. Dedicated multipliers will
be more area-ef�cient and will be faster than multipliers realized using logic blocks. Since
multiplication is an important operation in many applications involving FPGAs, many com-
mercial FPGAs provide dedicated multipliers. For instance, Xilinx Virtex-4/Spartan-3, and
Altera Stratix/Cyclone FPGAs contain 18 3 18 multipliers. These multipliers take two 18-bit
operands and produce a 36-bit product, as illustrated in Figure 6-21. It is possible to load
the multiplicand and multiplier into optional registers and load the product into an optional
product register. The inputs to the multipliers can come from external pins, or they can come
from other logic in the FPGA.

When multiplication of numbers larger than 18 bits is required, several of the dedicated
built-in multipliers can be put together. If A and B are 32 bits, and C, D, E, and F are the
16-bit components of A and B such that

 A 5 C 3 216 1 D

 B 5 E 3 216 1 F

then AB 5 CE 3 232 1 1DE 1 CF 2 3 216 1 DF. This means that four multipliers to gener-
ate the partial products CE, DE, CF, and DF, and several adders to add the partial products
are required.

FIGURE 6-21: Dedicated
Multipliers

18 3 18
Multiplier

18

18

36

Multiplier

Multiplicand

Product

6.8 Cost of Programmability 331

Synthesis tools are capable of inferring dedicated multipliers on FPGAs that provide
them. For instance, if the VHDL code in Figure 6-22 is synthesized for Xilinx devices using
Xilinx ISE or Vivado tools, the synthesis tool infers four dedicated 18 3 18 multipliers.
When the code in Figure 6-22 is synthesized, several logic blocks in the FPGA are used in
addition to the four multipliers. The logic blocks are used to realize the adders for the partial
products. Sixty-four I/O pins are used to provide the multiplicand and multiplier, and 64 I/O
pins are used for the output. Here external pins are used to provide inputs to the multipliers,
but the inputs to the multipliers may also come from the embedded memory in the FPGAs
or the optional registers.

FIGURE 6-22: VHDL Code That Infers Dedicated Multipliers

library IEEE;
use IEEE.numeric_bit.all;

entity multiplier is
 port(A, B: in unsigned (31 downto 0);
 C: out unsigned (63 downto 0));
end multiplier;

architecture mult of multiplier is
begin
 C <= A * B;
end mult;

6.8 Cost of Programmability
The programmability in an FPGA comes with a signi�cant amount of hardware cost. In
SRAM-based FPGAs, such as the Xilinx XC4000, Virtex, and Spartan families, SRAM is
used for creating the logic blocks, the programmable interconnects, and the programmable
I/O blocks. The logic blocks in many modern FPGAs contain four-variable function genera-
tors. A four-variable function generator takes 16 bits of SRAM. Logic functions are realized
by loading appropriate bits into the LUTs. Additionally, several multiplexers are used to
select among various generated functions, to choose between latched and unlatched outputs,
or to generate functions of more variables. One bit of SRAM is required to implement the
select input of the 2-to-1 multiplexers, and two bits of SRAM are required for select lines
of the programmable 4-to-1 multiplexers. Consider the logic block in Figure 6-23. The small
boxes with M marked in them indicate memory cells required to program the multiplexers.
A memory cell is used to select an external clock-enable signal. Another memory cell is used
to invert the clock. A total of 46 memory cells are required to con�gure this logic block. The
40 memory cells in the three function generators (LUTs) might be implementing a simple
one-variable function or a complex �ve-variable function.

We will use one more example to illustrate the overhead of programmability. Figure 6-15
illustrated a logic block of the Microsemi Fusion FPGA. Each switch shown in the �gure
needs a �ash memory cell. The various �ash memory cells required to program this logic
block constitute the overhead of programmability of this logic block.

The I/O blocks also contain several programmable points. Consider the I/O block in
Figure 6-24. Memory bits for controlling the con�guration are indicated by the boxes marked

332 Chapter 6 Designing with Field Programmable Gate Arrays

FIGURE 6-23: Logic
Block with Several
Programmable SRAM
Cells

C

Z

X Function
generator

Z Function
generator

X1

X

Y

X2

X3

X4

FF

QX

Xout

QY

Yout

D Q
S

R

FF
D Q

S

R

= Programmable MUX

CE

CE

M

M

M

M

16 SRAM Cells

16 SRAM Cells

8 SRAM Cells

CLK

M

1

CE

M

Y1

Y2

Y3

Y4

LUT4

Y Function
generator

LUT4

LUT3

FIGURE 6-24:
Programmable Points
in FPGA I/O Block
(Indicated by Boxes
with “M”)

I /O PAD

(GLOBAL RESET)

I

Q

T

O

Vcc

OUTPUT
BUFFER

D Q

R

FLIP
FLOP

DQ

R

FLIP
FLOP or
LATCH

M

OUT
INVERT

3-STATE
INVERT

SLEW
RATE

PASSIVE
PULL UP

M M MM

LATCHED
OUTPUT

VOLTAGE
REFERENCE

ENABLE

ENABLE

3-STATE
(OUTPUT
ENABLE)

MUX

CONFIGURATION BITS

CE

CE

OUT
SIGNAL

IN SIGNAL

IN SIGNAL
(LATCHED)

CLK CLK

6.9 FPGAs and One-Hot State Assignment 333

with M. They are used to enable tristate output, to invert outputs, to enable the latching of
output, to control the slew rate of the signal, to enable pull-up resistors, and so on.

Each SRAM cell typically takes six transistors. A �ash memory cell consumes approxi-
mately 25 percent of an SRAM cell’s area. The various programmable points add �exibility
to the FPGA; however, the �exibility comes with the cost associated with the SRAM/�ash
memory cells. Table 6-3 shows the number of con�guration bits in a few Xilinx and Altera
FPGAs. A Kintex 7 FPGA, the 7K70T, which has 41,000 LUTs, needs 23 million con�gura-
tion bits. An Altera Stratix II FPGA, the EP2S180 has 143,520 LUTs and needs more than
49 million con�guration bits. Thus, it is clear that the �exibility and programmability of the
FPGA comes at a high cost.

Vendor Device Family Device
of Con�guration

Bits # of Logic Blocks # of LUTs # Usable I/O Pins

Xilinx Kintex 7 7K70T
7K40T

23M
143M

10,250
74,650

41,000
298,600

300
400

Xilinx Artix 7 7A100T
7A200T

29M
74M

15,850
33,650

63,400
134,600

300
500

Xilinx Virtex-6 XC6VLX75T
XC6VLX760

26M
177M

11,640
118,560

46,560
474,240

360
120

Xilinx Virtex-5 XC5VLX30
XC5VLX330

8.4M
79.7M

4,800
51,840

19,200
207,360

400
1200

Xilinx Virtex-II XC2V40
XC2V8000

0.3M
26.2M

256
46,592

512
93,184

88
1108

Xilinx Spartan 3E XC3S100E
XC3S1600E

0.6M
6.0M

960
14,752

1,920
29,504

108
376

Xilinx Spartan 6 XC6SLX4
XC6SLX150

2.7M
33.9M

600
23,038

2400
92,152

132
576

Altera Stratix II EP2S15
EP2S180

4.7M
49.8M

6,240
71,760

12,480
143,520

366
1170

Altera Stratix EP1S10
EP1S80

3.5M
23.8M

10,570
79,040

10,570
79,040

426
1238

Altera Arria V 5AGXA1
5AGXB7

71M
185.9M

28,302
190,240

76,800
516,096

416
704

Altera Arria II EP2AGX45
EP2AGX260

29.6M
86.9M

18,050
102,600

45,125
256,500

364
612

Altera Cyclone II EP2C5
EP2C70

1.3M
14.3M

4,608
68,416

4,608
68,416

158
622

TABLE 6-3: Number of Configuration Bits in Example FPGAs

6.9 FPGAs and One-Hot State Assignment
When designing with FPGAs, it may not be important to minimize the number of �ip-�ops
used in the design because of the abundance of �ip-�ops in FPGAs (most FPGAs come with
one �ip �op attached to each LUT). Instead, try to reduce the total number of logic cells
used and try to reduce the interconnections between cells. In order to design faster logic,

334 Chapter 6 Designing with Field Programmable Gate Arrays

try to reduce the number of cells required to realize each equation. Using a one-hot state
assignment will often help to accomplish this. One-hot assignment takes more �ip-�ops than
encoded assignment; however, the next state equations for �ip-�ops are often simpler in the
one-hot method than the equations in the encoded method.

The one-hot assignment uses one �ip-�op for each state, so a state machine with N
states requires N �ip-�ops. Exactly one �ip-�op is set to 1 in each state. For example, a sys-
tem with four states (T0, T1, T2, and T3) could use four �ip-�ops (Q0, Q1, Q2, and Q3) with
the following state assignment:

T0 : Q0Q1Q2Q3 5 1000, T1 : 0100, T2 : 0010, T3 : 0001 (6-6)

The other 12 combinations are not used.
Write the next state and output equations by inspection of the state graph or by tracing

link paths on an SM chart. Consider the partial state graph given in Figure 6-25. The next
state equation for �ip-�op Q3 could be written as

Q3
 1 5 X1Q0Q1 rQ2 rQ3 r 1 X2Q0 rQ1Q2 rQ3 r 1 X3Q0 rQ1 rQ2Q3 r 1 X4Q0 rQ1 rQ2 rQ3

However, since Q0 5 1 implies Q1 5 Q2 5 Q3 5 0, the Q1 rQ2 rQ3 r term is redundant and
can be eliminated. Similarly, all the primed state variables can be eliminated from the other
terms, so the next state equation reduces to

Q3
 1 5 X1Q0 1 X2Q1 1 X3Q2 1 X4Q3

Note that each term contains exactly one state variable. Similarly, each term in each output
equation contains exactly one state variable:

Z1 5 X1Q0 1 X3Q2, Z2 5 X2Q1 1 X4Q3

When a one-hot assignment is used, the next state equation for each �ip-�op will contain one
term for each arc leading into the corresponding state (or for each link path leading into the
state). In general, each term in every next state equation and in every output equation will
contain exactly one state variable.

FIGURE 6-25: Partial
State Graph

T0

T3

T1 T2

X1 / Z1

X2 / Z2
X3 / Z1

X4 / Z2

When a one-hot assignment is used, resetting the system requires that one �ip-�op be set
to 1 instead of resetting all �ip-�ops to 0. If the �ip-�ops used do not have a preset input (as
is the case for the Xilinx 3000 series), then modify the one-hot assignment by replacing Q0
with Q0 r throughout. For the preceding assignment, the modi�cation is

T0 : Q0Q1Q2Q3 5 0000, T1 : 1100, T2 : 1010, T3 : 1001 (6-7)

6.10 FPGA Capacity: Maximum Gates versus Usable Gates 335

and the modi�ed equations are

Q3
 1 5 X1Q0 r 1 X2Q1 1 X3Q2 1 X4Q3

Z1 5 X1Q0 r 1 X3Q2, Z2 5 X2Q1 1 X4Q3

Another way to solve the reset problem without modifying the one-hot assignment is to
add an extra term to the equation for the �ip-�op, which should be 1 in the starting state. If
the system is reset to state 0000 after power-up, add the term Q0 rQ1 rQ2 rQ3 r to the equation
for Q0

 1. Then, after the �rst clock, the state will change from 0000 to 1000 1T0 2 , which is the
correct starting state. In general, both an assignment with a minimum number of state vari-
ables and a one-hot assignment should be tried to see which one leads to a design with the
smallest number of logic cells. Alternatively, if speed of operation is important, the design
that leads to the fastest logic should be chosen. When a one-hot assignment is used, more
next state equations are required, but in general both the next state and output equations
will contain fewer variables. An equation with fewer variables generally requires fewer logic
cells to realize. The more cells cascaded, the longer the propagation delay and the slower the
operation.

6.10 FPGA Capacity: Maximum Gates versus Usable Gates
Designers like to know whether a design that typically consumes X number of gates in the
ASIC world will �t in a particular FPGA. In order to help designers to answer this question,
FPGA vendors often provide some capacity metrics, either as equivalent gate counts or
number of logic blocks. As you know by now, most FPGAs are not structured as arrays of
gates. Some are simply arrays of look-up tables rather than arrays of gates. So what does the
gate count of an FPGA mean?

The number of raw gates that have gone into building an FPGA is not an interesting or
useful metric to an FPGA user. What is useful to the user is a count of the circuitry that can �t
into a particular FPGA. This is called the equivalent gate count. But as one might guess, this
type of achievable gate count will depend on the type of circuitry, the type of interconnec-
tions between different parts of the circuitry, the routing resources available in the FPGA,
and so forth. This type of a gate count is extremely dif�cult to compute.

Gate counts are estimated in many different ways. An approximate equivalent gate count
can be established for a logic block by considering typical circuits that can be implemented in
a logic block, For instance, a 2-to-1 multiplexer is considered to be four gates and a 3-input
XOR is considered to be six gates. A 4-input XOR is 9 gates and a �ip-�op with clear is con-
sidered to be 6–7 gates. An equivalent gate count can be obtained for a programmable logic
block in an FPGA in this fashion, and the total gate count can be estimated by multiplying
it with the number of logic blocks in the FPGA. This type of gate count is likely to be higher
than the gate count of practical circuitry that can be realized in the FPGA. A better gate
count estimate can be derived using benchmark circuits. It is possible to use standard bench-
mark circuits for ASIC and FPGA benchmarking. Assume that a particular circuitry typically
takes 2000 gates in ASIC, and if an FPGA device can �t 20 copies of that circuitry, an FPGA
vendor may estimate the maximum gate count of its FPGA as 40K. Since the circuit is simply
replicated and no actual interconnection exists between the copies, this count is also likely to
be higher than the gate count of practical circuitry that can be realized in the FPGA. Some
FPGA vendors provide a typical gate count by adjusting the maximum gate count with some
weighting schemes. The benchmarks gathered and distributed by PREP can be useful in the
benchmarking of FPGAs.

336 Chapter 6 Designing with Field Programmable Gate Arrays

It is very dif�cult to estimate gate counts of FPGAs in which logic is implemented with
LUTs. A four-input LUT may be used to implement a four-variable logic function with one
or more product terms, or it can be used to store 16 bits of information. When the LUTs
are used as RAM, higher gate counts may be obtained. Hence, depending on the portion of
LUTs used as RAM, you can estimate different gate counts for the same FPGA. Vendors
often compute their “system gates” count by considering a fraction of CLBs (say, 20–30%)
as RAM.

Altera provides two types of gate counts for its APEX family: maximum gates and usable
gates. The APEX II devices range from 1.9 million to 5.25 million maximum gates, but the typi-
cal gate count is published as 600K to 3 million. Due to the dif�culty in estimating equivalent
gate counts, many FPGA vendors provide their chip capacities with a count of the logic blocks
(logic elements) rather than a gate count.

PREP Benchmarks

The Programmable Electronics Performance Company (PREP) was a nonpro�t
organization that gathered and distributed a series of benchmarks for programmable
ASICs. The nine PREP benchmark circuits in the PREP 1.3 suite were as follows:

1. An 8-bit datapath consisting of a 4-to-1 MUX, a register, and a shift register
2. An 8-bit timer-counter consisting of two registers, a 4-to-1 MUX, a counter, and

a comparator
3. A small state machine (8 states, 8 inputs, and 8 outputs)
4. A larger state machine (16 states, 8 inputs, and 8 outputs)
5. An ALU consisting of a 4 3 4 multiplier, an 8-bit adder, and an 8-bit register
6. A 16-bit accumulator
7. A 16-bit counter with synchronous load and enable
8. A 16-bit prescaled counter with load and enable
9. A 16-bit address decoder

PREP’s online information included Verilog and VHDL source code and test
benches (provided by Synplicity). PREP also made additional synthesis benchmarks
available, including a bit-slice processor, multiplier, and R4000 MIPS RISC micropro-
cessor. The PREP circuits are very small in comparison to what modern FPGAs can
�t. However this concept can be adapted to larger circuits and larger FPGAs.

6.11 Design Translation (Synthesis)
In the early sections of this chapter, you hand-mapped some designs into example FPGA
logic blocks. This process is analogous to writing assembly language programs for micro-
processors. It is tedious. Productivity of designers will be very low if they can only enter
designs at that level. Just as the majority of the programs in the modern-day world are writ-
ten in high-level languages like C and translated by a compiler, modern-day digital designs
are done at the behavioral or RTL level and translated to target devices. This applies not
only for FPGAs, but also for ASIC design.

A number of CAD tools are now available that take a VHDL description of a digital
system and automatically generate a circuit description that implements the digital system.

6.11 Design Translation (Synthesis) 337

The term synthesis refers to the translation of an abstract high-level design to a circuit
description, typically in the form of a logic schematic. The input to the CAD tool is a behav-
ioral or structural VHDL/Verilog model. The output from the synthesis tools may be a logic
schematic together with an associated wirelist, which implements the digital system as an
interconnection of gates, �ip-�ops, registers, counters, multiplexers, adders, and other basic
logic blocks. This representation is called a netlist. The circuit can now be targeted for an
FPGA, a CPLD, or an ASIC.

Typical computer-aided design �ow involves the following steps:
Design translation (synthesis) and optimization
Mapping
Placement
Routing

These steps are illustrated in Figure 6-26. This section describes design translation and opti-
mization techniques. The mapping, placement, and routing of designs are described in the
next section.

Even if VHDL code compiles and simulates correctly, it may not necessarily synthesize
correctly. And even if the VHDL code does synthesize correctly, the resulting implementation

FIGURE 6-26: CAD
Design Flow

Logic Optimization

Synthesis (Translation)

Mapping

Placement

Routing

HDL model

Placed and routed
design

338 Chapter 6 Designing with Field Programmable Gate Arrays

may not be very ef�cient. In general, synthesis tools will accept only a subset of VHDL as
input. Other changes must be made in the VHDL code so the synthesis tool “understands”
the intent of the designer. Further changes in the VHDL code may be required in order to
produce an ef�cient implementation.

In VHDL, a signal may represent the output of a �ip-�op or register, or it may represent
the output of a combinational logic block. The synthesis tool will attempt to determine what
is intended from the context. For example, the concurrent statement

A <= B and C;

implies that A should be implemented using combinational logic. On the other hand, if the
sequential statements

wait until clock'event and clock = '1';
A <= B and C;

appear in a process, this implies that A represents a register (or �ip-�op) that changes state
on the rising edge of the clock.

When integer signals are used, specifying the integer range is important. If no range is
speci�ed, the VHDL synthesizer may interpret an integer signal to represent a 32-bit register,
since the maximum size of a VHDL integer is 32 bits. When the integer range is speci�ed,
most synthesizers will implement integer addition and subtraction using binary adders with
the appropriate number of bits.

Most VHDL synthesizers do a line-by-line translation of VHDL into gates, registers,
multiplexers, and other general components with very little optimization up front. Then
the resulting design is optimized. Synthesizers associate particular VHDL constructs with
particular hardware structures. For instance, case statements typically result in multiplexers.
Use of '1,' '2', and comparison results in the use of an adder, use of shift operators results
in the use of a shift register, and so on.

During the initial translation of the VHDL code and during the optimization phase,
the synthesis tool will select components from those available in its library. Several dif-
ferent component libraries may be provided to allow implementation with different tech-
nologies. In the ASIC world, the libraries can include parts that are speci�cally targeted
for low power, low area, or high speed. Depending on the speci�c goals of the design, the
synthesis process can be instructed to meet speci�c requirements of area, power, or speed.
Of course, there are tradeoffs between these, and designs will have to prioritize between
the requirements.

6.11.1 Synthesis of a Case Statement
The example of Figure 6-27 shows how the Synopsis Design Compiler implements a case
statement using multiplexers and gates. Figure 6-27(a) shows the code. The integers a and
b are each implemented with 2-bit binary numbers. Two 4-to-1 multiplexers are required.
The two bits of a are used as control inputs to the multiplexer. The multiplexer inputs are
hardwired to a logic 1 or a logic 0. Figure 6-27(b) shows the hardware that will be generated
by a typical synthesizer.

Most modern synthesizers will also perform optimizations to reduce the logic that is
generated. Because the MUX inputs are constants, elimination of the mux and several gates
are possible by inspection of the truth table in Figure 6-27(c). The optimized output equa-
tions are b1 5 a1 ra0 5 1a1 1 a0 r 2 r and b0 5 1a1a0 r 2 r. An optimized circuit for the code in
Figure 6-27(a) consists only of a NOR, a NAND, and a NOT gate. Figure 6-27(d) shows the
resulting circuit after optimization.

6.11 Design Translation (Synthesis) 339

entity case_example is
 port(a: in integer range 0 to 3;
 b: out integer range 0 to 3);
end case_example;

architecture test1 of case_example is
begin
 process(a)
 begin
 case a is
 when 0 => b <= 1;
 when 1 => b <= 3;
 when 2 => b <= 0;
 when 3 => b <= 1;
 end case;
 end process;
end test1;

FIGURE 6-27: Synthesis of a Case Statement

(a) VHDL code for case example

(b) Synthesized circuit before optimization

0

1

0

b[1]1

0

2

3

4-to-1
MUX

1

1

0

1

0

2

3

4-to-1
MUX

0 1

b[1:0]
b[0]

a[1:0]

a[1] a[0] a[1] a[0]

0
0
1
1

a1

0
1
0
1

a0

0
1
0
0

b1

1
1
0
1

b0 b1 = a1 . a0

b0 = (a1 . a0)9

= (a1 + a0)9

9

9

9

(c) Logic optimization

a[1:0]

a[1]

a[0]

b[1]

b[0]

b[1:0]

(d) Synthesized circuit after optimization

340 Chapter 6 Designing with Field Programmable Gate Arrays

Unintentional Latch Creation
In general, when a VHDL signal is assigned a value, it will hold that value until it is assigned
a new value. Because of this property, some VHDL synthesizers will infer a latch when none
is intended by the designer. Figure 6-28(a) shows an example of a case statement that creates
an unintended latch. The case statement results in a 4-to-1 multiplexer whose data inputs are
set to the values in each case. The select lines are controlled by the value of a. Since the value
of b is not speci�ed if a is not equal to 0, 1, or 2, the synthesizer assumes that the value of b
should be held in a latch if a 5 3.

When a 5 3, the previous value of b should be used as the output. This necessitates a
latch whose D input 5 b0. In order to hold the value in the latch, the latch gate control signal
G should be 0 when a 5 3. Thus G 5 1a1a0 2 r. A naïve synthesizer might generate a 4-to-1
mulitplexer and a latch as in Figure 6-28(c). The latch can be eliminated by replacing the
word null in the VHDL code with b <= '0' as in Figure 6-28(b). If this change is made,
most synthesizers will generate only a multiplexer and no latch.

Most modern synthesizers also perform optimizations to reduce the logic that is gener-
ated. For example, a 4-to-1 multiplexer is not required for this circuit. As easy way to derive
the optimized circuit is by inspection of the truth table in Figure 6-28(d). We may easily
observe that when a equals 0, 1, or 2, b 5 a0 r. An optimizing synthesizer might generate a
single NOT gate for the code, as in Figure 6-28(e). If the null statement was not removed,
this optimizing synthesizer would generate a latch also as in Figure 6-28(d) (i.e., with the
unintended latch).

entity latch_example is
 port(a: in integer range 0 to 3;
 b: out bit);
end latch_example;

architecture test1 of latch_example is
begin
 process(a)
 begin
 case a is
 when 0 => b <= '1';
 when 1 => b <= '0';
 when 2 => b <= '1';
 when others => null;
 end case;
 end process;
end test1;

entity latch_example is
 port(a: in integer range 0 to 3;
 b: out bit);
end latch_example;

FIGURE 6-28: Example of Unintentional Latch Creation

(a) VHDL code that infers a latch

6.11 Design Translation (Synthesis) 341

(c) Synthesized circuit for code in (a)

1

0

1

a1 a0

(a1a0)9

D

G

b1

0

2

3

4-to-1
MUX

0 0 1
0 1 0
1 0 1
1 1 previous

b

a1 a0 b a1 a0

a0 b

b = a90

b
0 0 1
0 1 0
1 0 1
1 1 0

D

G

b

(d) Optimized circuit
for code in (a)

(e) Optimized circuit
for code in (b)

(a1a0)9

a0

architecture test1 of latch_example is
begin
 process(a)
 begin
 case a is
 when 0 => b <= '1';
 when 1 => b <= '0';
 when 2 => b <= '1';
 when 3 => b <= '0';
 end case;
 end process;
end test1;

(b) Modi�ed code not resulting in latch

6.11.2 Synthesis of if Statements
When if statements are used, care should be taken to specify a value for each branch. For
example, if a designer writes

if A = '1' then Nextstate <= 3; Z<= 1;
end if;

342 Chapter 6 Designing with Field Programmable Gate Arrays

he or she may intend for Nextstate to retain its previous value if A 2 '1', and the code will
simulate correctly. However, the synthesizer might interpret this code to mean if A 2 '1',
then Nextstate is unknown (‘X’), and the result of the synthesis may be incorrect. Also, it will
result in latches for Z. For this reason, it is always best to include an else clause in every if
statement. For example,

if A = '1' then Nextstate <= 3; Z<=1;
 else Nextstate <= 2; Z<= 0;
end if;

is unambiguous.
The example of Figure 6-29 shows how a typical synthesizer implements an if-then-elsif-else

statement using a multiplexer and gates. Figure 6-29(b) represents the truth table corre-
sponding to the various input combinations. C is selected if A 5 1; D is selected if A 5 0
and B 5 0; and E is selected if A 5 0 and B 5 1. Figure 6-29(c) indicates the synthesized
hardware. A and B are used as select signals of the multiplexer.

(b) Equivalent truth table

0 0 D
0 1 E
1 0 C
1 1 C

A B Z
D[2:0]

 E[2:0]

C[2:0]

A
 B

1

0

2

3

4-to-1
MUX

 3

 3

 3

 3

 3
Z[2:0]

(c) Synthesized hardware for code in (a)

(a) VHDL code for if example

FIGURE 6-29: Synthesis of an if Statement

entity if_example is
 port(A, B: in bit;
 C, D, E: in bit_vector(2 downto 0);
 Z: out bit_vector(2 downto 0));
end if_example;

architecture test1 of if_example is
begin
 process(A, B)
 begin
 if A = '1' then Z <= C;
 elsif B = '0' then Z <= D;
 else Z <= E;
 end if;
 end process;
end test1;

6.11 Design Translation (Synthesis) 343

What hardware does the statement

LE <= (A <= B);

result in? Assume that A and B are 4-bit vectors.

Answer:

The result is a 4-bit comparator. Only one of the <= symbols indicates an assignment. The <= symbol between A and B
is a relational operator. The right side of the assignment symbol returns a TRUE or '1' if A is less than or equal to B.
Hence, if A is less than or equal to B, LE is set to '1.' Otherwise, LE will be '0.'

Most standard comparators come with EQUAL_TO (EQ), GREATER_THAN (GT), and LESS_THAN (LT) out-
puts. In this case, LE should be '1' if EQUAL_TO or LESS_THAN is true. Figure 6-30 illustrates the hardware.

E X A M PLE

FIGURE 6-30: Hardware
for Less Than or Equal
To Checker

A

B

LE

EQ
4

4

LT

GT

4-Bit
comparator

6.11.3 Synthesis of Arithmetic Components
CAD tools for synthesis have design libraries that include components to implement the
operations de�ned in the numeric packages. The example of Figure 6-31 uses IEEE numeric_
std library. When this code is synthesized, the result includes library components that imple-
ment a 4-bit comparator, a 4-bit binary adder with a 4-bit accumulator register, and a 4-bit
counter. Some synthesis tools will implement the counter with a 4-bit adder with a "0001"
input and then optimize the result to eliminate unneeded gates. The resulting hardware is
shown in Figure 6-31(b).

Different kinds of optimizations are required for different target technologies. For
instance, reduction in absolute number of gates is important for a gate-based target tech-
nology, but if an FPGA with LUTs is the target technology, optimization does not need
to consider absolute number of gates in the design. Instead, it only needs to optimize the
number of LUTs. Many FPGAs include speci�c arithmetic components, for example built-
in multipliers. The synthesis tools for these FPGAs recognize functions that can be directly
mapped into these hardware components. Section 6.7 already illustrated synthesis into built-
in multipliers. Use of carry-chains is another FPGA-speci�c optimization that synthesis tools
for FPGAs can handle.

344 Chapter 6 Designing with Field Programmable Gate Arrays

(b) Synthesized hardware for the VHDL code in (a)

A

B

ge

Clock

4-Bit
counter

COUNT

Comparator

44-Bit
adder

ClockB

ACC
4-Bit register

ACC

4

4

4

4

FIGURE 6-31: VHDL Code Example for Synthesis and Corresponding Hardware

library IEEE;
use IEEE.numeric_bit.all;

entity examples is
 port(signal clock: in bit;
 signal A, B: in signed(3 downto 0);
 signal ge: out boolean;
 signal acc: inout signed(3 downto 0) := "0000";
 signal count: inout unsigned(3 downto 0) := "0000");
end examples;

architecture x1 of examples is
begin
 ge <= (A >= B); -- 4-bit comparator
 process
 begin
 wait until clock'event and clock = '1';
 acc <= acc + B; -- 4-bit register and 4-bit adder
 count <= count + 1; -- 4-bit counter
 end process;
end x1;

(a) VHDL code

6.11 Design Translation (Synthesis) 345

Generate optimized hardware for the following statement, assuming A is a 4-bit vector:

EQ3 <= (A = 3);

Answer:

A 4-bit comparator can be used to realize this statement. One input to the comparator will be A, and the other input will
be the number 3 (i.e., 0011) (binary).

But since you know that one input is constantly 3, you could optimize it further to result in an AND gate and two
inverters as in Figure 6-32.

E X A M PLE

FIGURE 6-32:
Optimized Hardware
for Equality Checker

a3

a2

a1

a0

A = 3

EQ3

Some synthesizers will not automatically provide this optimized hardware. Under such circumstances, we can alter
the VHDL source code to

EQ3 <= not A(3) and not A(2) and A(1) and A(0);

This statement will result in the four-input AND gate of Figure 6-32.

6.11.4 Area, Power, and Delay Optimizations
Most VHDL synthesizers allow the design to be optimized for maximum speed or for mini-
mum chip area. Power consumption has also recently become a major design constraint along
with area and delay. Typically, optimizing for one constraint will worsen the performance
of another. For example, when improving speed, area might worsen. Improving speed often
means that some operation that is being performed serially, reusing some gates, may have to
be performed in parallel. Hence, often improving the speed results in increasing the number
of components. Consider a serial adder, which is used to perform 4-bit addition, versus a
fully parallel combinational 4-bit adder that uses a lot more hardware to achieve much better
speed. When optimizing for area, an effort is made to decrease the number of components,
which in turn often increases the critical path. Critical path means the longest delay in the
circuit.

CAD tools incorporate gate libraries. The libraries provide various options for achieving
requirements on area, speed, and power. Gates and building blocks that are optimized indi-
vidually for area, speed, or power or collectively for two or more of these can be obtained,
and depending on the designer’s speci�cations, appropriate elements from the libraries can
be used.

Area and delay of a circuit are often inversely related to each other. Energy and delay
are also inversely related. Consider the ripple carry adders and the carry look-ahead adders
from Chapter 4. Ripple carry adders take less area (and power), but more time to �nish

346 Chapter 6 Designing with Field Programmable Gate Arrays

the addition. Carry look-ahead adders consume more area (and power) but take less time
compared to ripple carry adders. The Area-Time (AT) product and Energy-Delay (ED)
product are popularly used metrics to describe the quality of a circuit. Area-Time2 1AT2 2 and
Energy-Delay2 1ED2 2 are also used as metrics to measure the quality of circuits and systems.
If a modi�cation increases both area and delay, of course, it is clear that you do not want
that modi�cation. Usually one improves and the other deteriorates and that is when product
metrics are used as a �gure of merit of the circuit.

In spite of the inverse relationships between area and delay or energy and delay, there
are optimizations that simultaneously improve area, delay, and power. For example, consider
the optimizations in Figure 6-27(b) to (d) and the optimization in Figure 6-28(c) to (e). These
optimizations at the logic level perform the required task in an effective way resulting in less
hardware, less area, less power, and surprisingly smaller critical path, too.

When designing with FPGAs, keep in mind that optimizations for discrete gates are
not necessarily the best optimizations for FPGAs. As an example, consider function mini-
mization. Reducing the number of terms in an expression is extremely important when
implementing the design using gates. But in a LUT-based FPGA, the important issue is to
minimize the number of variables in an expression. Minimizing the number of terms in an
equation is not required because the entire truth table is stored in LUT form.

Major Vendors of CAD Tools

Cadence
Synopsis
Mentor Graphics

Major Vendors of FPGA CAD tools

Xilinx
Altera
Microsemi

6.12 Mapping, Placement, and Routing
Once the design is translated by synthesis and the netlist is generated, the resulting design
must be mapped into a speci�c implementation technology. Implementation technologies
include gate arrays, FPGAs, CPLDs, and ASIC standard cell designs. Mapping, placement,
and routing are the three major steps that happen in order to transform the design in netlist
form to the appropriate target technology.

6.12.1 Mapping
Mapping is the process of binding technology-dependent circuits of the target technology
to the technology-independent circuits in the design. As you know, a design can be imple-
mented in multiple ways: using multiplexers, using ROM or LUTs, using NAND gates, using
NOR gates, or using AND-OR gates. Designs can also be implemented as a combination of
several of these technologies.

6.12 Mapping, Placement, and Routing 347

If we are using a gate-array based on standard cells, the netlist needs to be “mapped”
into the standard cells. If we are using a �eld programmable gate array with LUTs, the design
needs to be transferred or “mapped” into the LUTs. If we are using a �eld programmable
gate array with only 4-to-1 multiplexers, the design needs to be mapped into a structure
which only needs multiplexers. If a target technology contains only two-input NAND gates,
the design needs to be mapped to a form that uses only two-input NAND gates. You did this
process manually for a shift register and multiplexer at the beginning of this chapter. CAD
tools use mapping software to accomplish this task.

Standard Cell Approach

Standard cell design is a common technique for integrated circuit design. The design
is mapped into a library of standard logic gates. Typically NOT, AND, NAND, OR,
NOR, XOR, XNOR, and so on are available. CAD tools that support standard cell
design methodology will also usually contain a library of complex functions and
standard building blocks such as multiplexers, decoders, encoders, comparators,
and counters. The design is mapped into a form that contains only cells available in
the library. The cells are placed in rows that are separated by routing channels as
in Figure 6-33. Some cells may be used only for routing between rows of cells. Such
cells are called feedthrough cells. For the standard cell methodology to be effective,
the height of cells should be the same. But it is possible to include memory modules,
specialized arithmetic modules, and so on.

FIGURE 6-33: Overview
of a Standard Cell
Design

RAM Multiplier
High-speed

adder

Rows of
standard
cells

Specialized
modules

348 Chapter 6 Designing with Field Programmable Gate Arrays

6.12.2 Place and Route
Placement is the process of taking de�ned logic and input/output (I/O) blocks (modules)
from the technology mapper and assigning them to physical locations of the target implemen-
tation. It involves determining the positions of the sub-blocks in the design area. Placement
choices matter because they impact subsequent routing. A good placement algorithm will
try to reduce area and delay. Area and delay are partly determined by wiring. Algorithms
typically estimate wire length and decide on appropriate placement choices. Complicated
placement algorithms are not desirable because they consume too much run time.

Routing is the process of interconnecting the sub-blocks in a design. The choices for rout-
ing are greatly dependent on placement; hence place and route are often done in tandem.
Routing may be done in multiple steps. Global routing decisions can be made to minimize
routing wire length, and then detailed routing of sections can be done. When only a part of
a circuit is changed, incremental routing is useful.

Usually heuristics are used to perform placement. Most placement techniques start with
an initial solution and then try to improve it with alternate placements. For instance, two
blocks in one placement can be swapped to get an alternate placement, and wire length is
evaluated for both the choices. The process is repeated until no further improvements are
possible.

Simulated annealing techniques are used in the place and route process. Annealing is a
term from metallurgy. Simulated annealing algorithms quickly and effectively optimize solu-
tions over large state spaces. Simulated annealing does not guarantee the optimal solution,
but it can produce a solution close to the global minimum in much less time than an exhaus-
tive search. The simulated annealing process starts with a feasible solution (i.e., legal but
not necessarily optimal) and searches for better solutions by making random modi�cations
(permutations). An iterative improvement algorithm accepts only better solutions in each
step. Algorithms that accept only better moves are considered greedy algorithms. But if you
only accept better placements, you could be caught in a local minimum. It has been shown
that it is bene�cial occasionally to accept “bad moves.” Often, these “bad moves” will let the
algorithm reach a global minimum.

Accepting a bad move is certainly a risk. You can take more risks in the beginning of the
simulated annealing process, but you need to be more conservative toward the later stages
because there might not be suf�cient time left to re�ne the solution to an acceptable level.
In simulated annealing algorithms, the algorithms have a concept of a temperature, as in
physical annealing in metallurgy. The temperature is high in the beginning and keeps reduc-
ing. Simulated annealing algorithms allow risky moves depending on the temperature. As
the temperature is reduced, the probability of accepting bad moves decreases. Eventually,
the algorithm defaults to a greedy algorithm that only accepts positive moves. Figure 6-34
illustrates the difference between simulated annealing and iterative improvement algorithms.
The y-axis is the cost (or �gure of merit) of the solution. The x-axis indicates the steps during
the process.

In simulated-annealing place-and-route algorithms, an initial placement is assumed and
cost of alternate placement is estimated. Typically, the cost of a placement indicates the
amount of routing that is needed. A move is considered better if it produces a better cost
�gure (for instance, wire length).

The ability of the tools to map and route designs depends on the algorithms in the tools
and the granularity of the resources. Figure 6-35 shows a routed FPGA implementing an

6.12 Mapping, Placement, and Routing 349

example design. (It is actually the dice game of Chapter 5, implemented in an early Xilinx
FPGA, the XC3000. The small chip was chosen so that you can see all the logic blocks and
I/O blocks on a page.) The boxes on the periphery are the I/O blocks. Obviously, only a few
of them on the top left corner and on the bottom side are used. The logic blocks in the middle
are utilized, while several logic blocks are unused. Synthesis tools will provide a synthesis
report giving the number and percentage of logic blocks used, number and percentage of
�ip-�ops used, and so on.

The utilization of an FPGA depends on the nature of the logic blocks, the ef�ciency of
the mapping tools, the routing resources, the ef�ciency of the routing tools, and so on. If
logic blocks are of large granularity, it is very likely that parts of logic blocks are unused. For
instance, you saw that the shift register design in Figure 6-5 did not utilize a large part of the
function generator. Similarly, the multiplexer designs in Figures 6-2 and 6-4 did not utilize the
�ip-�ops on the logic block. If the logic blocks are of �ne granularity, the utilization of logic
blocks can be higher; however, more routing resources will be needed for interconnection,
often resulting in slower circuits.

This chapter described several types of FPGAs and procedures for designing with these
devices. Nowadays, sophisticated CAD tools are available to assist with the design of sys-
tems using programmable gate arrays. However, in this chapter, several hand designs were
presented �rst to illustrate the underlying steps in CAD tools. Techniques to decompose
functions of several variables into functions with fewer variables were illustrated. Features
of modern FPGAs, such as embedded memory, embedded multipliers, and carry and cascade
chains, were described. A brief overview of the synthesis, mapping, placement, and routing
process was presented.

FIGURE 6-34: Simulated
Annealing versus
Iterative Improvement
Algorithms

Temperature

C
os

t

Simulated annealing

Iterative improvement

High Low

H
ig

h
L

ow

350 Chapter 6 Designing with Field Programmable Gate Arrays

FIGURE 6-35: A Routed FPGA

M0R P27 $1N

M1R
D

P24

HA

$1N P30

HB

$1N LOS

$1N
81

WIN P34

HD

GND $1N $1N

D2_
1

P38 P39

HF

P40 $1N

HG

P42 P43

HH

RST

DPG
M

P46

BCL

P23

U51 GA D1_
1

GC $1N
21

D2_
2

$4-
$1N
7

GG GH

P47

P48

P22

P21 FA D1_
2

FC FD Q1 $4-
$1N
9

FG FH

U29

P49

P20

U55 EA $11
-RO
LL_

ROL
L

ED Q0 $2-
$1N
28

EG EH

P50

P51

P19

VCC

P17 DA RB DC DD Q3 $2-
$1N
7

$1N
26

DH

U25

VCC

P53

$1N
51

P15 CA CB CC $1N
23

Q2 $1N
27

$1N
24

CH

P54

P55

$1N
5

U61 BA BB $11
-$1
N17

$11
-$1
N23

BG BH

U21

P56

P13

$1N
6

CLK
_IN

AB $11
-$1
N31

$11
-$1
N43

$11
-$1
N29

$11
-B
NEX

_

$11
-A
NEX

_

AF AG AH

P57

P58

TCL

GAM
E_R
ESE

PWR
DN

P9 P8 P7 P6 P5 P4 P3 P2 GND P68 P67 P66 P65 P64 P63 P62

P59

P61 CCL
K

Problems
6.1 An 8-bit right shift register with parallel load is to be implemented using an FPGA with logic blocks as in

 Figure 6-1(a). The �ip-�ops are labeled X7X6X5X4X3X2X1X0. The control signals N and S operate as follows:
N 5 0, do nothing; NS 5 11, right shift; NS 5 10, load. The serial input for right shift is SI.
(a) How many logic blocks are required?
(b) Show the required connections for the rightmost block on a copy of Figure 6-1(a). Connect N to CE.
(c) Give the function generator outputs for this block.

6.2 Implement a 2-bit binary counter using one logic block as in Figure 6-1(a). A0 is the least signi�cant bit, and A1 is
the most signi�cant bit of the counter. The counter has a synchronous load (Ld). The counter operates as follows:

En 5 0 No change.
En 5 1, Ld 5 1 Load A0 and A1 with external inputs U and V on rising edge

of clock.
En 5 1, Ld 5 0 Increment counter on rising edge of clock.

(a) Give the next-state equations for A0 and A1.
(b) Show all required inputs and connections on a copy of Figure 6-1(a). Show the connection paths with heavy

lines. Use the CE input. Give the function realized by each 4-input LUT.
6.3 Design a 4-bit right-shift register using an FPGA with logic blocks as in Figure 6-1(a). When the register is

clocked, the register loads if Ld 5 1 and En 5 1, it shifts right when Ld 5 0 and En 5 1, and nothing happens
when En 5 0. Si and So are the shift input and output of the register. D3-0 and Q3-0 are the parallel inputs and
outputs, respectively. The next-state equation for the leftmost �ip-�op is Q3

 1 5 En rQ3 1 En 1Ld D3 1 Ld r Si 2 .
(a) Give the next-state equations for the other three �ip-�ops.
(b) Determine the minimum number of Figure 6-1(a) logic blocks required to implement the shift register.
(c) For the left block, give the input connections and the internal paths on a copy of Figure 6-1(a). Also, give the

X and Y functions.
6.4 The next state equations for a sequential circuit with two �ip-�ops (Q1 and Q2), input signals R, S, T, and an

output P are:
 D1 5 Q1

 1 5 Q2R 1 Q1S

 D2 5 Q2
 1 5 Q1 1 Q2 rT

The output equation is P 5 Q2RT 1 Q1ST

(a) Explain how this sequential circuit can be implemented using a single Figure 6-3 logic block. Write the equa-
tion that each function generator in the block will implement.

(b) Mark (highlight) the input signals, state and output variables, and the activated paths on a copy of Figure 6-3.
6.5 (a) Implement an 8-to-1 multiplexer using a minimum number of logic blocks of the type shown in Figure 6-1(a).

Give the X and Y functions for each block and show the connections between blocks.
(b) Repeat (a) using logic blocks of Figure 6-3. Give X, Y, and Z for each block.
(c) What are the LUT contents for the design in part (a)?
(d) What are the LUT contents for the design in part (b)?

6.6 (a) Write VHDL code that describes the logic block of Figure 6-1(a). Use the following entity:

entity Figure6_1a is
 port(X_in, Y_in: in unsigned(1 to 4);
 clk, CE: in bit;
 Qx, Qy: out bit;
 X, Y: inout bit;
 XLUT, YLUT: in unsigned(0 to 15));
end Figure6_1a;

Problems 351

352 Chapter 6 Designing with Field Programmable Gate Arrays

 (b) Write structural VHDL code that instantiates two Figure6_1a block components to implement the 4-to-1
MUX of Figure 6-2. When you instantiate a block, use the actual bit patterns stored in XLUT and YLUT to
specify the function generated by each of the LUTs.

6.7 (a) Write VHDL code that describes the logic block of Figure 6-3. Use an entity similar to Problem 6.6(a), except
add ZLUT and SA, SB, SC, and SD. SA, SB, SC, and SD represent the programmable select bits that control
the four MUXes. These bits should be assigned values of '0' or '1' when the block component is instantiated.

(b) Write structural VHDL code that instantiates two Figure6_3 block components to implement the code
 converter of Figure 1-26. When you instantiate a block component, use the actual bit patterns stored in
XLUT, YLUT, and ZLUT to specify the function generated by each of the LUTs.

6.8 (a) How many logic blocks as in Figure 6-1(a) are required to create a 4-to-16 decoder?
 (b) Give the contents of the LUTs in the �rst logic block.

6.9 (a) How many logic blocks as in Figure 6-3 are required to create an 8-to-3 priority encoder?
 (b) Give the contents of the LUTs in the �rst logic block.
6.10 (a) How many LUT3s are required to create the following function?

F1 5 W 1 X rZ 1 WY 1 WZ r 1 X rZ r

(b) Give the contents of the LUTs.
6.11 (a) Implement the function F 5 AB rCD 1 A rBC 1 BDE 1 ACD rE r using the con�gurable logic block in

Figure 6-1(a) and one 2-input mux. The select line of the mux is connected to E. Mark the connections and
inputs for the 2 LUT4s, and the mux in order to make this circuit work. Label all inputs and outputs clearly.

(b) What should be the function implemented by the X function generator?
(c) What should be the function implemented by the Y function generator?
(d) What are the LUT4 content bits in the X Function generator? (Show the bits in order)
(e) What are the LUT4 content bits in the Y Function Generator? (Show the bits in order).

6.12 (a) Implement the following sequential circuit in the con�gurable logic block in Figure 6-3. (Hint: Some algebraic
manipulations may be necessary.)

 Next state equation: Q1 5 PQ 1 M
 Output equations: F1 5 P rM rN 1 MN r 1 PQN r 1 M rQ rN F2 5 P 1 PM 1 QNS

 (b) Write the equation implemented in the X function generator.
 (c) Write the equation implemented in the Y function generator.
 (d) Write the equation implemented in the Z function generator.
6.13 (a) Implement the following sequential circuit in the con�gurable logic block in Figure 6-3. (Hint: Some algebraic

manipulations may be necessary.)
 Next state equation: Q1 5 PQ 1 RS
 Output equations: F1 5 P rR rN 1 RSN r 1 PN r 1 P rS rN F2 5 P 1 RS

 (b) Implement the following functions in the minimum number of con�gurable logic blocks in Figure 6-3.
(Hint: Some algebraic manipulations may be necessary.)

6.14 Implement the following functions using minimum number of con�gurable logic blocks as in the following �gure.
As indicated in the diagram, Z1 is produced by the 2-to-1 MUX and Z2 is produced by the lower LUT5. (Hint: 1
block is suf�cient)

Y1 5 AB rCD rE r 1 B rC rE r 1 ABCDE

Y2 5 AB rCD rE rF 1 A rBC rD rEF r 1 B rC rE rF 1 A rBC rE rF r 1 ABCDE

X6

LUT6

X5

Z1

Z1

X4
X3
X2
X1

LUT5

LUT5

0
1

On the diagrams, label the inputs to the LUTs (function generators) and draw the connection paths within the
slice. Mark the function implemented by each LUT5.

6.15 Implement the following functions using minimum number of con�gurable logic blocks as in the �gure in Prob-
lem 6.14. As indicated in the diagram, Z1 is produced by the 2-to-1 MUX and Z2 is produced by the lower LUT5.
(Hint: 1 block is suf�cient)

Y1 5 PQ 1 QR 1 RS 1 ST 1 S 1 U

Y2 5 P rQR rST rU 1 PQT r 1 RST rU 1 R rT rU r

On the diagrams, label the inputs to the LUTs (function generators) and draw the connection paths within the
slice. Mark the function implemented by each LUT5.

6.16 Show how to realize the following combinational function using two Figure 6-1(a) logic blocks. Show the connec-
tions on a copy of Figure 6-1(a) and give the functions X and Y for both blocks.

F 5 X1 rX2X3 rX6 1 X2 rX3 rX4X6 r 1 X2X3 rX4 r 1 X2X3X4 rX6 1 X3 rX4X5X6 r 1 X7

6.17 Realize the following next-state equation using a minimum number of Figure 6-1(a) logic blocks. Draw a diagram
that shows the connections to the logic blocks and give the functions X and Y for each cell. (The equation is
already in minimum form.)

Q1 5 UQV rW 1 U rQ rVX rY r 1 UQX rY 1 U rQ rV rY 1 U rQ rXY 1 UQVW r 1 U rQ rV rX

6.18 What is the minimum number of Figure 6-3 logic blocks required to realize the following function?

X 5 X1 rX2 rX3 rX4 rX5 1 X1X2X3X4X5 1 X5 rX6X7 rX8 rX9 1 X5 rX6 rX7X8X9 r

If your answer is 1, show the required input connections on a copy of Figure 6-3, and also mark the internal con-
nection paths with heavy lines. If your answer is greater than 1, draw a block diagram showing the cell inputs
and interconnections between cells. In any case, give the functions to be realized by each X, Y, and Z function
generator.

Problems 353

354 Chapter 6 Designing with Field Programmable Gate Arrays

6.19 Given Z 1T, U, V, W, X, Y 2 5 VW rX 1 U rV rWY 1 TV rWY r,
(a) Show how Z can be realized using a single Figure 6-3 logic block. Show the cell inputs on a copy of Figure 6-3,

indicate the internal connections in the cell, and specify the functions X, Y, and Z.
(b) Show how Z can be realized using two Figure 6-1(a) logic blocks. Draw a diagram showing the inputs to each

cell, the interconnections between cells, and the X and Y functions for each cell.
6.20 Use Shannon’s expansion theorem around a and b for the function

Y 5 abcde 1 cde rf 1 a rb rc rdef 1 bcdef r 1 ab rcd ref r 1 a rbc rde rf 1 abcd re rf

so that it can be implemented using only 4-variable function generators. Draw a block diagram to indicate how Y
can be implemented using only 4-variable function generators. Indicate the function realized by each 4-variable
function generator.

6.21 Use Shannon’s expansion theorem around e and f for the function

Y 5 ab rcdef 1 a rbc rd re 1 b rc ref r 1 abcde rf

so that it can be implemented using a minimum number of 4-variable functions. Rewrite Y to indicate how it will
be implemented using 4-variable function generators and draw a block diagram. Indicate the function generated
by each function generator.

6.22 (a) Use Shannon’s expansion theorem around a for the function

Y 5 ab rcd re 1 a rbc rd re 1 b rc re 1 abcde

so that it can be implemented using 4-variable functions.
 (b) Use the expanded function to show how Y can be implemented using one Figure 6-3 logic block. Mark (high-

light) the input signals and the activated paths on a copy of Figure 6-3.
 (c) Give the contents of the three LUTs.
6.23 (a) If logic blocks of Figure 6-1(a) are used, how many LUTs are required to build a 4-bit adder with accumulator?

(b) If an FPGA with build in carry chain logic as in Figure 6-11 is used, how many 4-input LUTs are required?
(c) Design a 4-bit adder-subtractor with accumulator using an FPGA with carry chain logic and 4-input LUTs.

Assume a control signal Su which is 0 for addition and 1 for subtraction. Show the required connections on a
diagram similar to Figure 6-11 and give the function realized by each LUT.

6.24 A 4 3 4 array multiplier (Figure 4-29) is to be implemented using an FPGA.
(a) Partition the logic so that it �ts in a minimum number of Figure 6-1(a) logic blocks. Draw loops around each

set of components that will �t in a single logic block. Determine the total number of 4-input LUTs required.
(b) Repeat part (a), except assume that carry chain logic is available.

6.25 (a) Use Shannon’s expansion theorem to expand the following function around A and then expand each sub-
function around D:

Z 5 AB rCD rE rF 1 A rBC rD rEF r 1 B rC rE rF 1 A rBC rE rF r 1 ABCDE

(b) Explain how the expanded function could be implemented using two Xilinx Virtex FPGA slices (Figure 6-13).
On the slice diagrams, label the inputs to the LUTs (function generators) and draw the connection paths
within the slice. Give the function implemented by each LUT.

6.26 Decompose the following function using Shannon’s decomposition around the variable X6. Do not simplify the
function.

F 5 X1 rX2X3 rX4X6 1 X2 rX3 rX4X6 r 1 X2 rX4 r 1 X3X4X5X6 1 X3 rX4X6 r 1 X1X3

Write an expression for F in terms of the decomposed functions and X6

6.27 Show how to realize the following next-state and output equations using a minimum number of the Kintex logic
slice as in Figure 6-13. Draw a diagram to show the connections between the logic elements and indicate how
many CLBs you have used.

 Q1
 1 5 X1 rX2 rQ1 1 Q2X3X4

 Q2
 1 5 X3X2Q1 1 X1 rQ3

 Q3
 1 5 X4Q2

 C 5 X1 rQ2Q3Q1 r

6.28 Illustrate how to realize the following equations using a minimum number of the Stratix IV logic module as
indicated in Figure 6-14. Display the input/output by drawing a diagram, highlight the data path on the diagram.

 X1 5 A rBY 1 E rFX 1 B rE 1 A rF r
 Y1 5 A rD rX r 1 BC 1 AB rC rG
 Z1 5 X rY rZA 1 B rG 1 YBA r

6.29 (a) Indicate the connections of the switches in Figure 6-15 to realize the function

Z 5 AB rC 1 A rBC r 1 BC

(b) Indicate the connections of the switches in Figure 6-15 to realize the function

F 5 AB 1 A rC

(c) Indicate the connections of the switches in Figure 6-15 to realize a latch as in Figure 2-17.
(d) Indicate the connections of the switches in Figure 6-15 to realize a D-�ip-�op.

6.30 The logic equations for a sequential network with �ve inputs, two �ip-�ops, and two outputs are:

 Q1
 1 5 Q1 1Q2ABC 2 1 Q1 r 1Q2 rCDE 2

 Q2
 1 5 Q1 r

 Z1 5 Q1 rQ2 rAB 1 Q1 rQ2 rA rB r 1 Q1Q2 rAB r 1 Q1Q2 1A r 1 B 1 C 2
 Z2 5 Q1A r 1 Q1B 1 Q2 r

How many slices as in Figure 6-9 are required to implement the logic equations, including the �ip-�ops? Specify
the inputs to each slice and the functions realized by each LUT.

6.31 The logic equations for a sequential network with �ve inputs, two �ip-�ops, and two outputs are:

 Q1
 1 5 Q1 1Q2ABC 2 1 Q1 r 1Q2 rCDE 2

 Q2
 1 5 Q1 r

 Z1 5 Q1 rQ2 rAB 1 Q1 rQ2 rA rB r 1 Q1Q2 rAB r 1 Q1Q2 1A r 1 B 1 C 2
 Z2 5 Q1A r 1 Q1B 1 Q2 r

How many slices as in Figure 6-13 are required to implement the logic equations, including the �ip-�ops? Specify
the inputs to each slice and the functions realized by each LUT.

6.32 The logic equations for a sequential network with �ve inputs, two �ip-�ops, and two outputs are:

 Q1
 1 5 Q1 1Q2ABC 2 1 Q1 r 1Q2 rCDE 2

 Q2
 1 5 Q1 r

 Z1 5 Q1 rQ2 rAB 1 Q1 rQ2 rA rB r 1 Q1Q2 rAB r 1 Q1Q2 1A r 1 B 1 C 2
 Z2 5 Q1A r 1 Q1B 1 Q2 r

How many slices as in Figure 6-14 are required to implement the logic equations, including the �ip-�ops? Specify
the inputs to each slice and the functions realized by each LUT.

Problems 355

356 Chapter 6 Designing with Field Programmable Gate Arrays

6.33 Indicate whether the following structure created using 4 slices from Xilinx SPARTAN FPGAs can implement
each of the following: All means any of all possible functions. Some means at least one.
 i) All 32-variable functions
 ii) Some 32-variable functions
 iii) All 8-variable functions
 iv) Some 8-variable functions
 v) All 7-variable functions
 vi) Some 7-variable functions
 vii) All 6-variable functions
 viii) Some 6-variable functions
 ix) All 36-variable functions
 x) Some 36-variable functions
 xi) All 39-variable functions
 xii) Some 39-variable functions

4
LUT4

4
LUT4

4
LUT4

4
LUT4

Mux

4
LUT4

4
LUT4

Mux

4
LUT4

4
LUT4

Mux

Mux

Mux

Mux

Mux

6.34 Perform a survey of FPGA chips now on the market.
(a) Generate a table like Table 6-1 for current FPGAs.
(b) Generate a table like Table 6-2 for current FPGAs.

6.35 Show how 32 3 32-bit unsigned multiplication can be accomplished using four 16 3 16-bit multipliers and
 several adders. Draw a block diagram showing the required connections.

6.36 Fast shifting can be accomplished by using dedicated multipliers. Shifting left N places is equivalent to multiplying
by 2N.
(a) Given A is a 16-bit unsigned number and 0 # N # 15, show how to construct a left shifter using a multiplier

and a decoder.
(b) Write VHDL code that infers this type of shifter.
(c) Repeat (a) and (b) for a right shifter. Hint: multiply by 2152N and select the appropriate 16-bits of the 32-bit

product.
6.37 Make a one-hot state assignment for Figure 4-28(c). Derive the next state and output equations by inspection.
6.38 Make a one-hot state assignment for Figure 4-53 and write the next state and output equations by inspection.

Then change the state assignment so that S0 is assigned 0000000, S1 is assigned 1100000, S2 is 1010000, and so
on and rewrite the equations for this assignment.

6.39 Assume that a sequential system with 4 states is to be implemented using a one-hot state assignment, but the
�ip-�ops do not have preset input. The �ip-�ops do have a reset input; hence, it is bene�cial to have 0000 as
the starting state. What should be the state assignments for the other states if one wants to take advantage of
the one-hot assignment scheme? Explain.

6.40 For the given state graph:
(a) Derive the simpli�ed next-state and output equations by inspection. Use the following one-hot state assign-

ment for �ip-�ops Q0Q1Q2Q3 : S0, 1000; S1, 0100; S2, 0010; S3, 0001.
(b) How many Virtex slices (Figure 6-13) are required to implement these equations?

S3
Z2

S0
Z1

S1
Z2

S2
Z1

X4

X49

X3

X19

X1

X2

X29

X39

6.41 Make any necessary changes in the VHDL code for the traf�c light controller (Figure 4-15) so that it can be syn-
thesized without latches, using whatever synthesis tool you have available. Synthesize the code using a suitable
FPGA or CPLD as a target.

6.42 Synthesize the behavioral model of the 2’s complement multiplier (Figure 4-35), using whatever synthesis tool
you have available. Then synthesize the model with control signals (Figure 4-40) and compare the results (number
of �ip-�ops, number of LUTs, number of slices, etc.). Try different synthesis options such as optimizing for area or
speed and different �nite-state machine encoding algorithms such as one-hot, compact, and so on and compare
the results. Which combination of options uses the least resources?

6.43 Consider the VHDL code

entity example is
 port(a: in integer range 0 to 3;
 b: out integer range 0 to 3);
end example;

Problems 357

358 Chapter 6 Designing with Field Programmable Gate Arrays

architecture test2 of example is
begin
 process(a)
 begin
 case a is
 when 0 => b <= 3;
 when 1 => b <= 2;
 when 2 => b <= 1;
 when 3 => b <= 1;
 end case;
 end process;
end test2;

(a) Show the hardware you would obtain if you synthesize the above VHDL code without any optimizations.
Explain your reasoning.

(b) Show optimized hardware emphasizing minimum area. Show the steps/reasoning by which you obtained the
optimized hardware.

6.44 Draw the hardware structures that will be inferred by typical synthesizers from the code excerpts below. A, B,
and E are 4-bit vectors. C and D are 2-bit numbers. clock is a 1-bit signal. Draw the structure and mark the inputs
and outputs.
(a) process(clock)

begin
 A <= A(3) & A(3 downto 1);
 B <= A(0) & B(3 downto 1);
end process;

(b) architecture test2 of example is
begin
 process(C)
 begin
 case C is
 when 0 => D <= 3;
 when 1 => D <= 2;
 when 2 => D <= 0;
 when others => null; -- preserve value
 end case;
 end process;
end test2;

(c) architecture test2 of example is
begin
 process(C)
 begin
 case C is
 when 0 => E <= A + B;
 when 1 => E <= A sra 2;
 when 2 => E <= A - B;
 when 3 => E <= A;
 end case;
 end process;
end test2;

6.45 (a) Draw a logic diagram (use gates, adders, muxes, D �ip-�ops, etc.) that shows the result of synthesizing the
following VHDL code. A, B, and C are unsigned vectors dimensioned 2 downto 0. How many �ip-�ops are
in the resulting circuit?

process(CLK)
if CLK'event and CLK = 0 then
 if C0 = '1' then C <= not A;
 elsif Ad = '1' then C <= A + B;
 elsif Sh = '1' then C <= C sra 1; end if;
end if;

(b) Describe in one or two sentences what this circuit does.

6.46 (a) Draw a logic diagram (use gates, adders, muxes, D �ip-�ops, etc.) that shows the result of synthesizing the
following VHDL code. A, B, and C are unsigned vectors dimensioned 3 downto 0. How many �ip-�ops are
in the resulting circuit?

process(CLK)
if CLK'event and CLK = 0 then
 if Cmd = '1' then C <= A + B; end if;
 if Cmd = '0' then C <= A - B; end if;
end if;

(b) Describe in one or two sentences what this circuit does.
6.47 Draw the hardware structures that will be inferred by typical synthesizers from the code excerpt below. If any

ambiguities exist in the code, mention what you are assuming. Show optimized and unoptimized hardware. How
many �ip-�ops are in the resulting circuit?
(a) architecture test2 of example is

begin
 process(CLK)
 begin
 case CLK is
 when 0 => b <= 1;
 when 1 => b <= 2;
 when 2 => b <= 3;
 when 3 => b <= 0;
 end case;

 end process;

6.48 Draw the hardware structures that will be inferred by typical synthesizers from the code excerpts below. If any
ambiguities exist in the code, mention what you are assuming. Show optimized and unoptimized hardware.
(a) architecture test2 of example is

begin
 process(a)
 begin
 case a is
 when 0 => b <= 2;
 when 1 => b <= 0;
 when 2 => b <= 3;
 when 3 => b <= 1;
 end case;
 end process;
end test2;

Problems 359

360 Chapter 6 Designing with Field Programmable Gate Arrays

(b) if arg1 > arg2 and arg1 > arg3 then
 result <= arg1;
else
 result <= '0';
end if;

6.49 What hardware does the statement

F <= (A >= B);

result in? Assume that A and B are 8-bit vectors. Draw the resulting circuit.
6.50 Generate optimized hardware for the following statement, assuming A and B are 4-bit vectors:

F <= (A < B);
6.51 Generate optimized hardware for the following statement, assuming A is a 4-bit vector:

F <= (A = 7);
6.52 Generate optimized hardware for the following statement, assuming A is a 4-bit vector:

F <= (A = 9);

361

FLOATING-POINT ARITHMETIC
C H A P T E R

7

Floating-point numbers are frequently used for numerical calculations in computing systems.
Arithmetic units for �oating-point numbers are considerably more complex than those for
�xed-point numbers. Floating-point numbers allow very large or very small numbers to be
speci�ed. This chapter �rst describes a simple representation for �oating-point numbers. Then
it describes the IEEE �oating-point standard. Next, an algorithm for �oating-point multiplica-
tion is developed and tested using VHDL. Then the design of the �oating-point multiplier is
completed and implemented using an FPGA. Floating-point addition, subtraction, and division
are also brie�y described.

7.1 Representation of Floating-Point Numbers
A simple representation of a �oating-point (or real) number (N) uses a fraction (F), base (B),
and exponent (E), where N 5 F 3 BE. The base can be 2, 10, 16, or any other number. The
fraction and the exponent can be represented in many formats. For example, they can be rep-
resented by 2’s complement formats, sign-magnitude form, or another number representation.
There are a variety of �oating-point formats depending on how many bits are available for F
and E, what the base is, and how negative numbers are represented for F and E. The base can
be implied or explicit. Depending on all these choices, a wide variety of �oating-point formats
have existed in the past.

7.1.1 A Simple Floating-Point Format Using 2’s Complement
In this section, we describe a �oating-point format where negative exponents and fractions
are represented using the 2’s complement form is described. The base for the exponent is 2.
Hence, the value of the number is N 5 F 3 2E. In a typical �oating-point number system, F
is 16 to 64 bits long and E is 8 to 15 bits long. In order to keep the examples in this section
simple and easy to follow, you will use a 4-bit fraction and a 4-bit exponent, but the concepts
presented here can easily be extended to more bits.

The fraction and the exponent in this system will use 2’s complement. (Refer to Section
4.10 for a discussion of 2’s complement fractions.) Use 4 bits for the fraction and 4 bits for
the exponent. The fractional part will have a leading sign bit and three actual fraction bits.
The implied binary point is after the �rst bit. The sign bit is 0 for positive numbers and 1 for
negative numbers.

362 Chapter 7 Floating-Point Arithmetic

As an example, the decimal number 2.5 is represented in this 8-bit 2’s complement
�oating-point format.

 2.5 5 0010.1000

 5 1.010 3 21 1standardized normal representation 2
 5 0.101 3 22 14-bit 2's complement fraction 2

Therefore,

F 5 0.101 E 5 0010 N 5 5/8 3 22

If the number was 22.5, the same exponent can be used, but the fraction must have a
negative sign. The 2’s complement representation for the fraction is 1.011. Therefore,

F 5 1.011 E 5 0010 N 5 25/8 3 22

Other examples of �oating-point numbers using a 4-bit fraction and a 4-bit exponent are

F 5 0.101 E 5 0101 N 5 5/8 3 25

F 5 1.011 E 5 1011 N 5 25/8 3 225

F 5 1.000 E 5 1000 N 5 21 3 228

In order to utilize all the bits in F and have the maximum number of signi�cant �gures,
F should be normalized so that its magnitude is as large as possible. If F is not normalized,
normalize F by shifting it left until the sign bit and the next bit are different. Shifting F left is
equivalent to multiplying by 2, so every time you shift, you must decrement E by 1 to keep
N the same. After normalization, the magnitude of F will be as large as possible, since any
further shifting would change the sign bit. In the following examples, F is unnormalized to
start with, and then it is normalized by shifting left.

Unnormalized: F 5 0.0101 E 5 0011 N 5 5/16 3 23 5 5/2
Normalized: F 5 0.101 E 5 0010 N 5 5/8 3 22 5 5/2
Unnormalized: F 5 1.11011 E 5 1100 N 5 25/32 3 224 5 25 3 229

1shift F left 2 F 5 1.1011 E 5 1011 N 5 25/16 3 225 5 25 3 229

Normalized: F 5 1.011 E 5 1010 N 5 25/8 3 226 5 25 3 229

The exponent can be any number between 28 and 17. The fraction can be any number
between 21 and 10.875.

Zero cannot be normalized, so F 5 0.000 when N 5 0. Any exponent could then be used;
however, it is best to have a uniform representation of 0. In this format, the negative expo-
nent with the largest magnitude is associated with the fraction 0. In a 4-bit 2’s complement
integer number system, the most negative number is 1000, which represents 28. Thus when
F and E are 4 bits, 0 is represented by

F 5 0.000 E 5 1000 N 5 0.000 3 228

Some �oating-point systems use a biased exponent, so E 5 0 is associated with F 5 0.

7.1.2 The IEEE 754 Floating-Point Formats
The IEEE 754 is a �oating-point standard established by IEEE in 1985. It contains two
representations for �oating-point numbers, the IEEE single precision format and the IEEE
double precision format. The IEEE 754 single precision representation uses 32 bits and the
double precision system uses 64 bits.

7.1 Representation of Floating-Point Numbers 363

Although 2’s complement representations are very common for negative numbers, the
IEEE �oating-point representations do not use 2’s complement for either the fraction or
the exponent. The designers of IEEE 754 desired a format that was easy to sort and hence
adopted a sign-magnitude system for the fractional part and a biased notation for the
exponent.

The IEEE 754 �oating-point formats need three sub�elds: sign, fraction, and exponent.
The fractional part of the number is represented using a sign-magnitude representation
in the IEEE �oating-point formats (i.e., there is an explicit sign bit (S) for the fraction). The
sign is 0 for positive numbers and 1 for negative numbers. In a binary normalized scienti�c
notation, the leading bit before the binary point is always 1, and hence the designers of the
IEEE format decided to make it implied, representing only the bits after the binary point. In
general, the number is of the form

N 5 121 2S 3 11 1 F 2 3 2E

where S is the sign bit, F is the fractional part, and E is the exponent. The base of the expo-
nent is 2. The base is implied (i.e., it is not stored anywhere in the representation). The
magnitude of the number is 1 1 F because of the omitted leading 1. The term signi�cand
means the magnitude of the fraction and is 1 1 F in the IEEE format. But often the terms
signi�cand and fraction are used interchangeably by many, including in this book.

The exponent in the IEEE �oating-point formats uses what is known as a biased nota-
tion. A biased representation is one in which every number is represented by the number
plus a certain bias. In the IEEE single precision format, the bias is 127. Hence, if the expo-
nent is 11, it will be represented by 11 1 127 5 128. If the exponent is 22, it will be repre-
sented by 22 1 127 5 125. Thus, exponents less than 127 indicate actual negative exponents
and exponents greater than 127 indicate actual positive exponents. The bias is 1023 in the
double precision format.

If a positive exponent becomes too large to �t in the exponent �eld, the situation is called
over�ow, and if a negative exponent is too large to �t in the exponent �eld, that situation is
called under�ow.

The IEEE Single Precision Format
The IEEE single precision format uses 32 bits for representing a �oating-point number,
divided into three sub�elds, as illustrated in Figure 7-1. The �rst �eld is the sign bit for the
fractional part. The next �eld consists of 8 bits which are used for the exponent. The third
�eld consists of the remaining 23 bits and is used for the fractional part.

S Exponent Fraction

1 bit 8 bits 23 bits

FIGURE 7-1: IEEE
Single Precision
Floating-Point Format

The sign bit re�ects the sign of the fraction. It is 0 for positive numbers and 1 for negative
numbers. In order to represent a number in the IEEE single precision format, �rst it should
be converted to a normalized scienti�c notation with exactly one bit before the binary point,
simultaneously adjusting the exponent value.

The exponent representation that goes into the second �eld of the IEEE 754 representation
is obtained by adding 127 to the actual exponent of the number when represented in the nor-
malized form. Exponents in the range 1–254 are used for representing normalized �oating-point
numbers. Exponent values 0 and 255 are reserved for special cases, which will be discussed later.

364 Chapter 7 Floating-Point Arithmetic

The representation for the 23-bit fraction is obtained from the normalized scienti�c nota-
tion by dropping the leading 1. Zero cannot be represented in this fashion; hence, it is treated
as a special case (explained later). Since every number in the normalized scienti�c notation
will have a leading 1, this leading 1 can be dropped so that one more bit can be packed into
the signi�cand (fraction). Thus, a 24-bit fraction can be represented using the 23 bits in the
representation. The designers of the IEEE formats wanted to make highest use of all the bits
in the exponent and fraction �elds.

In order to understand the IEEE format, 13.45 is represented in the IEEE
�oating-point format. Note that 0.45 is a recurring binary fraction, and hence,
13.45 5 1101.01 1100 1100 1100 . . . with the bits 1100 continuing to recur.
Normalized scienti�c representation yields

13.45 5 1.10101 1100 1100 c 3 23

Since the number is positive, the sign bit for the IEEE 754 representation is 0.
The exponent in the biased notation will be 127 1 3 5 130, which in binary format is

10000010.
The fraction is 1.10101 1100 1100 . . . (with 1100 recurring). Omitting the leading 1, the

23 bits for the fractional part are

10101 1100 1100 1100 1100 11

Thus, the 32 bits are

0 10000010 10101 1100 1100 1100 1100 11

as illustrated in Figure 7-2.

S Exponent Fraction

0 1 0 0 0 0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

FIGURE 7-2: IEEE
Single Precision
Floating-Point
Representation for 13.45

The 32 bits can be expressed more conveniently in a hexadecimal (hex) format as

4157 3333

The number 213.45 can be represented by changing only the sign bit (i.e., the �rst bit
must be 1 instead of 0). Hence, the hex number C157 3333 represents 213.45 in IEEE 754
single precision format.

The IEEE Double Precision Format
The IEEE double precision format uses 64 bits for representing a �oating-point number, as
illustrated in Figure 7-3. The �rst bit is the sign bit for the fractional part. The next 11 bits are
used for the exponent, and the remaining 52 bits are used for the fractional part.

S Exponent Fraction

1 bit 11 bits 52 bits

FIGURE 7-3: IEEE
Double Precision
Floating-Point Format

As in the single precision format, the sign bit is 0 for positive numbers and 1 for negative
numbers.

The exponent representation used in the second �eld is obtained by adding the bias value
of 1023 to the actual exponent of the number in the normalized form. Exponents in the range

7.1 Representation of Floating-Point Numbers 365

1–2046 are used for representing normalized �oating-point numbers. Exponent values 0 and
2047 are reserved for special cases.

The representation for the 52-bit fraction is obtained from the normalized scienti�c nota-
tion by dropping the leading 1 and considering only the next 52 bits.

As an example, 13.45 is represented in IEEE double precision �oating-point format.
Converting 13.45 to a binary representation,

13.45 5 1101.01 1100 1100 1100 . . . with the bits 1100 continuing to recur

In normalized scienti�c representation,

13.45 5 1.10101 1100 1100 c 3 23

The exponent in biased notation will be 1023 1 3 5 1026, which in binary representation is

10000000010

The fraction is 1.10101 1100 1100 . . . (with 1100 recurring). Omitting the leading 1, the
52 bits of the fractional part are

10101 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 110

Thus, the 64 bits are

0 10000000010 10101 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 110

as illustrated in Figure 7-4. The 64 bits can be expressed more conveniently in a hexadecimal
format as

402A E666 6666 6666

FIGURE 7-4: IEEE
Double Precision
Floating-Point
Representation
for 13.45

S Exponent Fraction

0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

Fraction (cont'd)

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

The number 213.45 can be represented by changing only the sign bit (i.e., the �rst bit must
be 1 instead of 0). Hence, the hex number C02A E666 6666 6666 represents 213.45 in IEEE
754 double precision format.

Special Cases in the IEEE 754 Standard
The IEEE 754 standard has several special cases, which are illustrated in Figure 7-5. These
include 0, in�nity, denormalized numbers, and NaN (Not a Number) representations. The
smallest and the highest exponents are used to denote these special cases.

Zero The IEEE format speci�es 0 to be the representation with 0’s in all bits (i.e., all
exponent and fraction bits are 0). Zero is speci�ed as a special case in the format due to
the dif�culty in representing 0 in a normalized format. When using the usual convention for
IEEE format normalized numbers, you could add a leading 1 to the fractional part, but that
would make it impossible to represent 0.

Denormalized Numbers The smallest normalized number that the single precision format
can represent is

1.0 3 22126

366 Chapter 7 Floating-Point Arithmetic

Numbers between 1.0 3 22126 and 0 cannot be expressed in the normalized format. If nor-
malization is not made a requirement of the format, we could represent numbers smaller
than 1.0 3 22126. Hence, the IEEE �oating-point format allows denormalized numbers as
a special case. If the exponent is 0 and the fraction is nonzero, the number is considered
denormalized. Now, the smallest number that can be represented is

0.00000000000000000000001 3 22126, which is 1.0 3 22149.

Thus, denormalization allows numbers between 1.0 3 22126 and 1.0 3 22149 to be represented.
For double precision, the denormalized range allows numbers between 1.0 3 221022 and

1.0 3 221074.

Infinity In�nity is represented by the highest exponent value together with a fraction of 0. In the
case of single precision representation, the exponent is 255, and for double precision, it is 2047.

Not a Number (NaN) The IEEE 754 standard has a special representation to represent the
result of invalid operations, such as 0/0. This special representation is called NaN or Not a
Number. If the exponent is 255 and the fraction is any nonzero number, it is considered to
be NaN.

Single Precision Double Precision Object Represented

Exponent Fraction Exponent Fraction

0 0 0 0 0

0 nonzero 0 nonzero 6 denormalized number

255 0 2047 0 6 in�nity

255 nonzero 2047 nonzero NaN (not a number)

FIGURE 7-5: Special
Cases in the IEEE 754
Floating-Point Formats

Represent 227.35 3 106 in IEEE Single Precision format.

Answer:

27.35 3 106 5 27350000

27350000 in binary 5 1100 0000 1010 1011 1111 1000 0

27350000 in binary normalized form 5 1.100 0000 1010 1011 1111 1000 0 3 224

Exponent 5 24

Biased exponent 5 127 1 24 5 151 5 10010111

Sign bit 5 1 1since number is negative 2
Fraction 5 1. 100 0000 1010 1011 1111 1000 124 bits 2
Fraction after implied 1 is removed 5 100 0000 1010 1011 1111 1000 123 bits 2
IEEE Single Precision representation 5

1 100 1011 1 100 0000 1010 1011 1111 1000

Hex representation 5 CBC0 ABF8

E X A M PLE

7.1 Representation of Floating-Point Numbers 367

If X is represented as 44FA070A in single precision IEEE �oating point format, what is the representation for 2X?

Answer:

The �oating point representation is 0100 0100 1111 1010 0000 0111 0000 1010.

The exponent must be incremented if the number doubles. The exponent bits are the 8 bits after the MSB, that is,
10001001. The new exponent will be 10001010.

The new number will be
0 100 0101 0111 1010 0000 0111 0000 1010

The hex representation for 2X will be 457A070A.

E X A M PLE

Rounding When the number of bits available is fewer than the number of bits required to
represent a number, rounding is employed. It is desirable to round to the nearest value. One
option is to round up if the number is higher than halfway between and round down if the
number is less than halfway between. Another option is to truncate, ignoring the bits beyond
the allowable number of bits. It is advisable to keep more bits in intermediate representa-
tions to achieve higher accuracy. The IEEE standard requires two extra bits in intermedi-
ate representations in order to facilitate better rounding. The two bits are called guard and
round. Sometimes, a third intermediate bit is used in rounding in addition to the guard and
round bits. It is called the sticky bit. The sticky bit is set whenever there are nonzero bits to
the right of the round bit.

What does the hex number 40380000 0000 0000 represent in IEEE Double Precision format?

Answer:

40380000 0000 0000 1hex 2
5 0 100 0000 0011 1000 0000 0000 0000 0000 1 the highest 8 digits expressed in binary 2

The �rst bit is the sign bit.
Sign bit 5 0 (hence the number is positive)

The next 11 bits are the biased exponent.
Biased exponent 5 100 0000 0011 5 1027
Therefore, exponent 5 1027 2 1023 5 4

The fraction excluding the implied 1 5 0.1 (binary)
The fraction including the implied 1 5 1.1 1binary 2 5 1.5 1decimal 2
Value of the number 5 1.5 3 24 5 1.5 3 16 5 24.

The lower several digits are kept 0 to facilitate easy conversion. This number actually does not need double precision
format.

E X A M PLE

368 Chapter 7 Floating-Point Arithmetic

What would have been the value of the hex number 00000000 in IEEE Single Precision format if it was in standardized
form?

Answer:

This number is a special case in the IEEE format. If exponent is 0 and fraction is 0, it is the special case representation
for 0. However, if it was not a special case and was interpreted in a standard form,

Sign bit 5 0
Biased exponent 5 0
Unbiased 1actual exponent 2 5 0 2 127 5 2127
Fraction 5 1.0

The number would have been 1.0 3 22127

E X A M PLE

What is the value of the hex number 80000008 in IEEE Single Precision format?

Answer:

Binary representation is 1 000 0000 0000 0000 0000 0000 0000 1000

This number is a special case in the IEEE format. If exponent is 0 and fraction is non-zero, it is a denormalized number.

Sign bit 5 1 (hence a negative number)
Biased exponent 5 0
Actual exponent 5 2126
Fraction 5 2220

Note there is no implied 1 before the fraction.
The number would have been 21 3 2220 3 22126 5 222146

E X A M PLE

Represent 1.0 in IEEE Double Precision format.

Answer:

1.0 5 1.000 c0

1.0 in normalized form 5 1.00 c0 3 20

Exponent 5 0

Biased exponent 5 1023 1 0 5 1023 5 011 1111 1111

Sign bit 5 0 1since number is positive 2
Fraction after implied 1 is removed 5 00 c00 1repeat until 52 bits 2

E X A M PLE

7.1 Representation of Floating-Point Numbers 369

The biggest challenge is when the number falls halfway in between. The IEEE standard
has four different rounding modes:

 ● Round up Round toward positive in�nity. Round up to the next higher number.
 ● Round down Round toward negative in�nity. Round down to the nearest smaller

number.
 ● Truncate Round toward zero. Ignore bits beyond the allowable number of bits. Same

as round down for positive numbers.
 ● Unbiased This mode is also called Round to Even. If the number falls halfway between,

round up half the time and round down half the time. In order to achieve rounding up
half the time, add 1 if the lowest bit retained is 1, and truncate if it is 0. This is based on
the assumption that a 0 or 1 appears in the lowest retained bit with an equal probability.
One consequence of this rounding scheme is that the rounded number always has a 0 in
the lowest place or in other words, it is always even.

Number Roundup Rounddown Truncate Round-to-Even

1.10101 1.11 1.10 1.10 1.10

1.01111 1.10 1.01 1.01 1.10

Round 1.10101 and 1.01111 to 2 binary places using the 4 different IEEE rounding modes.

Answer:

According to IEEE, roundup is toward positive in�nity, and rounddown is toward negative in�nity. Truncate just
retains 2 bits after the binary point from the original numbers. Round-to-even (unbiased rounding) rounds up if the last
bit retained is a 1, resulting in 1.01111 becoming 1.10. It should be noted that 1.10101 also results in the same value in
round-to-even.

E X A M PLE

IEEE Double Precision representation 5

0 011 1111 1111 0000 0000 c0000

Hex representation for 1.0 in double precision format is 3FF0 0000 0000 0000

Round 115.6666, 2115.6666, 115.6555, and 115.5555 to 1 decimal place in the four IEEE rounding modes.

Answer:

E X A M PLE

Number Roundup Rounddown Truncate Round-to-Even

115.6666 115.7 115.6 115.6 115.6

2115.6666 2115.6 2115.7 2115.6 2115.6

115.6555 115.7 115.6 115.6 115.6

115.5555 115.6 115.5 115.5 115.6

370 Chapter 7 Floating-Point Arithmetic

7.2 Floating-Point Multiplication
Given two �oating-point numbers, 1F1 3 2E1 2 and 1F2 3 2E2 2 , the product is

1F1 3 2E1 2 3 1F2 3 2E2 2 5 1F1 3 F2 2 3 21E11E22 5 F 3 2E

The fraction part of the product is the product of the fractions, and the exponent part of
the product is the sum of the exponents. Hence, a �oating-point multiplier consists of two
major components: a fraction multiplier and an exponent adder. The details of �oating-point
multiplication will depend on the precise formats in which the fraction multiplication and
exponent addition are performed.

Fraction multiplication can be done in many ways. If the IEEE format is used, multiplica-
tion of the magnitude can be done and then the signs can be adjusted. If 2’s complement frac-
tions are used, you can use a fraction multiplier that handles signed 2’s complement numbers
directly. Such a fraction multiplier was discussed in Chapter 4.

Addition of the exponents can be done with a binary adder. If the IEEE formats are
directly used, the representations must be carefully adjusted in order to obtain the correct
result. For instance, if exponents of two �oating-point numbers in the biased format are
added, the sum contains twice the bias value. To get the correct exponent, the bias value must
be subtracted from the sum.

The 2’s complement system has several interesting properties for performing arithmetic.
Hence, many �oating-point arithmetic units convert the IEEE notation to 2’s complement
and then use the 2’s complement internally for carrying out the �oating-point operations.
Then the �nal result is converted back to IEEE standard notation.

A
Roundup(A,1)

in Excel
Roundup in
IEEE STD

115.6666 115.7 115.7

2115.6666 2115.7 115.6

A
Rounddown(A,1)

in Excel
Rounddown

in IEEE STD

115.6666 115.6 115.6

2115.6666 2115.6 115.7

ROUNDING CONVENTIONS ARE NOT NECESSARILY UNIVERSAL

The rounding modes in different software packages may be dif-
ferent. The EXCEL software package's de�nition of roundup
and rounddown are different from the IEEE de�nitions.
According to IEEE 754 Standard rounding modes, round up
is round toward plus in�nity and round down is round toward
minus in�nity. This is consistent with EXCEL for positive num-
bers, but for negative numbers, it is the opposite way. See an
example below. In Excel, the function ROUNDUP(A1, k) will
roundup the number in cell A1 to k decimal places.

7.2 Floating-Point Multiplication 371

The general procedure for performing �oating-point multiplication is the following:

1. Add the two exponents.
2. Multiply the two fractions (signi�cands).
3. If the product is 0, adjust the representation to the proper representation for 0.
4. a. If the product fraction is too big, normalize by shifting it right and incrementing the

exponent.
b. If the product fraction is too small, normalize by shifting left and decrementing the

exponent.
 5. If an exponent under�ow or over�ow occurs, generate an exception or error indicator.
 6. Round to the appropriate number of bits. If rounding resulted in loss of normalization,

go to step 4 again.

Note that, in addition to adding the exponents and multiplying the fractions, several
steps—such as normalizing the product, handling over�ow and under�ow, and rounding to
the appropriate number of bits—also need to be done. Assume that the two numbers are
properly normalized to start with, and you want the �nal result to be normalized.

Now, the design of a �oating-point multiplier is presented. Use 4-bit fractions and 4-bit
exponents, with negative numbers represented in 2’s complement.

The fundamental steps are to add the exponents (step 1) and multiply the fractions
(step 2). However, several special cases must be considered. If F is 0, set the exponent E to
the largest negative value (1000) (step 3). A special situation occurs if you multiply 21 by
21 11.000 3 1.000 2 . The result should be 11. Since you cannot represent 11 as a 2’s comple-
ment fraction with a 4-bit fraction, this special case necessitates right shifting as in step 4.
To correct this situation, right shift the signi�cand (fraction) and increment the exponent.
Essentially, you set F 5 1/2 10.100 2 and add 1 to E. This results in the correct answer, since
1 3 2E 5 1/2 3 2E11.

When are multiplied the fractions, the result could be unnormalized. For example,

10.1 3 2E1 2 3 10.1 3 2E2 2 5 0.01 3 2E11E2 5 0.1 3 2E11E221

This is situation 4.b in the preceding list. In this case, normalize the result by shifting the
fraction left one place and subtracting 1 from the exponent to compensate. Finally, if the
resulting exponent is too large in magnitude to represent in our number system, you have an
exponent over�ow. (An over�ow in the negative direction is referred to as an under�ow.)
Since you are using 4-bit exponents, if the exponent is not in the range 1000 to 0111 (28 to
17), an over�ow has occurred. Since an exponent over�ow cannot be corrected, an over�ow
indicator should be turned on (step 5).

A �ow chart for this �oating-point multiplier is shown in Figure 7-6. After multiplying
the fraction, all the special cases are tested for. Since F1 and F2 are normalized, the smallest
possible magnitude for the product is 0.01, as indicated in the preceding example. Therefore,
only one left shift is required to normalize F.

The hardware required to implement the multiplier (Figure 7-7) consists of an expo-
nent adder, a fraction multiplier, and a control unit that provides the signals to perform the
appropriate operations of right shifting, left shifting, exponent incrementing/decrementing,
and so on.

372 Chapter 7 Floating-Point Arithmetic

FIGURE 7-6: Flow Chart
for Floating-Point
Multiplication with 2’s
Complement Fractions/
Exponents

 Add exponents

Multiply fractions

F = 0

Done

Done

 F
Over�ow

a. Right shift F
 b. E <= E + 1

F
Normalized

Exp
over�ow

Shift F Left
E <= E – 1

Set indicator

Y

Y

Y

Y

N

N

N

N

Start

exponent
for zero

Set E =

Exponent Adder: Since 2’s complement addition results with the sum in the proper format,
the design of the exponent adder is straightforward. A 5-bit full adder is used as the exponent
adder as demonstrated in Figure 7-7. When the fraction is normalized, the exponent will have
to be correspondingly incremented or decremented. Also, in the special case when product is
0, the register should be set to the value 1000. The register has control signals for increment-
ing, decrementing, and setting to the most negative value (SM8).

The register that holds the sum is made into a 5-bit register to handle special situations.
When the exponents are added, an over�ow can occur. If E1 and E2 are positive and the sum
(E) is negative, or if E1 and E2 are negative and the sum is positive, the result is a 2’s comple-
ment over�ow. However, this over�ow might be corrected when 1 is added to or subtracted
from E during normalization or correction of fraction over�ow. To allow for this case, the X
register has been made 5 bits long. When E1 is loaded into X, the sign bit must be extended
so that there is a correct 2’s complement representation. Since there are two sign bits, if
the addition of E1 and E2 produces an over�ow, the lower sign bit will get changed, but the

7.2 Floating-Point Multiplication 373

high-order sign bit will be unchanged. Each of the following examples has an over�ow, since
the lower sign bit has the wrong value:

 7 1 6 5 00111 1 00110 5 01101 5 13 1maximum allowable value is 7 2
 27 1 126 2 5 11001 1 11010 5 10011 5 213 1maximum allowable negative

value is 28 2

FIGURE 7-7: Major
Components of
a Floating-Point
Multiplier St

Mdone

FZ

FV

Fnorm

EV

Load

Adx

SM8

RSF = Inc

LSF = Dec

Done

V

Main
control

1 023

0123

5-Bit full adder

Y

4 X
SM8

Inc
Dec

Load

Adx

E1

Load

E2

1 0230123

A (accumulator)

4-Bit full adder

ones complementer

C
1 023

Load
AdSh

Sh

RSF

LSF

B

F1

Load

Multiply
control

Mdone

Adx

M

Sh

AdSh

Cm

F2

F

(a) Main control unit (b) Exponent adder

(c) Fraction multiplier

374 Chapter 7 Floating-Point Arithmetic

The following example illustrates the special case where an initial fraction over�ow and
exponent over�ow occurs, but the exponent over�ow is corrected when the fraction over�ow
is corrected:

11.000 3 223 2 3 11.000 3 226 2 5 01.000000 3 229 5 00.100000 3 228

Fraction Multiplier: The fraction multiplier designed in Section 4.10 handles 2’s complement
fractions in a straightforward manner. Hence, that design is adapted for the �oating-point
multiplier. It implements a shift-and-add multiplier algorithm. Since you are multiplying 3
bits plus sign by 3 bits plus sign, the result will be 6 bits plus sign. After the fraction multipli-
cation, the 7-bit result (F) will be the lower 3 bits of A concatenated with B. The multiplier
has its own control unit that generates appropriate shift and add signals depending on the
multiplier bits.

Main Control Unit: The SM chart for the main controller (Figure 7-8) of the �oating-point
multiplier is based on the �ow chart. This controller is called main controller to distinguish
it from the controller for the multiplier, which is a separate state machine that is linked into
the main controller.

The SM chart uses the following inputs and control signals:

St Start the �oating-point multiplication.

Mdone Fraction multiply is done.

FZ Fraction is zero.

FV Fraction over�ow (fraction is too big).

Fnorm F is normalized.

EV Exponent over�ow.

Load Load F1, E1, F2, E2 into the appropriate registers (also clear A in
preparation for multiplication).

Adx Add exponents; this signal also starts the fraction multiplier.

SM8 Set exponent to minus 8 (to handle special case of 0).

RSF Shift fraction right; also increment E.

LSF Shift fraction left; also decrement E.

V Over�ow indicator.

Done Floating-point multiplication is complete.

The SM chart for the main controller has four states. In S0, the registers are loaded when the
start signal is 1. In S1, the exponents are added, and the fraction multiply is started. In S2, wait
until the fraction multiply is done and then test for special cases and take appropriate action.
It may seem surprising that the tests on FZ, FV, and Fnorm can all be done in the same state
since they are done in sequence on the �ow chart. However, FZ, FV, and Fnorm are gener-
ated by combinational circuits that operate in parallel and hence can be tested in the same
state. However, wait until the exponent has been incremented or decremented at the next
clock before you can check for exponent over�ow in S3. In S3, the Done signal is turned on,
and the controller waits for St 5 0 before returning to S0.

The state graph for the multiplier control (Figure 7-9) is similar to Figure 4-34, except
that the load state is not needed because the registers are loaded by the main controller.

7.2 Floating-Point Multiplication 375

FIGURE 7-8: SM Chart
for Floating-Point
Multiplication

1

Load

St0

Mdone

FZ

Fnorm

S1 / Adx Add exponents, start multiply

SM8

RSF

LSF

0

01

1 0

1

0

1

01

S3 / Done

S0 /

FV

RSF

St

EV

0 1

V

S2 / Fraction
multiplier

control

Add and shift operations are performed in one state because as seen in Figure 7-7(c), the
sum wires from the adder are shifted by 1 before loading into the accumulator register.
When Adx 5 1, the multiplier is started, and Mdone is turned on when the multiplication is
completed.

The VHDL behavioral description (Figure 7-10) uses three processes. The main process
generates control signals based on the SM chart. A second process generates the control
signals for the fraction multiplier. The third process tests the control signals and updates
the appropriate registers on the rising edge of the clock. In state S2 of the main process,
A 5 ''0000'' implies that F 5 0 (FZ 5 1 on the SM chart). If you multiply 1.000 3 1.000,
the result is A & B 5 ''01000000'', and a fraction over�ow has occurred 1FV 5 1 2 . If
A 12 2 5 A 11 2 , the sign bit of F and the following bit are the same and F is unnormalized
1Fnorm 5 0 2 . In state S3, if the two high-order bits of X are different, an exponent over�ow
has occurred 1EV 5 1 2 .

376 Chapter 7 Floating-Point Arithmetic

FIGURE 7-9: State
Graph for Multiplier
Control

S1

S2S3

S4

S0 Adx M/AdSh
Adx M9/Sh

M/AdSh

M/AdSh
M9/Sh

M/Cm AdSh
M9/Sh

M9/Sh

–/Mdone

Adx9/0

library IEEE;
use IEEE.numeric_bit.all;

entity FMUL is
 port(CLK, St: in bit;
 F1, E1, F2, E2: in unsigned(3 downto 0);
 F: out unsigned(6 downto 0);
 V, done: out bit);
end FMUL;

architecture FMULB of FMUL is
signal A, B, C: unsigned(3 downto 0); -- fraction registers
signal X, Y: unsigned(4 downto 0); -- exponent registers
signal Load, Adx, SM8, RSF, LSF: bit;
signal AdSh, Sh, Cm, Mdone: bit;
signal PS1, NS1: integer range 0 to 3; -- present and next state
signal State, Nextstate: integer range 0 to 4; -- multiplier control state
begin
 main_control: process(PS1, St, Mdone, X, A, B)
 begin
 Load <= '0'; Adx <= '0'; NS1 <= 0; -- clear control signals
 SM8 <= '0'; RSF <= '0'; LSF <= '0'; V <= '0'; F <= "0000000";
 done <= '0';
 case PS1 is
 when 0 => F <= "0000000"; -- clear outputs
 done <= '0'; V <= '0';
 if St = '1' then Load <= '1'; NS1 <= 1; end if;
 when 1 => Adx <= '1'; NS1 <= 2;
 when 2 =>
 if Mdone = '1' then -- wait for multiply
 if A = 0 then -- zero fraction
 SM8 <= '1';
 elsif A = 4 and B = 0 then
 RSF <= '1'; -- shift AB right
 elsif A(2) = A(1) then -- test for unnormalized
 LSF <= '1'; -- shift AB left
 end if;

FIGURE 7-10: VHDL Code for Floating-Point Multiplier

7.2 Floating-Point Multiplication 377

 NS1 <= 3;
 else
 NS1 <= 2;
 end if;
 when 3 => -- test for exp overflow
 if X(4) /= X(3) then V <= '1'; else V <= '0'; end if;
 done <= '1';
 F <= A(2 downto 0) & B; -- output fraction
 if ST = '0' then NS1 <= 0; end if;
 end case;
 end process main_control;

 mul2c: process(State, Adx, B) -- 2's complement multiply
 begin
 AdSh <= '0'; Sh <= '0'; Cm <= '0'; Mdone <= '0'; -- clear control signals
 Nextstate <= 0;
 case State is
 when 0 => -- start multiply
 if Adx = '1' then
 if B(0) = '1' then AdSh <= '1'; else Sh <= '1'; end if;
 Nextstate <= 1;
 end if;
 when 1 | 2 => -- add/shift state
 if B(0) = '1' then AdSh <= '1'; else Sh <= '1'; end if;
 Nextstate <= State + 1;
 when 3 =>
 if B(0) = '1' then Cm <= '1'; AdSh <= '1'; else Sh <= '1'; end if;
 Nextstate <= 4;
 when 4 =>
 Mdone <= '1'; Nextstate <= 0;
 end case;
 end process mul2c;

 update: process -- update registers
 variable addout: unsigned(3 downto 0);
 begin
 wait until CLK = '1' and CLK'event;
 PS1 <= NS1;
 State <= Nextstate;
 if Cm = '0' then addout := A + C;
 else addout := A - C;
 end if; -- add 2's comp. of C
 if Load = '1' then
 X <= E1(3) & E1; Y <= E2(3) & E2;
 A <= "0000"; B <= F1; C <= F2;
 end if;
 if ADX = '1' then X <= X + Y; end if;
 if SM8 = '1' then X <= "11000"; end if;
 if RSF = '1' then A <= '0' & A(3 downto 1);
 B <= A(0) & B(3 downto 1);
 X <= X + 1;
 end if; -- increment X

378 Chapter 7 Floating-Point Arithmetic

The registers are updated in the third process. The variable addout represents the output
of the 4-bit full adder, which is part of the fraction multiplier. This adder adds the 2’s comple-
ment of C to A when Cm 5 1. When Load 5 1, the sign-extended exponents are loaded
into X and Y. When Adx 5 1, vectors X and Y are added. When SM8 5 1, 28 is loaded into
X. When AdSh 5 1, A is loaded with the sign bit of C (or the complement of the sign bit if
Cm 5 1), concatenated with bits 3 downto 1 of the adder output, and the remaining bit of
addout is shifted into the B register.

Testing the VHDL code for the �oating-point multiplier must be done carefully to
account for all the special cases in combination with positive and negative fractions, as well
as positive and negative exponents. Figure 7-11 shows a command �le and some test results.
This is not a complete test.

When the VHDL code was synthesized for the Xilinx Spartan-3/Virtex-4 architectures
using the Xilinx ISE tools, the result was 38 slices, 29 �ip-�ops, 72 four-input LUTs, 27 I/O
blocks, and one global clock circuitry. The output signals V, Done, and F were set to zero at
the beginning of the process to eliminate unwanted latches. An RTL-level design was also
attempted, but the RTL design was not superior to the synthesized behavioral design.

Now that the basic design has been completed, you need to determine how fast the
�oating-point multiplier will operate and determine the maximum clock frequency. Most
CAD tools provide a way of simulating the �nal circuit taking into account both the delays
within the logic blocks and the interconnection delays. If this timing analysis indicates that
the design does not operate fast enough to meet speci�cations, several options are possible.
Most FPGAs come in several different speed grades, so one option is to select a faster part.
Another approach is to determine the longest delay path in the circuit and attempt to reroute
the connections or redesign that part of the circuit to reduce the delays.

7.3 Floating-Point Addition
Next, consider the design of an adder for �oating-point numbers. Two �oating-point num-
bers are to be added to form a �oating-point sum:

1F1 3 2E1 2 1 1F2 3 2E2 2 5 F 3 2E

 if LSF = '1' then
 A <= A(2 downto 0) & B(3); B <= B(2 downto 0) & '0';
 X <= X + 31;
 end if; -- decrement X
 if AdSh = '1' then
 A <= (C(3) xor Cm) & addout(3 downto 1); -- load shifted adder
 B <= addout(0) & B(3 downto 1); -- output into A & B
 end if;
 if Sh = '1' then
 A <= A(3) & A(3 downto 1); -- right shift A & B
 B <= A(0) & B(3 downto 1); -- with sign extend
 end if;
 end process update;
end FMULB;

7.3 Floating-Point Addition 379

add list f x f1 e1 f2 e2 v done
force f1 0111 0, 1001 200, 1000 400, 0000 600, 0111 800
force e1 0001 0, 1001 200, 0111 400, 1000 600, 0111 800
force f2 0111 0, 1001 200, 1000 400, 0000 600, 1001 800
force e2 1000 0, 0001 200, 1001 400, 1000 600, 0001 800
force st 1 0, 0 20, 1 200, 0 220, 1 400, 0 420, 1 600, 0 620, 1 800, 0 820
force clk 0 0, 1 10 -repeat 20
run 1000

ns delta f x f1 e1 f2 e2 v done
 0 10 0000000 00000 0000 0000 0000 0000 0 0
 0 11 0000000 00000 0111 0001 0111 1000 0 0 (0.111 3 21) 3 (0.111 3 228)
 10 11 0000000 00001 0111 0001 0111 1000 0 0
 30 11 0000000 11001 0111 0001 0111 1000 0 0
150 12 0110001 11001 0111 0001 0111 1000 0 1 = 0.110001 3 227

170 12 0000000 11001 0111 0001 0111 1000 0 0
200 10 0000000 11001 1001 1001 1001 0001 0 0 (1.001 3 227) 3 (1.001 3 21)
250 11 0000000 11010 1001 1001 1001 0001 0 0
370 12 0110001 11010 1001 1001 1001 0001 0 1 = 0.110001 3 226

390 12 0000000 11010 1001 1001 1001 0001 0 0
400 10 0000000 11010 1000 0111 1000 1001 0 0 (1.000 3 27) 3 (1.000 3 227)
430 11 0000000 00111 1000 0111 1000 1001 0 0
450 11 0000000 00000 1000 0111 1000 1001 0 0
570 11 0000000 00001 1000 0111 1000 1001 0 0
570 12 0100000 00001 1000 0111 1000 1001 0 1 = 0.100000 3 21

590 12 0000000 00001 1000 0111 1000 1001 0 0
600 10 0000000 00001 0000 1000 0000 1000 0 0 (0.000 3 228) 3 (0.000 3 228)
630 11 0000000 11000 0000 1000 0000 1000 0 0
650 11 0000000 10000 0000 1000 0000 1000 0 0
770 11 0000000 11000 0000 1000 0000 1000 0 0
770 12 0000000 11000 0000 1000 0000 1000 0 1 = 0.0000000 3 228

790 12 0000000 11000 0000 1000 0000 1000 0 0
800 10 0000000 11000 0111 0111 1001 0001 0 0 (0.111 3 27) 3 (1.001 3 21)
830 11 0000000 00111 0111 0111 1001 0001 0 0
850 11 0000000 01000 0111 0111 1001 0001 0 0
970 12 1001111 01000 0111 0111 1001 0001 1 1 = 1.001111 3 28 (overflow)
990 12 0000000 01000 0111 0111 1001 0001 0 0

FIGURE 7-11: Test Data and Simulation Results for Floating-Point Multiplier

Again, assume that the numbers to be added are properly normalized and that the answer
should be put in normalized form. In order to add two fractions, the associated exponents
must be equal. Thus, if the exponents E1 and E2 are different, unnormalize one of the frac-
tions and adjust the exponent accordingly. The smaller number is the one that should be
adjusted so that if signi�cant digits are lost, the effect is not signi�cant. To illustrate the
process, add

F1 3 2E1 5 0.111 3 25 and F2 3 2E2 5 0.101 3 23

380 Chapter 7 Floating-Point Arithmetic

Since E2 2 E1, unnormalize the smaller number F2 by shifting right two times and adding 2
to the exponent:

0.101 3 23 5 0.0101 3 24 5 0.00101 3 25

Note that shifting right one place is equivalent to dividing by 2, so each time you shift add 1
to the exponent to compensate. When the exponents are equal, add the fractions:

10.111 3 25 2 1 10.00101 3 25 2 5 01.00001 3 25

This addition caused an over�ow into the sign bit position, so shift right and add 1 to the
exponent to correct the fraction over�ow. The �nal result is

 F 3 2E 5 0.100001 3 26

When one of the fractions is negative, the result of adding fractions may be unnormal-
ized, as illustrated in the following example:

11.100 3 222 2 1 10.100 3 221 2
5 11.110 3 221 2 1 10.100 3 221 2 1after shifting F1 2
5 0.010 3 221 1result of adding fractions is unnormalized 2
5 0.100 3 222 1normalized by shifting left and subtracting 1 from exponent 2

In summary, the steps required to carry out �oating-point addition are as follows:

1. Compare exponents. If the exponents are not equal, shift the fraction with the smaller
exponent right and add 1 to its exponent; repeat until the exponents are equal.

2. Add the fractions (signi�cands).
3. If the result is 0, set the exponent to the appropriate representation for 0 and exit.
4. If fraction over�ow occurs, shift right and add 1 to the exponent to correct the over�ow.
5. If the fraction is unnormalized, shift left and subtract 1 from the exponent until the frac-

tion is normalized.
6. Check for exponent over�ow. Set over�ow indicator, if necessary.
7. Round to the appropriate number of bits.

 Still normalized? If not, go back to step 4.

Figure 7-12 illustrates this procedure graphically. An optimization can be added to step 1.
You can identify cases where the two numbers are vastly different. If E1 . . E2 and F2 is
positive, F2 will become all 0’s as you right shift F2 to equalize the exponents. In this case,
the result is F 5 F1 and E 5 E1, so it is a waste of time to do the shifting. If E1 . . E2 and
F2 is negative, F2 will become all 1’s (instead of all 0’s) as you right shift F2 to equalize the
exponents. When you add the fractions, you get the wrong answer. To avoid this problem,
skip the shifting when E1 . . E2 and set F 5 F1 and E 5 E1. Similarly, if E2 . . E1, skip
the shifting and set F 5 F2 and E 5 E2.

For the 4-bit fractions in our example, if 0E1 2 E2 0 . 3, skip the shifting. For IEEE single
precision numbers, there are 23 bits after the binary point; hence if the exponent difference
is greater than 23, the smaller number will become 0 before the exponents are equal. In gen-
eral, if the exponent difference is greater than the number of available fractional bits, the sum
should be set to the larger number. If E1 . . E2, set F 5 F1 and E 5 E1. If E2 . . E1, set
F 5 F2 and E 5 E2.

7.3 Floating-Point Addition 381

FIGURE 7-12: Flow
Chart for Floating-Point
Addition

1.a Compare the exponents
of the two numbers.

Exponents
equal?

Start

2. Add the fractions.

Y

Still
normalized?

Done

Y

N

N

Is the
result 0?

Y

N

1.b Shift the smaller number
 to the right and increment
 the exponent.

Exception

N

Exponent
over ow or
under ow?

Y

7. Round the fraction to
 the appropriate number
 of bits.

6. Indicate over ow
 or under ow.

Fraction
normalized?

N

4. Shift the sum right and
 increment the exponent.

Fraction
over ow?

5. Shift the sum left and
 decrement the exponent.

Y

Y

N

3. Set the exponent to the
 appropriate value.

Done

382 Chapter 7 Floating-Point Arithmetic

FIGURE 7-13: Overview
of a Floating-Point
Adder

S1 E1

DecInc

F1

ShRShL

Fraction

adder

FV

FU
Exponent

comparator

=
>
<

Addend register

S2 E2

DecInc

F2

ShRShL

Augend register

8 23 8 23

32

I/O
Bus

Inspection of this procedure illustrates that the following hardware units are required to
implement a �oating-point adder:

 ● Adder (subtractor) to compare exponents (step 1a)
 ● Shift register to shift the smaller number to the right (step 1b)
 ● ALU (adder) to add fractions (step 2)
 ● Bidirectional shifter, incrementer/decrementer (steps 4, 5)
 ● Over�ow detector (step 6)
 ● Rounding hardware (step 7)

Many of these components can be combined. For instance, the register that stores the
fractions can be made a shift register in order to perform the shifts. The register that stores
the exponent can be a counter with increment/decrement capability. Figure 7-13 shows a
hardware arrangement for the �oating-point adder. The major components are the exponent
comparator and the fraction adder. Fraction addition can be done using 2’s complement
addition. It is assumed that the operands are delivered on an I/O bus. If the numbers are
in a sign-magnitude form as in the IEEE format, they can be converted to 2’s complement
numbers and then added. Special cases should be handled according to the requirements of
the format. The sum is written back into the Addend register in Figure 7-13.

Figure 7-14 shows VHDL code for a �oating-point adder based on the IEEE single
precision �oating-point format. This code is not a complete implementation of the standard.
It handles the special case of 0, but it does not deal with in�nity, unnormalized, and not-a-
number formats. The �nal result is truncated instead of rounded. Sign and magnitude format
and biased exponents are used throughout, except 2’s complement is used for the fraction
addition.

Assume that the input numbers are represented as normalized �oating-point numbers in
IEEE standard format and they are fed into the circuit on input bus FPinput. In state 0, the
�rst number is split and loaded into S1, F1, and E1. These represent the sign of the fraction,
the magnitude of the fraction, and the biased exponent. When F1 is loaded, the 23-bit frac-
tion is pre�xed by a 1 except in the special case of 0, in which case the leading bit is a 0. Two
0’s are appended at the end of the fraction to conform to the IEEE standard requirements

7.3 Floating-Point Addition 383

FIGURE 7-14: VHDL Code for a Floating-Point Adder

library IEEE;
use IEEE.numeric_bit.all;

entity FPADD is
 port(CLK, St: in bit; done, ovf, unf: out bit;
 FPinput: in unsigned(31 downto 0); -- IEEE single precision FP format
 FPsum: out unsigned(31 downto 0)); -- IEEE single precision FP format
end FPADD;

architecture FPADDER of FPADD is
 -- F1 and F2 store significand with leading 1 and trailing 0’s added
signal F1, F2: unsigned(25 downto 0);
signal E1, E2: unsigned(7 downto 0); -- exponents
signal S1, S2, FV, FU: bit;
 -- intermediate results for 2’s complement addition
signal F1comp, F2comp, Addout, Fsum: unsigned(27 downto 0);
signal State: integer range 0 to 6;
begin -- convert fractions to 2’s comp and add
 F1comp <= not (“00” & F1) + 1 when S1 = ‘1’ else “00” & F1;
 F2comp <= not (“00” & F2) + 1 when S2 = ‘1’ else “00” & F2;
 Addout <= F1comp + F2comp;
 -- find magnitude of sum
 Fsum <= Addout when Addout(27) = ‘0’ else not Addout + 1;
 FV <= Fsum(27) xor Fsum(26); -- fraction overflow
 FU <= not F1(25); -- fraction underflow
 FPsum <= S1 & E1 & F1(24 downto 2); -- pack output word
 process(CLK)
 begin
 if CLK'event and CLK = ‘1’ then
 case State is
 when 0 =>
 if St = ‘1’ then -- load E1 and F1
 E1 <= FPinput(30 downto 23); S1 <= FPinput(31);
 F1(24 downto 0) <= FPinput(22 downto 0) & “00”;
 -- insert 1 in significand (or 0 if the input number is 0)
 if FPinput = 0 then F1(25) <= ‘0’; else F1(25) <= ‘1’; end if;
 done <= ‘0’; ovf <= ‘0’; unf <= ‘0’; State <= 1;
 end if;
 when 1 => -- load E2 and F2
 E2 <= FPinput(30 downto 23); S2 <= FPinput(31);
 F2(24 downto 0) <= FPinput(22 downto 0) & “00”;
 if FPinput = 0 then F2(25) <= ‘0’; else F2(25) <= ‘1’; end if;
 State <= 2;
 when 2 => -- unnormalize fraction with smallest exponent
 if F1 = 0 or F2 = 0 then State <= 3;
 else
 if E1 = E2 then State <= 3;
 elsif E1 < E2 then

384 Chapter 7 Floating-Point Arithmetic

 F1 <= ‘0’ & F1(25 downto 1); E1 <= E1 + 1;
 else
 F2 <= ‘0’ & F2(25 downto 1); E2 <= E2 + 1;
 end if;
 end if;
 when 3 => -- add fractions and check for fraction overflow
 S1 <= Addout(27);
 if FV = ‘0’ then F1 <= Fsum(25 downto 0);
 else F1 <= Fsum(26 downto 1); E1 <= E1 + 1; end if;
 State <= 4;
 when 4 => -- check for sum of fractions = 0
 if F1 = 0 then E1 <= “00000000”; State <= 6;
 else State <= 5; end if;
 when 5 => -- normalize
 if E1 = 0 then unf <= ‘1’; State <= 6;
 elsif FU = ‘0’ then State <= 6;
 else F1 <= F1(24 downto 0) & ‘0’; E1 <= E1 - 1;
 end if;
 when 6 => -- check for exponent overflow
 if E1 = 255 then ovf <= ‘1’; end if;
 done <= ‘1’; State <= 0;
 end case;
 end if;
 end process;
end FPADDER;

(guard and round bits). In state 1, the second number to be added is loaded into S2, F2, and
E2. In state 2, the fraction with the smallest exponent is unnormalized by shifting right and
incrementing the exponent. When this operation is complete, the exponents are equal, except
in the special case when F1 or F2 equals 0.

The fractions are added using 2’s complement arithmetic, which is performed by concur-
rent statements. The input numbers are �rst converted to 2’s complement representation.
Two sign bits (00) are pre�xed to F1, and the 2’s complement is formed if S1 is 1 (negative).
Two sign bits are used so that the sign is not lost if the fraction addition over�ows into the
�rst sign bit. F2 is processed in a similar way. The resulting numbers, F1comp and F2comp,
are added and the sum is assigned to Addout. The adder output is read in state 3. Fsum
represents the magnitude of the fraction, so Addout must be complemented if it is negative.
Normally the two sign bits of Fsum are "00", so they are discarded and the result is stored
back in F1, which serves as a �oating-point accumulator. The sign bit is extracted from the
MSB of Addout. Fraction over�ow and under�ow are indicated by FV and FU, respectively.
Fraction over�ow can be detected by exclusive-OR of the highest two bits of Addout. This is
done as a concurrent statement. In case of fraction over�ow, the sign bits of Fsum are "01",
so FV 5 '1', Fsum is right shifted before it is stored in F1, and E1 is incremented. If the result
of addition F1 5 0, E1 is set to 0 in state 4, and the �oating-point addition is complete. If F1
is unnormalized, it is normalized in state 5 by shifting F1 left and decrementing E1. Exponent
over�ow and under�ow are represented by ovf and unf, respectively. Since the normal
range of biased exponents is 1 to 254, an under�ow occurs if E1 is decremented to 0, and unf
is set to '1' before exiting state 5. In state 6, if E1 5 255, this indicates an exponent over�ow,
and ovf is set to '1'. The done signal is turned on before exiting state 6. S1, E1, and F1 are
merged by a concurrent statement to give the �nal sum, FPsum, in IEEE format.

7.4 Other Floating-Point Operations 385

The �oating-point adder was tested for the following cases.

 Addend Augend Expected Result

 IEEE Single IEEE Single IEEE Single
 Number (Binary) Precision Number (Binary) Precision Number (Binary) Precision

 0 x00000000 0 x00000000 0 x00000000
 1 3 20 x3F800000 1 3 20 x3F800000 1 3 21 x40000000
 21 3 20 xBF800000 21 3 20 xBF800000 21 3 21 xC0000000
 1 3 20 x3F800000 21 3 20 xBF800000 0 x00000000
 1.111 . . . 3 2127 x7F7FFFFF 1 3 20 x3F800000 1.111 . . . 3 2127 x7F7FFFFF
 21.111 . . . 3 2127 xFF7FFFFF 21 3 20 xBF800000 21.111 . . . 3 2127 xFF7FFFFF
 1.111 . . . 3 2127 x7F7FFFFF 1.111 . . . 3 2127 x7F7FFFFF overflow
 21.111 . . . 3 2127 xFF7FFFFF 21.111 . . . 3 2127 xFF7FFFFF overflow
 1.11 3 28 x43E00000 21.11 3 26 xC2E00000 1.0101 3 28 x43A80000
 21.11 3 28 xC3E00000 1.11 3 26 x42E00000 21.0101 3 28 xC3A80000
 1.111 . . . 3 2127 x7F7FFFFF 0.0 . . . 01 3 2127 x73800000 overflow
 21.111 . . . 3 2127 xFF7FFFFF 20.0 . . . 01 3 2127 xF3800000 overflow
 1.1 . . . 10 3 2127 x7F7FFFFE 0.0 . . . 01 3 2127 x73800000 1.111 . . . 3 2127 x7F7FFFFF
 21.1 . . . 10 3 2127 xFF7FFFFE 20.0 . . . 01 3 2127 xF3800000 21.111 . . . 3 2127 xFF7FFFFF
 1.1 3 22126 X00C00000 21.0 3 22126 x80800000 underflow

7.4 Other Floating-Point Operations
7.4.1 Subtraction
Floating-point subtraction is the same as �oating-point addition, except that you must sub-
tract the fractions instead of adding them. The rest of the steps remain the same.

7.4.2 Division
The quotient of two �oating-point numbers is

1F1 3 2E1 2 4 1F2 3 2E2 2 5 1F1/F2 2 3 21E12E22 5 F 3 2E

Thus, the basic rule for �oating-point division is to divide the fractions and subtract the expo-
nents. In addition to considering the same special cases as for multiplication, test for divide
by 0 before dividing. If F1 and F2 are normalized, then the largest positive quotient (F) will be

0.1111 c/0.1000 c 5 01.111 c

which is less than 102, so the fraction over�ow is easily corrected. For example,

10.110101 3 22 2 4 10.101 3 223 2 5 01.010 3 25 5 0.101 3 26

Alternatively, if F1 $ F2, shift F1 right before dividing and avoid fraction over�ow in the �rst
place. In the IEEE format, when divide by 0 is involved, the result can be set to NaN (Not
a Number).

This chapter presented different representations of �oating-point numbers. IEEE
�oating-point single precision and double precision formats were discussed. A �oating-point
format with 2’s complement numbers was also presented. Then a �oating-point multiplier

386 Chapter 7 Floating-Point Arithmetic

was discussed, in addition to a procedure to perform addition of �oating-point numbers. In
the process of designing the multiplier, the following steps were used:

1. Develop an algorithm for �oating-point multiplication, taking all of the special cases into
account.

2. Draw a block diagram of the system and de�ne the necessary control signals.
3. Construct an SM chart (or state graph) for the control state machine using a separate

linked state machine for controlling the fraction multiplier.
4. Write behavioral VHDL code.
5. Test the VHDL code to verify that the high-level design of the multiplier is correct.
6. Use the CAD software to synthesize the multiplier. Then implement the multiplier in the

desired target technology (e.g., ASIC, FPGA, etc.).

Design of the �oating point adder was also illustrated with similar steps. In the case of the
adder, IEEE �oating point format was used, whereas for the multipler, a simple 8-bit �oating
point system was used. Floating point dividers were brie�y described before concluding the
chapter.

Problems
7.1 (a) What is the biggest number that can be represented in the 8-bit 2’s complement �oating-point format with 4 bits

for exponent and 4 for fraction?
(b) What is the smallest number that can be represented in the 8-bit 2’s complement format with 4 bits for exponent

and 4 for fraction?
(c) What is the biggest normalized number that can be represented in the IEEE single precision �oating-point

format?
(d) What is the smallest normalized number that can be represented in the IEEE single precision �oating-point

format?
(e) What is the biggest normalized number that can be represented in the IEEE double precision �oating-point

format?
(f) What is the smallest normalized number that can be represented in the IEEE double precision �oating-point

format?
7.2 (a) What is the range of denormalized numbers that can be represented in the IEEE single precision �oating-point

format?
(b) What is the range of denormalized numbers that can be represented in the IEEE double precision �oating-point

format?
7.3 Convert the following decimal numbers to the IEEE single precision format.

(i) 25.25, (ii) 2000.22, (iii) 21, (iv) 0, (v) 1000, (vi) 8000, (vii) 106, (viii) 25.4, (ix) 1.0 3 22140, (x) 1.5 3 109

7.4 Convert the following decimal numbers to IEEE double precision format.
(i) 25.25, (ii) 2000.22, (iii) 21, (iv) 0, (v) 1000, (vi) 8000, (vii) 106, (viii) 25.4, (ix) 1.0 3 22140, (x) 1.5 3 109

7.5 What do the following hex representations mean if they are in IEEE single precision format?
(i) ABABABAB, (ii) 45454545, (iii) FFFFFFFF, (iv) 00000000, (v) 11111111, (vi) 01010101

7.6 What do the following hex representations mean if they are in IEEE double precision format?
(i) ABABABAB 00000000, (ii) 45454545 00000001, (iii) FFFFFFFF 10001000, (iv) 00000000 00000000,
(v) 11111111 10001000, (vi) 01010101 01010101

7.7 Convert the following decimal numbers to the IEEE single precision format.
(a) (i) 257.35 (ii) 24000.44, (iii) 10 (iv) 2200 (v) 1000.01 (vi) 280.8, (vii) 109, (viii) 255.45, (ix) 1.0 3 2212,

(x) 211.5 3 109

Problems 387

 7.8 Convert the following decimal numbers to IEEE double precision format.
(i) 257.35, (ii) 24000.44, (iii) 10, (iv) 2200, (v) 1000.01, (vi) 280.8, (vii) 109, (viii) 255.45, (ix) 1.0 3 2212,
(x) 211.5 3 109

 7.9 What do the following hex representations mean if they are in IEEE single precision format?
(i) ABCD1234, (ii) 12345678, (iii) FEFEFEFE, (iv) 00000001, (v) 10000001, (vi) 10101010, (vii) 80008000

7.10 What do the following hex representations mean if they are in IEEE double precision format?
(i) ABCD1234 ABCD1234, (ii) 12345678 FF000000, (iii) FEFEFEFE FA000000, (iv) 00000001 00000001,
(v) 10000001 10000001, (vi) 10101010 10101010, (vii) 8000 0000 8000 0000

7.11 Assume that you designed a 24-bit �oating-point standard very similar to the IEEE single precision format except
in data width. It has 1 sign bit, 7 bits for the biased exponent and 16 bits for the fraction. Assume an implied 1 bit
as in IEEE formats and compute the smallest positive normalized number, largest positive normalized number
and smallest positive denormalized number.

7.12 Assume that you designed a 48-bit �oating point standard very similar to the IEEE single precision format except
in data width. It has 1 sign bit, 9 bits for the biased exponent and 38 bits for the fraction. Assume an implied 1 bit
as in IEEE formats and compute the smallest positive normalized number, largest positive normalized number,
and smallest positive denormalized number.

7.13 (a) Represent 235.25 in IEEE single precision �oating-point format.
(b) What does the hex number ABCD0000 represent if it is in an IEEE single precision �oating-point format?

7.14 (a) Represent 25.625 in IEEE single precision �oating-point format.
(b) Represent 215.6 in IEEE single precision �oating-point format.

7.15 This problem concerns the design of a digital system that converts an 8-bit signed integer (negative numbers
are represented in 2’s complement) to a �oating-point number. Use a �oating-point format similar to the ones
used in Section 7.1.1 except the fraction should be 8 bits and the exponent 4 bits. The fraction should be properly
normalized.

7.16 (a) Multiply the following two �oating-point numbers to give a properly normalized result. Assume 4-bit 2’s
complement format.

F1 5 1.011, E1 5 0101, F2 5 1.001, E2 5 0011

(b) Repeat (a) for

F1 5 1.011, E1 5 1011, F2 5 0.110, E2 5 1101

7.17 (a) Add the following two �oating-point numbers to give a properly normalized result. Assume 4-bit 2’s comple-
ment format.

F1 5 1.011, E1 5 0101, F2 5 1.001, E2 5 0011

(b) Repeat (a) for

F1 5 1.011, E1 5 1011, F2 5 0.110, E2 5 1101

7.18 A �oating-point number system uses a 4-bit fraction and a 4-bit exponent with negative numbers expressed in 2’s
complement. Design an ef�cient system that will multiply the number by 24 (minus four). Take all special cases
into account, and give a properly normalized result. Assume that the initial fraction is properly normalized or zero.
Note: This system multiplies only by 24.
(a) Give examples of the normal and special cases that can occur (for multiplication by 24).
(b) Draw a block diagram of the system.
(c) Draw an SM chart for the control unit. De�ne all signals used.

7.19 Redesign the �oating-point multiplier in Figure 7.7 using a common 5-bit full adder connected to a bus instead of
two separate adders for the exponents and fractions.
(a) Redraw the block diagram and be sure to include the connections to the bus and include all control signals.

388 Chapter 7 Floating-Point Arithmetic

(b) Draw a new SM chart for the new control.
(c) Write the VHDL description for the multiplier or specify what changes need to be made to an existing

description.
7.20 This problem concerns the design of a circuit to �nd the square of a �oating-point number, F 3 2E. F is a normal-

ized 5-bit fraction, and E is a 5-bit integer, negative numbers are represented in 2’s complement. The result should
be properly normalized. Take advantage of the fact that 12F 22 5 F2.
(a) Draw a block diagram of the circuit. (Use only one adder and one complementer.)
(b) State your procedure; taking all special cases into account, and illustrate your procedure for

F 5 1.0110 E 5 00100

(c) Draw an SM chart for the main controller. You may assume that multiplication is carried out using a separate
control circuit, which outputs Mdone 5 1 when multiplication is complete.

(d) Write a VHDL description of the system.
7.21 Write a behavioral VHDL code for a �oating-point multiplier using the IEEE single precision �oating-point for-

mat. Use an overloaded multiplication operator instead of using an add-shift multiplier. Ignore special cases like
in�nity, denormalized, and not-a-number formats. Truncate the �nal result instead of rounding.

7.22 Write a test bench for the �oating-point adder of Figure 7-14.
7.23 Add the following �oating-point numbers (show each step). Assume that each fraction is 5 bits (including sign)

and each exponent is 5 bits (including sign) with negative numbers in 2’s complement.

 F1 5 0.1011 E1 5 11111
 F2 5 1.0100 E2 5 11101

7.24 Add the following �oating-point numbers (show each step). Assume that each fraction is 5 bits (including sign)
and each exponent is 5 bits (including sign) with negative numbers in 2’s complement.

 F1 5 1.1001 E1 5 11111
 F2 5 0.0100 E2 5 11101

7.25 Two �oating-point numbers are added to form a �oating-point sum:

1F1 3 2E1 1 1F2 3 2E2 2 5 F 3 2E

Assume that F1 and F2 are normalized, and the result should be normalized.
(a) List the steps required to carry out �oating-point addition, including all special cases.
(b) Illustrate these steps for F1 5 1.0101, E1 5 1001, F2 5 0.1010, E2 5 1000. Note that the fractions are 5 bits,

including sign, and the exponents are 4 bits, including sign.
(c) Write a VHDL description of the system.

7.26 For the �oating-point adder of Figure 7-14, modify the VHDL code so that
(a) It handles IEEE standard single precision denormalized numbers both as input and output.
(b) In state 2, it speeds up the processing when the exponents differ by more than 23.
(c) It rounds up instead of truncating the resulting fraction.

7.27 (a) Add the following �oating point numbers 0.111 3 25 1 0.101 3 23 and normalize the result.
(b) Draw an SM chart for a �oating-point adder that adds F1 3 2E1 and F2 3 2E2. Assume that the fractions are

initially normalized (or zero) and the �nal result should be normalized (or zero). A zero fraction should have
an exponent of 28. Set an exponent over�ow �ag (EV) if the �nal answer has an exponent over�ow. Each
number to be added consists of a 4-bit fraction and a 4-bit exponent, with negative numbers represented in 2’s
complement. Assume that all registers (F1, E1, F2, and E2) can be loaded in one clock time when a start signal

Problems 389

(St) is received. If E1 . E2, the control signal GT 5 1, and if E1 , E2, the control signal LT 5 1. De�ne all
other control signals used. Include the special case where 0E1 2 E2 0 . 3.

7.28 (a) Draw a block diagram for a �oating-point subtracter. Assume that the inputs to the subtracter are properly
normalized, and the answer should be properly normalized. The fractions are 8 bits including sign, and the
exponents are 5 bits including sign. Negative numbers are represented in 2’s complement.

(b) Draw an SM chart for the control circuit for the �oating-point subtracter. De�ne the control signals used, and
give an equation for each control signal used as an input to the control circuit.

(c) Write the VHDL description of the �oating-point subtracter.
7.29 (a) State the steps necessary to carry out �oating-point subtraction, including special cases. Assume that the num-

bers are initially in normalized form, and the �nal result should be in normalized form.
(b) Subtract the following (fractions are in 2’s complement):

11.0111 3 223 2 2 11.0101 3 225 2
(c) Write a VHDL description of the system. Fractions are 5 bits including sign, and exponents are 4 bits includ-

ing sign.
7.30 This problem concerns the design of a divider for �oating point numbers:

1F1 3 2E1 2 / 1F2 3 2E2 2 5 F 3 2E

Assume that F1 and F2 are properly normalized fractions (or 0), with negative fractions expressed in 2’s comple-
ment. The exponents are integers with negative numbers expressed in 2’s complement. The result should be prop-
erly normalized if it is not zero. Fractions are 8 bits including sign, and exponents are 5 bits including sign.
(a) Draw a �owchart for the �oating-point divider. Assume that a divider is available that will divide two binary

fractions to give a fraction as a result. Do not show the individual steps in the division of the fractions on your
�owchart, just say “divide.” The divider requires that 0F2 0 . 0F1 0 before division is carried out.

(b) Illustrate your procedure by computing

0.111 3 23/1.011 3 222

When you divide F1 by F2, you don't need to show the individual steps, just the result of the division.
(c) Write a VHDL description for the system.

7.31 Assume that A, B, and C are �oating-point numbers expressed in IEEE Single Precision �oating-point format and
that �oating-point addition is performed.
If A 5 230, B 5 2230, C 5 1 then
What is A 1 1B 1 C 2? (i.e., B 1 C done �rst and then A added to it)
What is 1A 1 B 2 1 C? (i.e., A 1 B done �rst and then C added to it)

7.32 Assume that A, B, and C are �oating point numbers expressed in IEEE Double Precision �oating-point format
and that �oating point addition is performed.
If A 5 260, B 5 2260, C 5 1 then
What is A 1 1B 1 C 2? (i.e., B 1 C done �rst and then A added to it)
What is 1A 1 B 2 1 C? (i.e., A 1 B done �rst and then C added to it)

7.33 Assume that A, B and C are �oating point numbers expressed in IEEE Single Precision �oating-point format and
that �oating-point addition is performed.
If A 5 255, B 5 2255, C 5 1 then
What is A 1 1B 1 C 2? (i.e., B 1 C done �rst and then A added to it)
What is 1A 1 B 2 1 C? (i.e., A 1 B done �rst and then C added to it)

390 Chapter 7 Floating-Point Arithmetic

7.34 Assume that A, B, and C are �oating-point numbers expressed in IEEE Double Precision �oating-point format
and that �oating-point addition is performed.
If A 5 255, B 5 2255, C 5 1 then
What is A 1 1B 1 C 2? (i.e., B 1 C done �rst and then A added to it)
What is 1A 1 B 2 1 C? (i.e., A 1 B done �rst and then C added to it)

7.35 Assume that A, B, and C are �oating-point numbers expressed in IEEE Single Precision �oating-point format and
that �oating-point addition is performed.
If A 5 240, B 5 2240, C 5 1 then
What is A 1 1B 1 C 2? (i.e., B 1 C done �rst and then A added to it)
What is 1A 1 B 2 1 C? (i.e., A 1 B done �rst and then C added to it)

7.36 Assume that A, B, and C are �oating-point numbers expressed in IEEE Double Precision �oating-point format
and that �oating-point addition is performed.
If A 5 240, B 5 2240, C 5 1 then
What is A 1 1B 1 C 2? (i.e., B 1 C done �rst and then A added to it)
What is 1A 1 B 2 1 C? (i.e., A 1 B done �rst and then C added to it)

7.37 Assume that A, B, and C are �oating-point numbers expressed in IEEE Single Precision �oating-point format and
that �oating-point addition is performed.
If A 5 265, B 5 2265, C 5 1 then
What is A 1 1B 1 C 2? (i.e., B 1 C done �rst and then A added to it)
What is 1A 1 B 2 1 C? (i.e., A 1 B done �rst and then C added to it)

7.38 Assume that A, B, and C are �oating-point numbers expressed in IEEE Double Precision �oating-point format
and that �oating-point addition is performed.
If A 5 265, B 5 2265, C 5 1 then
What is A 1 1B 1 C 2? (i.e., B 1 C done �rst and then A added to it)
What is 1A 1 B 2 1 C? (i.e., A 1 B done �rst and then C added to it)

391

ADDITIONAL TOPICS IN VHDL
C H A P T E R

8

Up to this point, the basic features of VHDL and how they can be used in the digital sys-
tem design process have been described. In this chapter, additional features of VHDL that
illustrate its power and �exibility as well as VHDL functions and procedures are presented.
Several additional features, such as attributes, function overloading, and generic and gener-
ate statements, are also presented. The IEEE multivalued logic system and principles of
signal resolution are described. A simple memory model is presented to illustrate the use of
tristate signals.

8.1 VHDL Functions
A key feature of VLSI circuits is the repeated use of similar structures. VHDL provides
functions and procedures to easily express repeated invocation of the same functionality or
the repeated use of structures. Functions are described in this section. Functions can return
only a single value through a return statement. Procedures are more general and complex
than functions. They can return any number of values using output parameters. Procedures
are described in the next section.

A function executes a sequential algorithm and returns a single value to the calling
program. When the following function is called, it returns a bit-vector equal to the input bit-
vector (reg) rotated one position to the right:

function rotate_right (reg: bit_vector)
 return bit_vector is
begin
 return reg ror 1;
end rotate_right;

A function call can be used anywhere that an expression can be used. For example, if
A 5 ''10010101'', the statement

B <= rotate_right(A);

would set B equal to “11001010”, and leave A unchanged.
The general form of a function declaration is

function function-name (formal-parameter-list)
 return return-type is
[declarations]
begin

392 Chapter 8 Additional Topics in VHDL

 sequential statements -- must include return return-value;
end function-name;

The general form of a function call is

function_name(actual-parameter-list)

The number and type of parameters on the actual-parameter-list must match the
formal-parameter-list in the function declaration. The parameters are treated as
input values and cannot be changed during the execution of the function.

If parity circuits are used in several parts in a system, you could call the function each
time it is desired.

Figure 8-2 illustrates a function using a for loop. In Figure 8-2, the loop index (i) will be
initialized to 0 when the for loop is entered, and the sequential statements will be executed.
Execution will be repeated for i 5 1, i 5 2, and i 5 3; then the loop will terminate.

If A, B, and C are integers, the statement C <= A + B will set C equal to the sum
of A and B. However, if A, B, and C are bit-vectors, this statement will not work since the
“1” operation is not de�ned for bit-vectors. However, you can write a function to perform
bit-vector addition. The function given in Figure 8-2 adds two 4-bit vectors plus a carry and

Write a VHDL function for generating an even parity bit for a 4-bit number. The input is a 4-bit number, and the output
is a code word that contains the data and the parity bit. Figure 8-1 shows the solution.

E X A M PLE

–– Function example code without a loop
–– This function takes a 4-bit vector
–– It returns a 5-bit code with even parity

function parity (A: bit_vector(3 downto 0))
 return bit_vector is

variable parity: bit;
variable B: bit_vector(4 downto 0);
begin
 parity := a(0) xor a(1) xor a(2) xor a(3);
 B := A & parity;
 return B;
end parity;

FIGURE 8-1: Parity Generation Using a Function

FIGURE 8-2: Add Function

–– This function adds two 4-bit vectors and a carry.
–– Illustrates function creation and use of loop
–– It returns a 5-bit sum

8.1 VHDL Functions 393

returns a 5-bit vector as the sum. The function name is add4; the formal parameters are A,
B, and carry; and the return type is a bit-vector. Variables cout and cin are de�ned to hold
intermediate values during the calculation. The variable sum is used to store the value to be
returned. When the function is called, cin will be initialized to the value of the carry. The for
loop adds the bits of A and B serially in the same manner as a serial adder. The �rst time
through the loop, cout and sum(0) are computed using A(0), B(0), and cin. Then the cin
value is updated to the new cout value, and execution of the loop is repeated. During the
second time through the loop, cout and sum(1) are computed using A(1), B(1), and the new
cin. After four times through the loop, all values of sum(i) have been computed and sum is
returned. The total simulation time required to execute the add4 function is zero. Not even
delta time is required, since all the computations are done using variables, and variables are
updated instantaneously.
The function call is of the form

add4(A, B, carry)

A and B may be replaced with any expressions that evaluate to bit-vectors with dimensions
3 downto 0, and carry may be replaced with any expression that evaluates to a bit. For
example, the statement

Z <= add4(X, not Y, '1');

calls the function add4. Parameters A, B, and carry are set equal to the values of X, not Y,
and '1', respectively. X and Y must be bit-vectors dimensioned 3 downto 0. The function
computes

 Sum 5 A 1 B 1 carry 5 X 1 not Y 1 '1'

and returns this value. Since Sum is a variable, computation of Sum requires zero time. After
delta time, Z is set equal to the returned value of Sum. Since not Y 1 '1' equals the 2’s com-
plement of Y, the computation is equivalent to subtracting by adding the 2’s complement. If
you ignore the carry stored in Z(4), the result is Z 13 downto 0 2 5 X 2 Y.

Functions can be used to return an array. As an example, write a function that inputs
an array of numbers and returns an array which contains the square of the input numbers.

function add4 (A, B: bit_vector(3 downto 0); carry: bit)
 return bit_vector is

variable cout: bit;
variable cin: bit := carry;
variable sum: bit_vector(4 downto 0) := "00000";
begin
loop1: for i in 0 to 3 loop
 cout := (A(i) and B(i)) or (A(i) and cin) or (B(i) and cin);
 sum(i) := A(i) xor B(i) xor cin;
 cin := cout;
end loop loop1;
sum(4) := cout;
return sum;
end add4;

394 Chapter 8 Additional Topics in VHDL

Figure 8-3 illustrates the function as well as the function call. The number of input numbers
is provided as a parameter to the function. In the illustrated call to the function, the numbers
are 4 bits wide.

FIGURE 8-3: A Function to Compute Squares of an Array of Unsigned Numbers and Its Call

library IEEE;
use IEEE.numeric_bit.all;

entity test_squares is
 port(CLK: in bit);
end test_squares;

architecture test of test_squares is
type FourBitNumbers is array (0 to 4) of unsigned (3 downto 0);
type squareNumbers is array (0 to 4) of unsigned (7 downto 0);
constant FN: FourBitNumbers := ("0001", "1000", "0011", "0010", "0101");
signal answer: squareNumbers;
signal length: integer := 4;

function squares (Number_arr: FourBitNumbers; length: positive)
 return squareNumbers is

variable SN: squareNumbers;
begin
 loop1: for i in 0 to length loop
 SN(i) := Number_arr(i) * Number_arr(i);
 end loop loop1;
return SN;
end squares;

begin
 process(CLK)
 begin
 if CLK = '1' and CLK'EVENT then
 answer <= squares(FN, length);
 end if;
 end process;
end test;

Functions are frequently used to do type conversions. You already came across
type conversion functions in the IEEE numeric_bit library: to_integer(A) and to_
unsigned(B, N). The �rst one converts an unsigned-vector to an integer, and the second
one converts an integer to an unsigned-vector with the speci�ed number of bits.

8.2 VHDL Procedures
Procedures facilitate decomposition of VHDL code into modules. Unlike functions, which
return only a single value through a return statement, procedures can return any number of
values using output parameters. The form of a procedure declaration is

procedure procedure_name (formal-parameter-list) is

8.2 VHDL Procedures 395

[declarations]
begin
 sequential statements
end procedure_name;

The formal-parameter-list speci�es the inputs and outputs to the procedure and their
types. A procedure call is a sequential or concurrent statement of the form

procedure_name(actual-parameter-list);

As an example, write a procedure Addvec, which will add two N-bit vectors and a carry, and
return an N-bit sum and a carry. Use a procedure call of the form

Addvec(A, B, Cin, Sum, Cout, N);

where A, B, and Sum are N-bit vectors, Cin and Cout are bits, and N is an integer.
Figure 8-4 gives the procedure de�nition. Add1, Add2, and Cin are input parameters, and

Sum and Cout are output parameters. N is a positive integer that speci�es the number of bits
in the bit-vectors. The addition algorithm is essentially the same as the one used in the add4
function. C must be a variable, since the new value of C is needed each time through the loop;
however, Sum can be a signal since Sum is not used within the loop. After N times through
the loop, all the values of the signal Sum have been computed, but Sum is not updated until
a delta time after exiting from the loop.

Within the procedure declaration, the class, mode, and type of each parameter must be
speci�ed in the formal-parameter-list. The class of each parameter can be signal, vari-
able, or constant. If the class of an input parameter is omitted, constant is used as the default.
If the class is a signal, then the actual parameter in the procedure call must be a signal of the
same type. Similarly, for a formal parameter of class variable, the actual parameter must be
a variable of the same type. However, for a constant formal parameter, the actual parameter
can be any expression that evaluates to a constant of the proper type. This constant value
is used inside the procedure and cannot be changed; thus, a constant formal parameter is
always of mode in. Signals and variables can be of mode in, out, or inout. Parameters of mode
out and inout can be changed in the procedure, so they are used to return values to the caller.

FIGURE 8-4: Procedure for Adding Bit-Vectors

–– This procedure adds two n-bit bit_vectors and a carry and
–– returns an n-bit sum and a carry. Add1 and Add2 are assumed
–– to be of the same length and dimensioned n-1 downto 0.

procedure Addvec (Add1, Add2: in bit_vector; Cin: in bit;
 signal Sum: out bit_vector; signal Cout: out bit;
 n: in positive) is

variable C: bit;
begin
 C := Cin;
 for i in 0 to n-1 loop
 Sum(i) <= Add1(i) xor Add2(i) xor C;
 C := (Add1(i) and Add2(i)) or (Add1(i) and C) or (Add2(i) and C);
 end loop;
 Cout <= C;
end Addvec;

396 Chapter 8 Additional Topics in VHDL

In procedure Addvec, parameters Add1, Add2, and Cin are, by default, of class constant.
Therefore, in the procedure call, Add1, Add2, and Cin can be replaced with any expressions
that evaluate to constants of the proper type and dimension. Since Sum and Cout change
within the procedure and are used to return values, they have been declared as class signal.
Thus, in the procedure call, Sum and Cout can be replaced only with signals of the proper
type and dimension.

The formal-parameter-list in a function declaration is similar to that of a
procedure, except parameters of class variable are not allowed. Furthermore, all parameters
must be of mode in, which is the default mode. Parameters of mode out or inout are not
allowed, since a function returns only a single value, and this value cannot be returned
through a parameter. Table 8-1 summarizes the modes and classes that may be used for pro-
cedure and function parameters. A procedure can have output parameters of mode out or
inout. They can be signals or variables. They obviously cannot be constants because constants
cannot be modi�ed.

Actual Parameter

Mode Class Procedure Call Function Call

In1 Constant2 Expression Expression

Signal Signal Signal

Variable Variable n/a

Out/inout Signal Signal n/a

Variable3 Variable n/a

1 Default mode for functions
2 Default for in mode
3 Default for out/inout mode
NOTE: n/a 5 ''not applicable''

TABLE 8-1: Parameters
for Subprogram Calls

Question: (a) Write a VHDL function for generating the 1’s complement or 2’s complement of 8-bit data depending on
a control signal “one.”

Answer:

function complementer (variable Value: in unsigned (0 to 7), one)

return complement is

variable CN: unsigned (0 to 7);
begin
 case one is
 when "0" => CN:=not Value;
 when "1" => CN:=not Value + "0001";
 end case;

return CN;
end complementer;

E X A M PLE

8.3 VHDL Predefined Function Called NOW 397

8.3 VHDL Predefined Function Called NOW
VHDL provides several prede�ned functions. One of the prede�ned functions called NOW
deserves special mention. This function returns the current simulation time when it is called.
It does not need any arguments (parameters) to be passed to it. One can access the cur-
rent simulation time by calling the function and assigning the returned value to a variable
(e.g., current_time) by the statement

current_time := now;

If you check the time multiple times during simulation, you will get the corresponding times
at each invocation.

One can create a hold time checker for a �ip-�op using the NOW function in the
following manner.

In the check process in Figure 8-5, prede�ned function NOW is called twice. First it is
called after the active edge of the clock occurs. The process saves the current simulation
time in the variable logging_time. Then when data d changes (i.e., there is an event on d, and

Question: (b) How is this function called?

Answer:

This function is called using the following statement:

Z <= complementer(FN, one_or_two);

Both Z and FN should be 8-bit unsigned type. FN can be used on the left side, but then it gets overwritten.

Question: (a) Write a VHDL procedure for generating the 1’s complement or 2’s complement of 8-bit data.

Answer:

procedure complementer (variable Value: inout unsigned (0 to 7), one) is
begin
 case one is
 when "0" => Value:=not Value;
 when "1" => Value:=not Value + "0001";
 end case;
end procedure complementer;

Question: (b) How is this procedure called?

Answer:

This function is called using the following statement:

complementer(FN, one-or-two);

E X A M PLE

398 Chapter 8 Additional Topics in VHDL

d'event is true), then the function NOW is called again. If the time difference between this
invocation of now and the saved time from the previous invocation is greater than hold_time,
the hold time constraint has been satis�ed. If not, a hold-time violation is reported as an error.

check: process (clk, d) is
 variable logging_time: time := 0 ns;
begin
 if (Clk'event and CLK = '0') then
 logging_time := now; -- function now is called at negative edge of clock
 end if;
 if (d'event) then
 assert (now - logging_time >= hold_time) -- function now is called again
 report ("Hold time violation")
 severity error;
 end if;
end process check;

FIGURE 8-5: Process for Checking Hold Times using Prede�ned Function now

8.4 Attributes
An important feature of the VHDL language is attributes. Attributes can be associated with
signals. They can also be associated with arrays.

8.4.1 Signal Attributes
You have already used a signal attribute, the 'EVENT attribute, for creating edge-triggered
clocks. As you know, CLOCK'EVENT (read as “CLOCK tick EVENT”) returns a value of
TRUE if a change in signal CLOCK has just occurred. VHDL has two types of attributes:
(1) attributes that return a value and (2) attributes that return a signal.

Table 8-2 gives several examples of attributes that return a value. In this table, S repre-
sents a signal name, and S is separated from an attribute name by a tick mark (single quote).
In VHDL, an event on a signal means a change in the signal. Thus, S'ACTIVE (read as “S
tick ACTIVE”) returns a value of TRUE if a transaction in S has just occurred. A transaction
occurs on a signal every time it is evaluated, regardless of whether the signal changes or not.
Consider the concurrent VHDL statement A <= B and C. If B 5 0, then a transaction occurs
on A every time C changes, since A is recomputed every time C changes. If B 5 1, then an
event and a transaction occur on A every time C changes. S'ACTIVE returns TRUE if S has
just been re-evaluated, even if S does not change. In contrast, S'EVENT returns TRUE only
if a change has occurred in S. If S changes at time T, then S'EVENT is true at time T but false
at time T 1 D. T'IMAGE(S) is an attribute that converts S which is of type T (e.g., integer)
to a character data type. This attribute is very useful in report statements because a report
can only print character strings. If values in other data types have to be printed out in the
report statement, a conversion can be performed using the 'IMAGE attribute. An example of
the usage of 'IMAGE was provided in Figure 2-68.

8.4 Attributes 399

Table 8-3 gives signal attributes that create a signal. The brackets around (time)
indicate that (time) is optional. If (time) is omitted, then one delta is used. The attribute
S'DELAYED(time) creates a signal identical to S, except it is shifted by the amount of time
speci�ed. The example in Figure 8-6 illustrates use of the attributes listed in Table 8-3. The
signal C_delayed5 is the same as C shifted right by 5 ns. The signal A_trans toggles every time
B or C changes, since A has a transaction whenever B or C changes. The initial computation
of A <= B and C produces a transaction on A at time 5 D, so A_trans changes to '1' at that
time. The signal A'STABLE(time) is true if A has not changed during the preceding interval
of length (time). Thus, A_stable5 is false for 5 ns after A changes, and it is true otherwise. The
signal A'QUIET(time) is true if A has had no transactions during the preceding interval of
length (time). Thus, A_quiet5 is false for 5 ns after A has had a transaction. S'EVENT and
not S'STABLE both return true if an event has occurred during the current delta; however,
they cannot always be used interchangeably, since the former just returns a value and the
latter returns a signal.

Attribute Returns

S'ACTIVE True if a transaction occurred during the current
delta, else false

S'EVENT True if an event occurred during the current
delta, else false

S'LAST_EVENT Time elapsed since the previous event on S

S'LAST_VALUE Value of S before the previous event on S

S'LAST_ACTIVE Time elapsed since previous transaction on S

T'IMAGE(S) A string representation of S that is of type T.

TABLE 8-2: Signal
Attributes That
Return a Value

Attribute Creates

S'DELAYED [(time)]* Signal same as S delayed by specified time

S'STABLE [(time)]* Boolean signal that is true if S had no
events for the specified time

S'QUIET [(time)]* Boolean signal that is true if S had no
transactions for the specified time

S'TRANSACTION Signal of type bit that changes for every
transaction on S

*Delta is used if no time is speci�ed.

TABLE 8-3: Signal
Attributes That Create
a Signal

FIGURE 8-6: Examples of Signal Attributes

entity attr_ex is
 port(B, C: in bit);
end attr_ex;

architecture test of attr_ex is
signal A, C_delayed5, A_trans: bit;

400 Chapter 8 Additional Topics in VHDL

8.4.2 Array Attributes
Table 8-4 gives array attributes. In this table, A can either be an array name or an array
type. In the examples, ROM1 is a two-dimensional array for which the �rst index range is
0 to 15, and the second index range is 7 downto 0. ROM1'LEFT(2) is 7, since the
left bound of the second index range is 7. Although ROM1 is declared as a signal, the array

type ROM is array (0 to 15, 7 downto 0) of bit; signal ROM1 : ROM;

Attribute Returns Examples

A'LEFT(N) left bound of ROM1'LEFT(1) = 0

Nth index range ROM1'LEFT(2) = 7

A'RIGHT(N) right bound of ROM1'RIGHT(1) = 15

Nth index range ROM1'RIGHT(2) = 0

A'HIGH(N) largest bound of ROM1'HIGH(1) = 15

Nth index range ROM1'HIGH(2) = 7

A'LOW(N) smallest bound of ROM1'LOW(1) = 0

Nth index range ROM1'LOW(2) = 0

A'RANGE(N) Nth index range ROM1'RANGE(1) = 0 to 15

ROM1'RANGE(2) = 7 downto 0

A'REVERSE_RANGE(N) Nth index range
reversed

ROM1'REVERSE_RANGE(1) =
 15 downto 0

ROM1'REVERSE_RANGE(2) = 0
 to 7

A'LENGTH(N) size of Nth index
range

ROM1'LENGTH(1) = 16
ROM1'LENGTH(2) = 8

TABLE 8-4: Array
Attributes

signal A_stable5, A_quiet5: boolean;
begin
 A <= B and C;
 C_delayed5 <= C'delayed(5 ns);
 A_trans <= A'transaction;
 A_stable5 <= A'stable(5 ns);
 A_quiet5 <= A'quiet(5 ns);
end test;

B
C
A

C_delayed5
A_trans

A_stable5
A_quiet5

10 20
(b) Waveforms for attribute test

30 40 500

(a) VHDL code for attribute test

8.4 Attributes 401

attributes also work with array constants and array variables. In the examples, the results are
the same if ROM1 is replaced with its type, ROM. For a vector (a one-dimensional array),
N is 1 and can be omitted. If A is a bit-vector dimensioned 2 to 9, then A'LEFT is 2 and
A'LENGTH is 8.

8.4.3 Use of Attributes
Attributes are often used together with assert statements (see Section 2.19) for error
checking. The assert statement checks to see if a certain condition is true and, if not, causes
an error message to be displayed. Two examples are presented: one illustrating use of signal
attributes and another one illustrating array attributes.

Use of Signal Attributes
Consider the process in Figure 8-7, which checks to see if the setup and hold times are satis-
�ed for a D �ip-�op. Use attributes 'EVENT and 'STABLE. 'STABLE is an attribute that
returns a Boolean signal if the signal has no events for a speci�ed time (i.e., a TRUE signal
returned by this indicates that the signal was stable for a speci�ed time). For example, the
signal A'STABLE(time) is true if A has not changed during the preceding interval of length
(time). Thus, A'stable(5) is false for 5 ns after A changes, and it is true otherwise.

In the check process, after the active edge of the clock occurs, the D input is checked to
see if it has been stable for the speci�ed setup_time. If not, a setup-time violation is reported
as an error. Then, after waiting for the hold_time, D is checked to see if it has been stable
during the hold-time period. If not, a hold-time violation is reported as an error.

FIGURE 8-7: Process for Checking Setup and Hold Times

check: process
begin
 wait until (Clk'event and CLK = '1');
 assert (D'stable(setup_time))
 report ("Setup time violation")
 severity error;
 wait for hold_time;
 assert (D'stable(hold_time))
 report ("Hold time violation")
 severity error;
end process check;

Use of Array Attributes in Vector Addition
As an example of using the assert statement together with array attributes, consider the
procedure illustrated in Figure 8-8 for adding bit-vectors. This procedure adds two vectors
of arbitrary size. The vectors should, however, be of the same length. It is not required to
pass the length of the arrays in the procedure call. Since vector lengths are not passed as
a parameter to the procedure, the procedure uses array attributes and checks whether the
lengths are equal. Figure 8-8 shows the code for the procedure Addvec2. The inputs to the
procedure include the two input vectors and the carry in bit. The procedure creates a tempo-
rary variable, C, for the internal carry and initializes it to the input carry, Cin. Then it creates

402 Chapter 8 Additional Topics in VHDL

aliases n1, n2, and S, which have the same length as Add1, Add2, and Sum, respectively.
These aliases are dimensioned from their length minus 1 downto 0. Even though the ranges
of Add1, Add2, and Sum might be downto or to and might not include 0, the ranges for the
aliases are de�ned in a uniform manner to facilitate further computation. If the input vectors
and Sum are not the same length, an error message is reported. The sum and carry are com-
puted bit-by-bit in a loop. Since this loop must start with i 5 0, the range of i is the reverse of
the range for S. Finally, the carry output, Cout, is set equal to the corresponding temporary
variable, C. We can add a statement

report "Added up to bit position" & integer'image(i);

which will print the loop index each time the statement is encountered. The loop index is of
type integer.

8.5 Creating Overloaded Operators
This section illustrates how overloaded operators are created. Operator overloading means
extending the de�nition of the operator to other data types in addition to the default data
types that have already been de�ned. The operator will implicitly call an appropriate func-
tion, which eliminates the need for an explicit function or procedure call. When the compiler
encounters a function declaration in which the function name is an operator enclosed in
double quotes, the compiler treats this function as an operator overloading function.

The VHDL arithmetic operators, 1 and 2, are de�ned to operate on integers, but not
on bit-vectors. You have been using the IEEE numeric_bit library in order to access the

FIGURE 8-8: Procedure for Adding Bit-Vectors

-- This procedure adds two bit_vectors and a carry and returns a sum
-- and a carry. Both bit_vectors should be of the same length.

procedure Addvec2 (Add1, Add2: in bit_vector; Cin: in bit;
 signal Sum: out bit_vector;
 signal Cout: out bit) is

variable C: bit := Cin;
alias n1: bit_vector(Add1'length-1 downto 0) is Add1;
alias n2: bit_vector(Add2'length-1 downto 0) is Add2;
alias S: bit_vector(Sum'length-1 downto 0) is Sum;
begin
 assert ((n1'length = n2'length) and (n1'length = S'length))
 report "Vector lengths must be equal!"
 severity error;
 for i in S'reverse_range loop -- reverse range makes you start from LSB
 S(i) <= n1(i) xor n2(i) xor C;
 C := (n1(i) and n2(i)) or (n1(i) and C) or (n2(i) and C);
 end loop;
 Cout <= C;
end Addvec2;

8.6 Multivalued Logic and Signal Resolution 403

overloaded arithmetic operators for bit-vectors using the unsigned type. Let us create a
“1” function for bit-vectors.

The package shown in Figure 8-9 illustrates the creation of a “1” function for bit-vectors.
It adds two bit-vectors and returns a bit-vector. This function uses aliases so that it is inde-
pendent of the ranges of the bit-vectors, but it assumes that the lengths of the vectors are the
same. It uses a for loop to do the bit-by-bit addition. Without this overloaded function, the
“1” function was not available for bit-vectors. The IEEE numeric_bit only provides it for
the unsigned type.

FIGURE 8-9: VHDL Package with Overloaded Operators for Bit-Vectors

-- This package provides an overloaded function for the plus operator

package bit_overload is
 function "+" (Add1, Add2: bit_vector)
 return bit_vector;
end bit_overload;

package body bit_overload is
 -- This function returns a bit_vector sum of two bit_vector operands
 -- The add is performed bit by bit with an internal carry
 function "+" (Add1, Add2: bit_vector)
 return bit_vector is
 variable sum: bit_vector(Add1'length-1 downto 0);
 variable c: bit := '0'; -- no carry in
 alias n1: bit_vector(Add1'length-1 downto 0) is Add1;
 alias n2: bit_vector(Add2'length-1 downto 0) is Add2;
 begin
 for i in sum'reverse_range loop
 sum(i) := n1(i) xor n2(i) xor c;
 c := (n1(i) and n2(i)) or (n1(i) and c) or (n2(i) and c);
 end loop;
 return (sum);
 end "+";
end bit_overload;

Overloading can also be applied to procedures and functions. Several procedures can
have the same name, and the type of the actual parameters in the procedure call determines
which version of the procedure is called. An examination of the IEEE numeric_bit library
illustrates that several overloaded operators and functions are de�ned.

8.6 Multivalued Logic and Signal Resolution
In previous chapters, you have used 2-valued bit logic in the VHDL code. In order to repre-
sent tristate buffers and buses, it is necessary to be able to represent a third value, 'Z', which
represents the high-impedance state. It is also at times necessary to have a fourth value, 'X',
to represent an unknown state. This unknown state may occur if the initial value of a signal

404 Chapter 8 Additional Topics in VHDL

is unknown or if a signal is simultaneously driven to two con�icting values, such as '0' and '1'.
If the input to a gate is 'Z', the gate output may assume an unknown value, 'X'.

You need multivalued logic in order to meet these requirements. The IEEE numeric_std
and the IEEE standard logic use a 9-valued logic. Different CAD tool developers have
de�ned 7-valued, 9-valued, and 11-valued logic conventions.

In this chapter, two examples of multivalued logic are presented: (1) a 4-valued logic
system and (2) the IEEE-1164 standard 9-valued logic system. The 4-valued logic system is
described in Section 8.5.1 and the 9-valued logic is explained in Section 8.6.

8.6.1 A 4-Valued Logic System
Signals in a 4-valued logic can assume the four values: 'X', '0', '1', and 'Z', where each of the
symbols represent the following:

'X' Unknown

'0' 0

'1' 1

'Z' High impedance

The high-impedance state is used for modeling tristate buffers and buses. This unknown
state can be used if the initial value of a signal is unknown or if a signal is simultaneously
driven to two con�icting values, such as '0' and '1'.

Let us model tristate buffers using the 4-valued logic. Figure 8-10 shows two tristate
buffers with their outputs tied together, and Figure 8-11 shows the corresponding VHDL
representation. A new data type X01Z, which can assume the four values 'X', '0', '1', and 'Z'
is assumed. The tristate buffers have an active-high output enable, so that when b 5 '1' and
d 5 '0', f 5 a; when b 5 '0' and d 5 '1', f 5 c; and when b 5 d 5 '0', the f output assumes
the high-Z state. If b 5 d 5 '1', an output con�ict can occur. Two VHDL architecture
descriptions are shown. The �rst one uses two concurrent statements, and the second one
uses two processes. In either case, f is driven from two different sources, and VHDL uses
a resolution function to determine the actual output. For example, if a 5 c 5 d 5 '1' and
b 5 '0', f is driven to 'Z' by one concurrent statement or process, and f is driven to '1' by
the other concurrent statement or process. The resolution function is automatically called to
determine that the proper value of f is '1'. The resolution function will supply a value of 'X'
(unknown) if f is driven to both '0' and '1' at the same time.

FIGURE 8-10: Tristate
Buffers with Active-
High Output Enable a

b

c

d f

8.6 Multivalued Logic and Signal Resolution 405

The code in Figure 8-11 utilizes a 4-valued logic package and corresponding signal
resolution functions. Now consider how to create signal resolution functions. A package,
as described in the following subsection, is necessary to make the code in Figure 8-11 work.

8.6.2 Signal Resolution Functions
VHDL signals may either be resolved or unresolved. Signal resolution is necessary when
different wires in a system are driving a common signal path. Signal resolution means arriv-
ing at a resulting value when two or more different signals are connected to the same point.
VHDL with multivalued logic can be used to create resolutions when signals are connected.

Resolved signals have an associated resolution function, and unresolved signals do not. You
have previously used signals of type bit, which are unresolved. With unresolved signals, if you
drive a bit signal B to two different values in two concurrent statements (or in two processes),
the compiler will �ag an error because there is no way to determine the proper value of B.

FIGURE 8-11: VHDL Code for Tristate Buffers

use WORK.fourpack.all; -- fourpack is a resolved package for 4-variable logic
 -- more details on resolution in next subsection

entity t_buff_exmpl is
 port(a, b, c, d: in X01Z; -- signals are four-valued
 f: out X01Z);
end t_buff_exmpl;

architecture t_buff_conc of t_buff_exmpl is
begin
 f <= a when b = '1' else 'Z';
 f <= c when d = '1' else 'Z';
end t_buff_conc;
architecture t_buff_bhv of t_buff_exmpl is
begin
 buff1: process(a, b)
 begin
 if (b = '1') then
 f <= a;
 else
 f <= 'Z'; -- "drive" the output high Z when not enabled
 end if;
 end process buff1;

 buff2: process(c, d)
 begin
 if (d = '1') then
 f <= c;
 else
 f <= 'Z'; -- "drive" the output high Z when not enabled
 end if;
 end process buff2;
end t_buff_bhv;

406 Chapter 8 Additional Topics in VHDL

Consider the following three concurrent statements, where R is a resolved signal of type
X01Z:

R <= transport '0' after 2 ns, 'Z' after 6 ns;
R <= transport '1' after 4 ns;
R <= transport '1' after 8 ns, '0' after 10 ns;

Assuming that R is initialized to 'Z', three drivers would be created for R, as shown in Figure
8-12. Each time one of the unresolved signals s(0), s(1), or s(2) changes, the resolution func-
tion is automatically called to determine the value of the resolved signal, R.

FIGURE 8-12:
Resolution of Signal
Drivers

'Z' @ 6 ns '0' @ 2 ns 'Z'

driver 0

'1' @ 4 ns 'Z'

driver 1

'0' @ 10 ns '1' @ 8 ns 'Z'

driver 2

s(0)

Resolution
function

"resolve4"

Resolved signal

R
s(1)

s(2)

Since the X01Z logic has a symbol for high impedance, you can create resolution func-
tions to model the wires when multiple signals are connected. Figure 8-13 shows how the
resolution function for X01Z logic is de�ned in a package called fourpack. First, an unre-
solved logic type u_X01Z is de�ned, along with the corresponding unconstrained array type,

FIGURE 8-13: Resolution Function for X01Z Logic

package fourpack is
 type u_x01z is ('X', '0', '1', 'Z'); -- u_x01z is unresolved
 type u_x01z_vector is array (natural range <>) of u_x01z;
 function resolve4 (s: u_x01z_vector) return u_x01z;
 subtype x01z is resolve4 u_x01z;
 -- x01z is a resolved subtype which uses the resolution function resolve4
 type x01z_vector is array (natural range <>) of x01z;
end fourpack;

package body fourpack is
 type x01z_table is array (u_x01z, u_x01z) of u_x01z;
 constant resolution_table: x01z_table := (
 ('X','X','X','X'),
 ('X','0','X','0'),
 ('X','X','1','1'),
 ('X','0','1','Z'));

 function resolve4 (s:u_x01z_vector)
 return u_x01z is

 variable result: u_x01z := 'Z';
 begin

8.6 Multivalued Logic and Signal Resolution 407

u_X01Z_vector. Then a resolution function, named resolve4, is declared. Resolved X01Z
logic is de�ned as a subtype of u_X01Z. The subtype declaration contains the function name
resolve4. This implies that whenever a signal of type X01Z is computed, function resolve4 is
called to compute the correct value.

The resolution function, which is based on the operation of a tristate bus, is speci�ed by
the following table:

 if (s'length = 1) then
 return s(s'low);
 else
 for i in s'range loop
 result := resolution_table(result, s(i));
 end loop;
 end if;
 return result;
 end resolve4;
end fourpack;

'X' '0' '1' 'Z'

'X' 'X' 'X' 'X' 'X'

'0' 'X' '0' 'X' '0'

'1' 'X' 'X' '1' '1'

'Z' 'X' '0' '1' 'Z'

This table gives the resolved value of a signal for each pair of input values: 'Z' resolved with
any value returns that value, 'X' resolved with any value returns 'X', and '0' resolved with
'1' returns 'X'. The function resolve4 has an argument, s, which represents a vector of one
or more signal values to be resolved. If the vector is of length 1, then the �rst (and only)
element of the vector is returned. Otherwise, the return value (the resolved signal) is com-
puted iteratively by starting with result 5 'Z' and recomputing result by a table look-up using
each element of the s vector in turn. In the example of Figure 8-12, the s vector has three
elements, and resolve4 would be called at 0, 2, 4, 6, 8, and 10 ns to compute R. The following
table shows the result:

Time s(0) s(1) s(2) R

0 'Z' 'Z' 'Z' 'Z'

2 '0' 'Z' 'Z' '0'

4 '0' '1' 'Z' 'X'

6 'Z' '1' 'Z' '1'

8 'Z' '1' '1' '1'

10 'Z' '1' '0' 'X'

408 Chapter 8 Additional Topics in VHDL

In order to write VHDL code using X01Z logic, you need to de�ne the required operations
for this type of logic. For example, AND and OR may be de�ned using the following tables:

AND 'X' '0' '1' 'Z'

'X' 'X' '0' 'X' 'X'

'0' '0' '0' '0' '0'

'1' 'X' '0' '1' 'X'

'Z' 'X' '0' 'X' 'X'

OR 'X' '0' '1' 'Z'

'X' 'X' 'X' '1' 'X'

'0' 'X' '0' '1' 'X'

'1' '1' '1' '1' '1'

'Z' 'X' 'X' '1' 'X'

The table on the left corresponds to the way an AND gate with 4-valued inputs would work.
If one of the AND gate inputs is '0', the output is always '0'. If both inputs are '1', the output is
'1'. In all other cases, the output is unknown ('X'), since a high-Z gate input may act like either
a '0' or '1'. For an OR gate, if one of the inputs is '1', the output is always '1'. If both inputs
are '0', the output is '0'. In all other cases, the output is 'X'. AND and OR functions based on
these tables can be included in the package fourpack to overload the AND and OR operators.

While this section illustrated how resolved signals can be created, fortunately you do not
have to create such signals. Standard libraries with resolved data types are available. The
IEEE 1164 standard and IEEE_numeric_std are examples of such multivalued logic libraries.

8.7 The IEEE 9-Valued Logic System
The IEEE 1164 standard speci�es a 9-valued logic system with signal resolution. The 9 logic
values de�ned in this standard are

'U' Uninitialized

'X' Forcing unknown

'0' Forcing 0

'1' Forcing 1

'Z' High impedance

'W' Weak unknown

'L' Weak 0

'H' Weak 1

'–' Don't care

The unknown, '0', and '1' values come in two strengths—forcing and weak. A forcing '1'
means that the signal is as perfect as the power supply voltage. A ‘weak 1’, represented by
'H', means that the signal is logically high, but there is a voltage drop (e.g., output of a pull-
up resistor). A forcing '0' represents a perfect ground, whereas a ‘weak 0’ represents a signal
which is logically '0', but not exactly the ground voltage (e.g., the output of a pull-down resis-
tor). The 9-valued system has the representation 'U' for denoting uninitialized signals. Don't
care states can be represented by '–'.

If a forcing signal and a weak signal are tied together, the forcing signal dominates. For
example, if '0' and 'H' are tied together, the result is '0'. The 9-valued logic is useful in mod-
eling the internal operation of certain types of ICs. This text normally uses only a subset of
the IEEE values—'X', '0', '1', and 'Z'.

8.7 The IEEE 9-Valued Logic System 409

The IEEE-1164 standard de�nes the AND, OR, NOT, XOR, and other functions for
9-valued logic. The package IEEE.std_logic_1164 de�nes a std_logic type that uses the
9-valued logic. It also speci�es a number of subtypes of the 9-valued logic, such as the X01Z
subtype, which you have already been using. Analogous to bit-vectors, when vectors are
created with the std_logic type, they are called std_logic vectors. When bit-vectors are used,
typically they are initialized to '0', whereas when the std_logic type is used, the uninitilized
value 'U' is the default value.

Table 8-5 shows the resolution function table for the IEEE 9-valued logic. The row index
values have been listed as comments to the right of the table. The resolution function table
for X01Z logic is a subset of this table, as indicated by the black rectangle.

CONSTANT resolution_table : stdlogic_table := (
--
--
--

| U X 0 1 Z W L H - | |

('U', 'U', 'U', 'U', 'U', 'U', 'U', 'U', 'U'), -- | U |

('U', 'X', 'X', 'X', 'X', 'X', 'X', 'X', 'X'), -- | X |

('U', 'X', '0', 'X', '0', '0', '0', '0', 'X'), -- | 0 |

('U', 'X', 'X', '1', '1', '1', '1', '1', 'X'), -- | 1 |

('U', 'X', '0', '1', 'Z', 'W', 'L', 'H', 'X'), -- | Z |

('U', 'X', '0', '1', 'W', 'W', 'W', 'W', 'X'), -- | W |

('U', 'X', '0', '1', 'L', 'W', 'L', 'W', 'X'), -- | L |

('U', 'X', '0', '1', 'H', 'W', 'W', 'H', 'X'), -- | H |

('U', 'X', 'X', 'X', 'X', 'X', 'X', 'X', 'X') -- | - |

);

TABLE 8-5: Resolution
Function Table for
IEEE 9-Valued Logic

Table 8-6 shows the AND function table for the IEEE 9-valued logic. The row index
values have been listed as comments to the right of the table. The AND function table for
X01Z logic is a subset of this table, as indicated by the black rectangle. The IEEE-1164 stan-
dard �rst de�nes std_ulogic (unresolved standard logic); then it de�nes the std_logic type as
a subtype of std_ulogic with the associated resolution function.

CONSTANT and_table : stdlogic_table := (
--
--
--

| U X 0 1 Z W L H - | |

('U', 'U', '0', 'U', 'U', 'U', '0', 'U', 'U'), -- | U |

('U', 'X', '0', 'X', 'X', 'X', '0', 'X', 'X'), -- | X |

('0', '0', '0', '0', '0', '0', '0', '0', '0'), -- | 0 |

('U', 'X', '0', '1', 'X', 'X', '0', '1', 'X'), -- | 1 |

('U', 'X', '0', 'X', 'X', 'X', '0', 'X', 'X'), -- | Z |

('U', 'X', '0', 'X', 'X', 'X', '0', 'X', 'X'), -- | W |

('0', '0', '0', '0', '0', '0', '0', '0', '0'), -- | L |

('U', 'X', '0', '1', 'X', 'X', '0', '1', 'X'), -- | H |

('U', 'X', '0', 'X', 'X', 'X', '0', 'X', 'X') -- | - |

);

TABLE 8-6: AND Table
for IEEE 9-Valued
Logic

410 Chapter 8 Additional Topics in VHDL

The and functions given in Figure 8-14 use Table 8-6. These functions provide for opera-
tor overloading. This means that if you write an expression that uses the and operator, the
compiler will automatically call the appropriate and function to evaluate the and operation
depending on the type of the operands. If and is used with bit variables, the ordinary and
function is used, but if and is used with std_logic variables, the std_logic and function is
called. Operator overloading also automatically applies the appropriate and function to vec-
tors. When and is used with bit-vectors, the ordinary bit-by-bit and is performed, but when
and is applied to std_logic vectors, the std_logic and is applied on a bit-by-bit basis. The
�rst and function in Figure 8-14 computes the and of the left (l) and right (r) operands by
doing a table look-up. Although the and function is �rst de�ned for std_ulogic, it also works
for std_logic since std_logic is a subtype of std_ulogic. The second and function works with
std_logic vectors. Aliases are used to make sure the index range is the same direction for both
operands. If the vectors are not the same length, the assert false always causes the message to
be displayed. Otherwise, each bit in the result vector is computed by table look-up.

FIGURE 8-14: AND Function for std_logic_vectors

function "and" (l: std_ulogic; r: std_ulogic) return UX01 is
begin
 return (and_table(l, r));
end "and"; -- end of function for unresolved standard logic

function "and" (l, r: std_logic_vector) return std_logic_vector is
 alias lv: std_logic_vector (1 to l'LENGTH) is l; --alias makes index range
 alias rv: std_logic_vector (1 to r'LENGTH) is r; -- in same direction
 variable result: std_logic_vector (1 to l'LENGTH);
begin
 if (l'LENGTH /= r'LENGTH) then
 assert FALSE
 report "arguments of overloaded 'and' operator are not of the same length"
 severity FAILURE;
 else
 for i in result'RANGE loop
 result(i) := and_table(lv(i), rv(i));
 end loop;
 end if;
 return result;
end "and";

If multivalued logic is desired, use the IEEE standard numeric_std package instead of
the numeric_bit package that you have been using so far. The IEEE.numeric_std package is
similar to the IEEE.numeric_bit package, but it de�nes unsigned and signed types as vectors
of std_logic type instead of as vectors of bits. It also de�nes the same set of overloaded opera-
tors and functions on unsigned and signed numbers as the numeric_bit package.

A VHDL program that used vectors with the unsigned type can be ported to use vectors
with 9-valued logic by simply replacing the statement

use IEEE.numeric_bit.all;

with the statements

8.7 The IEEE 9-Valued Logic System 411

use IEEE.std_logic_1164.all; -- The IEEE.numeric_std package
-- uses the 1164 standard.

use IEEE.numeric_std.all;

The IEEE.numeric_std package uses the std_logic type from the 1164 standard. Hence, both
the statements need to be included. With these statements, the unsigned type is considered
to use 9-valued logic. No other changes in the program are required. If the original program
used the type bit, they should be converted to the std_logic type.

The standard numeric packages provide overloaded versions of the relational opera-
tors used for comparison. There is also an additional operation, std_match, provided in the
numeric_std package, that compares the standard-logic elements of a vector. The std_match
operator tests whether two vectors contain the same pattern of 0 and 1 values irrespective
of the strength. If ‘-’ is used, it ignores the corresponding elements in the comparison. For
example, the comparison

if std_match (v,"00-00") then

tests whether v contains all '0' or 'L' values except in the third position.
Other popular VHDL package used for simulation and synthesis with multivalued logic

are the std_logic_arith package and the std_logic_unsigned package, developed by Synopsis.
These packages can be invoked by the following statements:

use IEEE.std_logic_unsigned.all;
use IEEE.std_logic_arith.all;

In examples from now on, you will use the IEEE numeric_std package because it is an IEEE
standard and it is similar in functionality to the numeric_bit package that you have been using
so far. The std_logic_arith and std_logic_unsigned packages are not used because they are
not IEEE standards and they have less functionality than the IEEE numeric_std package.

8.7.1 Synthesis using IEEE 1164
As far as synthesis tools are concerned, the standard-logic values, 'U', 'W', and 'X' all mean
an unknown logic state. Although one can write a model, checking whether they occur, a
synthesis tool will ignore them.

The standard-logic value, 'Z', is used by synthesis tools to imply tristate buffers. If 'Z' is
used as an input, it is treated as an unknown value. If it is the output, a synthesis tool infers
a tristate buffer.

The standard-logic values, 'H' and 'L', are used by synthesis tools to imply pull-up and
pull-down arrangements respectively. In hardware, a pull-up con�guration means a resistor
is tied to the power supply at the output of the tristate buffer (as in Figure 3-39). This type
of arrangement is necessary when the signal must have a valid value when it is not driven by
any of the connected tristate buffers.

if (d = '1') then
 f <= c;
else
 f<= 'H'; -- pull-up resistor enabled

If a resistor is tied from the output of the tristate buffer to the ground line instead of the
power supply line, it is called a pull-down resistor. The 'L' logic value is used to imply a pull-
down resistor.

412 Chapter 8 Additional Topics in VHDL

if (d = '1') then
 f <= c;
else
 f<= 'L'; -- pull-down resistor enabled

FIGURE 8-15: Block
Diagram of Static RAM

2n word

by m bits

static

RAM

n
Address

CS

OE

WE

m

Data
input/output

A signal is asserted when it is in its active state. An active-low signal is asserted when it is
low, and an active-high signal is asserted when it is high.

The truth table for the RAM (Table 8-7) describes its basic operation. High-Z in the I/O
column means that the output buffers have high-Z outputs, and the data inputs are not used.

E X A M PLE

Question:
What is the hardware implied by the following statement during synthesis?

f <= c when d = '1'
else
 'Z';

Answer:
The statement implies a tristate buffer if the library to which we are synthesizing includes tristate buffers. If the library
does not include tristate buffers, the synthesizer will generate a multiplexer.

8.8 SRAM Model Using IEEE 1164
In this section, a VHDL model to represent the operation of a static RAM (SRAM) is devel-
oped. RAM stands for random-access memory, which means that any word in the memory
can be accessed in the same amount of time as any other word. Strictly speaking, ROM
memories are also random access, but historically, the term RAM is normally applied only
to read-write memories. This model also illustrates the usefulness of the multivalued logic
system. Multivalued logic is used to model tristate conditions on the memory data lines.

Figure 8-15 shows the block diagram of a static RAM with n address lines, m data lines,
and three control lines. This memory can store 2n words, each m bits wide. The data lines
are bidirectional in order to reduce the required number of pins and the package size of the
memory chip. When reading from the RAM, the data lines are outputs; when writing to the
RAM, the data lines serve as inputs. The three control lines function as follows:

CS When asserted low, chip select selects the memory chip so that memory read and
write operations are possible.

OE When asserted low, output enable enables the memory output onto an external bus.

WE When asserted low, write enable allows data to be written to the RAM.

8.8 SRAM Model Using IEEE 1164 413

In the read mode, the address lines are decoded to select m of the memory cells, and the data
comes out on the I/O lines after the memory access time has elapsed. In the write mode, input
data is routed to the latch inputs in the selected memory cells when WE is low, but writing
to the latches in the memory cells is not completed until either WE goes high or the chip is
deselected. The truth table does not take memory timing into account.

CS OE WE Mode I/O pins

H X X not selected high-Z

L H H output disabled high-Z

L L H read data out

L X L write data in

TABLE 8-7: Truth Table
for Static RAM

Now write a simple VHDL model for the memory that does not take timing consider-
ations into account. In Figure 8-16, the RAM memory array is represented by an array of
unsigned standard logic vectors (RAM1). This memory has 256 words, each of which are
8 bits. Since Address is typed as an unsigned bit-vector, it must be converted to an integer in
order to index the memory array. The RAM process sets the I/O lines to high-Z if the chip
is not selected. If We_b 5 '1', the RAM is in the read mode, and IO is the data read from
the memory array. If We_b 5 '0', the memory is in the write mode, and the data on the I/O
lines is stored in RAM1 on the rising edge of We_b. If Address and We_b change simultane-
ously, the old value of Address should be used. Address'delayed is used as the array index to
delay Address by one delta to make sure that the old address is used. Address'delayed uses
one of the signal attributes described earlier in this chapter (Table 8-3). This is a RAM with
asynchronous read and synchronous write.

FIGURE 8-16: Simple Memory Model

-- Simple memory model
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

entity RAM6116 is
 port(Cs_b, We_b, Oe_b: in std_logic;
 Address: in unsigned(7 downto 0);
 IO: inout unsigned(7 downto 0));
end RAM6116;

architecture simple_ram of RAM6116 is
type RAMtype is array(0 to 255) of unsigned(7 downto 0);
signal RAM1: RAMtype := (others => (others =>'0'));
 -- Initialize all bits to '0'
begin
 IO <= "ZZZZZZZZ" when Cs_b = '1' or We_b = '0' or Oe_b = '1'
 else RAM1(to_integer(Address)); -- read from RAM
 process(We_b, Cs_b)

414 Chapter 8 Additional Topics in VHDL

8.9 Model for SRAM Read/Write System
To illustrate further the use of multivalued logic, an example with a bidirectional tristate
bus is presented. You will design a memory read-write system that reads the content of
32 memory locations from a RAM, increments each data value, and stores it back into the
RAM. A block diagram of the system is shown in Figure 8-17. In order to hold the word that
is read from memory, you use a data register. In order to hold the memory address that you
are accessing, you use a memory address register (MAR). The system reads a word from the
RAM, loads it into the data register, increments the data register, stores the result back in
the RAM, and then increments the memory address register. This process continues until the
memory address equals 32.

The data bus is used as a bidirectional bus. During the read operation, the memory
output appears on the bus, and the data register output to the data bus will be in a tristate
condition. During the write operation, the data register output is on the data bus, and the
memory will use it as input data.

 begin
 if Cs_b = '0' and rising_edge(We_b) then -- rising-edge of We_b
 RAM1(to_integer(Address'delayed)) <= IO; -- write
 end if;
 end process;
end simple_ram;

FIGURE 8-17: Block
Diagram of RAM
Read-Write System

Data bus

Data
register

ld_data

en_data

inc_data
Control

inc_addr

Memory

address

MAR

WE

OE

Control signals required to operate the system are

ld_data load data register from Data Bus

en_data enable data register output onto Data Bus

inc_data increment Data Register

inc_addr increment MAR

WE Write Enable for SRAM

OE Output Enable for SRAM

Figure 8-18 shows the SM chart for the system. The SM chart uses four states. In the
�rst state, the SRAM drives the memory data onto the bus and the memory data is loaded
into the Data Register. The control signal OE and ld_data are true in this state. The Data
Register is incremented in S1. The en_data control signal is true in state S2, and hence the

8.9 Model for SRAM Read/Write System 415

Data Register drives the bus. Write enable WE is an active-low signal, which is asserted low
only in S2, so that WE is high in the other states. The contents of the data register thus get
written to the RAM at the transition from S2 to S3. The memory address is incremented.
The process continues until the address is 32. State S3 checks this and produces a done signal
when the address reaches 32.

FIGURE 8-18: SM Chart
for RAM System S0 S2

S3

addr = 32

done

Y

N

WE
 en_data
inc_addr

inc_data

S1

OE
ld_data

Figure 8-19 shows the VHDL code for the RAM system. The �rst process represents
the SM chart, and the second process is used to update the registers on the rising edge of
the clock. A short delay is added when the address is incremented to make sure the write to
memory is completed before the address changes. A concurrent statement is used to simulate
the tristate buffer, which enables the data register output onto the I/O lines.

FIGURE 8-19: VHDL Code for RAM System

-- SRAM Read-Write System model
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

entity RAM6116_system is
end RAM6116_system;

architecture RAMtest of RAM6116_system is
component RAM6116 is
 port(Cs_b, We_b, Oe_b: in std_logic;
 Address: in unsigned(7 downto 0);
 IO: inout unsigned(7 downto 0));
end component RAM6116;

signal state, next_state: integer range 0 to 3;

416 Chapter 8 Additional Topics in VHDL

This system can be modi�ed to include all memory locations for testing the correctness
of the entire SRAM. Memory systems are often tested by writing checkerboard patterns
(alternate 0’s and 1’s) in all locations. For instance, write 01010101 (55 hexadecimal) into
all odd addresses and 10101010 (hexadecimal AA) into all even addresses. Then the odd

signal inc_addr, inc_data, ld_data, en_data, Cs_b, clk, Oe_b, done:
 std_logic := '0';
signal We_b: std_logic := '1'; -- initialize to read mode
signal Data: unsigned(7 downto 0); -- data register
signal Address: unsigned(7 downto 0) := "00000000"; -- address register
signal IO: unsigned(7 downto 0); -- I/O bus
begin
 RAM1: RAM6116 port map (Cs_b, We_b, Oe_b, Address, IO);
 control: process(state, Address)
 begin
 --initialize all control signals (RAM always selected)
 ld_data <= '0'; inc_data <= '0'; inc_addr <= '0'; en_data <= '0';
 done <= '0'; We_b <= '1'; Cs_b <= '0'; Oe_b <= '1';

 --start SM chart here
 case state is
 when 0 => Oe_b <= '0'; ld_data <= '1'; next_state <= 1;
 when 1 => inc_data <= '1'; next_state <= 2;
 when 2 => We_b <= '0'; en_data <= '1'; inc_addr <= '1'; next_state <= 3;
 when 3 =>
 if (Address = "00100000") then done <= '1'; next_state <= 3;
 else next_state <= 0;
 end if;
 end case;
 end process control;

 --The following process is executed on the rising edge of a clock.
 register_update: process(clk) -- process to update data register
 begin
 if rising_edge(clk) then
 state <= next_state;
 if (inc_data = '1') then data <= data + 1; end if;
 -- increment data in data register
 if (ld_data = '1') then data <= IO; end if;
 -- load data register from bus
 if (inc_addr = '1') then Address <= Address + 1 after 1 ns; end if;
 -- delay added to allow completion of memory write
 end if;
 end process register_update;

 -- Concurrent statements
 clk <= not clk after 100 ns;
 IO <= data when en_data = '1'
 else "ZZZZZZZZ";
end RAMtest;

8.10 Generics 417

and even locations can be swapped. Developing VHDL code for such a system is left as an
exercise problem.

8.10 Generics
Generics are commonly used to specify parameters for a component in such a way that the
parameter values may be speci�ed when the component is instantiated. For example, the
rise and fall times for a gate could be speci�ed as generics, and different numeric values for
these generics could be assigned for each instance of the gate. The example of Figure 8-20
describes a two-input NAND gate whose rise and fall delay times depend on the number of
loads on the gate. In the entity declaration, Trise, Tfall, and load are generics that specify
the no-load rise time, the no-load fall time, and the number of loads. In the architecture, an
internal nand_value is computed whenever a or b changes. If nand_value has just changed to
a '1', a rising output has occurred, and the gate delay time is computed as

Trise + 3 ns * load

where 3 ns is the added delay for each load. Otherwise, a falling output has just occurred, and
the gate delay is computed as

Tfall + 2 ns * load

where 2 ns is the added delay for each load.

FIGURE 8-20: Rise/Fall Time Modeling Using Generic Statement

entity NAND2 is
 generic(Trise, Tfall: time; load: natural);
 port(a, b: in bit;
 c: out bit);
end NAND2;

architecture behavior of NAND2 is
signal nand_value: bit;
begin
 nand_value <= a nand b;
 c >= nand_value after (Trise + 3 ns * load) when nand_value = '1'
 else nand_value after (Tfall + 2 ns * load);
end behavior;

entity NAND2_test is
 port(in1, in2, in3, in4: in bit;
 out1, out2: out bit);
end NAND2_test;

architecture behavior of NAND2_test is
component NAND2
 generic(Trise: time := 3 ns; Tfall: time := 2 ns; load: natural := 1);
 port(a, b: in bit; c: out bit);
end component;

418 Chapter 8 Additional Topics in VHDL

The entity NAND2_test tests the NAND2 component. The component declaration in the
architecture speci�es default values for Trise, Tfall, and load. When U1 is instantiated, the
generic map speci�es different values for Trise, Tfall, and load. When U2 is instantiated, no
generic map is included, so the default values are used.

8.11 Named Association
Up to this point, you have used positional association in the port maps and generic maps that
are part of an instantiation statement. For example, assume that the entity declaration for a
full adder is

entity FullAdder is
 port(X, Y, Cin: in bit; Cout, Sum: out bit);
end FullAdder;

The statement

FA0: FullAdder port map (A(0), B(0), '0', open, S(0));

creates a full adder and connects A(0) to the X input of the adder, B(0) to the Y input, '0'
to the Cin input, leaves the Cout output unconnected, and connects S(0) to the Sum output
of the adder. The �rst signal in the port map is associated with the �rst signal in the entity
declaration, the second signal with the second signal, and so on. In order to indicate no con-
nection, the keyword open is used.

As an alternative, use named association, in which each signal in the port map is explicitly
associated with a signal in the port of the component entity declaration. For example, the
statement

FA0: FullAdder port map (Sum=>S(0), X=>A(0), Y=>B(0), Cin=>'0');

makes the same connections as the previous instantiation statement (i.e., Sum connects to
S(0), X connects to A(0), etc). When named association is used, the order in which the con-
nections are listed is not important, and any port signals not listed are left unconnected. Use
of named association makes code easier to read, and it offers more �exibility in the order in
which signals are listed.

When named association is used with a generic map, any unassociated generic parameter
assumes its default value. For example, if you replace the statement in Figure 8-20 labeled
U1 with

U1:NAND2 generic map (load => 3,Trise => 4ns) port map
(in1,in2,out1);

Tfall would assume its default value of 2 ns.

begin
 U1: NAND2 generic map (2 ns, 1 ns, 2) port map (in1, in2, out1);
 U2: NAND2 port map (in3, in4, out2);
end behavior;

8.12 Generate Statements 419

8.12 Generate Statements
In Chapter 2, you instantiated four full-adder components and interconnected them to form
a 4-bit adder. Specifying the port maps for each instance of the full adder would become very
tedious if the adder had 8 or more bits. When an iterative array of identical components is
required, the generate statement provides an easy way of instantiating these components. The
example of Figure 8-21 shows how a generate statement can be used to instantiate four 1-bit
full adders to create a 4-bit adder. A 5-bit vector is used to represent the carries, with Cin the
same as C(0) and Cout the same as C(4). The for loop generates four copies of the full adder,
each with the appropriate port map to specify the interconnections between the adders.

Another example where the generate statement would have been very useful is the array
multiplier. The VHDL code for the array multiplier (Chapter 4) used repeated use of port
map statements in order to instantiate each component. They could have been replaced with
generate statements.

FIGURE 8-21: Adder4 Using Generate Statement

entity Adder4 is
port(A, B: in bit_vector(3 downto 0); Ci: in bit; -- Inputs
 S: out bit_vector(3 downto 0); Co: out bit); -- Outputs
end Adder4;

architecture Structure of Adder4 is
component FullAdder
 port(X, Y, Cin: in bit; -- Inputs
 Cout, Sum: out bit); -- Outputs
end component;

signal C: bit_vector(4 downto 0);
begin
 C(0) <= Ci;
 -- generate four copies of the FullAdder
 FullAdd4: for i in 0 to 3 generate
 begin
 FAx: FullAdder port map (A(i), B(i), C(i), C(i+1), S(i));
 end generate FullAdd4;
 Co <= C(4);
end Structure;

In the preceding example, you used a generate statement of the form

generate_label: for identifier in range generate
[begin]
 concurrent statement(s)
end generate [generate_label];

At compile time, a set of concurrent statement(s) is generated for each value of the identi-
�er in the given range. In Figure 8-21, one concurrent statement—a component instantiation
statement—is used. A generate statement itself is de�ned to be a concurrent statement, so
nested generate statements are allowed.

420 Chapter 8 Additional Topics in VHDL

8.12.1 Conditional Generate
A generate statement with an if clause may be used to conditionally generate a set of concur-
rent statement(s). This type of generate statement has the form

generate_label: if condition generate
[begin]
 concurrent statement(s)
end generate [generate_label];

In this case, the concurrent statements(s) are generated at compile time only if the condition
is true.

Figure 8-22 illustrates the use of conditional compilation using a generate statement with
an if clause. An N-bit left-shift register is created if Lshift is true using the statement

genLS: if Lshift generate
 shifter <= Q(N-1 downto 1) & Shiftin;
end generate;

If Lshift is false, a right-shift register is generated using another conditional generate state-
ment. The example also shows how generics and generate statements can be used together.
It illustrates the use of generic parameters to write a VHDL model with parameters so that
the size and function can be changed when it is instantiated.

FIGURE 8-22: Shift Register Using Conditional Compilation

entity shift_reg is
 generic(N: positive := 4; Lshift: Boolean := true);-- generic parameters used
 port(D: in bit_vector(N downto 1);
 Qout: out bit_vector(N downto 1);
 CLK, Ld, Sh, Shiftin: in bit);
end shift_reg;

architecture SRN of shift_reg is
signal Q, shifter: bit_vector(N downto 1);
begin
 Qout <= Q;
 genLS: if Lshift generate -- conditional generate of left shift register
 shifter <= Q(N-1 downto 1) & Shiftin;
 end generate;
 genRS: if not Lshift generate -- conditional generate of right shift register
 shifter <= Shiftin & Q(N downto 2);
 end generate;
 process(CLK)
 begin
 if CLK'event and CLK = '1' then
 if LD = '1' then Q <= D;
 elsif Sh = '1' then Q <= shifter;
 end if;
 end if;
 end process;
end SRN;

8.13 Files and TEXTIO 421

8.13 Files and TEXTIO
The ability to input �les and text is very valuable while testing large VHDL designs. This
section introduces �le input and output in VHDL. Files are frequently used with test benches
to provide a source of test data and to provide storage for test results. VHDL provides a
standard TEXTIO package that can be used to read or write lines of text from or to a �le.

Before a �le is used, it must be declared using a declaration of the form

file file-name: file-type [open mode] is "file-pathname";

For example,

file test_data: text open read_mode is "c:\test1\test.dat";

declares a �le named test_data of type text that is opened in the read mode. The physical
location of the �le is in the test1 directory on the c: drive.

A �le can be opened in read_mode, write_mode, or append_mode. In read_mode, suc-
cessive elements in the �le can be read using the read procedure. When a �le is opened in
write_mode, a new empty �le is created by the host computer's �le system, and successive
data elements can be written to the �le using the write procedure. To write to an existing �le,
the �le should be opened in the append_mode.

A �le can contain only one type of object, such as integers, bit-vectors, or text strings, as
speci�ed by the �le type. For example, the declaration

type bv_file is file of bit_vector;

de�nes bv_�le to be a �le type that can contain only bit-vectors. Each �le type has an associ-
ated implicit end�le function. A call of the form

endfile(file_name)

returns TRUE if the �le pointer is at the end of the �le.
The standard TEXTIO package that comes with VHDL contains declarations and proce-

dures for working with �les composed of lines of text. The package speci�cation for TEXTIO
(see Appendix C) de�nes a �le type named text:

type text is file of string;

The TEXTIO package contains procedures for reading lines of text from a �le of type text
and for writing lines of text to a �le.

Procedure readline reads a line of text and places it in a buffer with an associated pointer.
The pointer to the buffer must be of type line, which is declared in the TEXTIO package as

type line is access string;

When a variable of type line is declared, it creates a pointer to a string. The code

variable buff: line;
...
readline(test_data, buff);

reads a line of text from test_data and places it in a buffer that is pointed to by buff. After
reading a line into the buffer, call a version of the read procedure one or more times to extract
data from the line buffer. The TEXTIO package provides overloaded read procedures to

422 Chapter 8 Additional Topics in VHDL

read data of types bit, bit-vector, boolean, character, integer, real, string, and time from the
buffer. For example, if bv4 is a bit_vector of length four, the call

read(buff, bv4);

extracts a 4-bit vector from the buffer, sets bv4 equal to this vector, and adjusts the pointer
buff to point to the next character in the buffer. Another call to read then extracts the next
data object from the line buffer.

A call to read may be of one of two forms:

read(pointer, value);
read(pointer, value, good);

where pointer is of type line and value is the variable into which you want to read the data. In
the second form, good is a boolean that returns TRUE if the read is successful and FALSE if
it is not. The size and type of value determines which of the read procedures in the TEXTIO
package is called. For example, if value is a string of length 5, then a call to read reads the
next �ve characters from the line buffer. If value is an integer, a call to read skips over any
spaces and then reads decimal digits until a space or other nonnumeric character is encoun-
tered. The resulting string is then converted to an integer. Characters, strings, and bit-vectors
within �les of type text are not delimited by quotes.

To write lines of text to a �le, call a version of the write procedure one or more times
to write data to a line buffer and then call writeline to write the line of data to a �le. The
TEXTIO package provides overloaded write procedures to write data of types bit, bit-vector,
boolean, character, integer, real, string, and time to the buffer. For example, the code

variable buffw: line;
variable int1: integer;
variable bv8: bit_vector(7 downto 0);
...
write(buffw, int1, right, 6);
write(buffw, bv8, right, 10);
writeline(output_file, buffw);

converts int1 to a text string, writes this string to the line buffer pointed to by buffw, and
adjusts the pointer. The text will be right justi�ed in a �eld six characters wide. The second
call to write puts the bit_vector bv8 in a line buffer, and adjusts the pointer. The 8-bit vec-
tor will be right justi�ed in a �eld 10 characters wide. Then writeline writes the buffer to
the output_�le. Each call to write has four parameters: (1) a buffer pointer of type line;
(2) a value of any acceptable type; (3) justi�cation (left or right), which speci�es the location
of the text within the output �eld; and (4) �eld width, an integer that speci�es the number of
characters in the �eld.

As an example, write a procedure to read data from a �le and store the data in a memory
array. This procedure will later be used to load instruction codes into a memory module for
a computer system. The computer system can then be tested by simulating the execution of
the instructions stored in memory. The data in the �le will be of the following format:

address N comments
byte1 byte2 byte3 ... byteN comments

The address consists of four hexadecimal digits, and N is an integer that indicates the number
of bytes of code that will be on the next line. Each byte of code consists of two hexadecimal

8.13 Files and TEXTIO 423

digits. Each byte is separated by one space, and the last byte must be followed by a space.
Anything following the last space will not be read and will be treated as a comment. The �rst
byte should be stored in the memory array at the given address, the second byte at the next
address, and so forth. For example, consider the following �le:

12AC 7 (7 hex bytes follow)
AE 03 B6 91 C7 00 0C
005B 2 (2 hex bytes follow)
01 FC<space>

When the �ll_memory procedure is called using this �le as an input, AE is stored in 12AC,
03 in 12AD, B6 in 12AE, 91 in 12AF, and so on.

Figure 8-23 gives VHDL code that calls the procedure �ll_memory to read data from a
�le and store it in an array named mem. Since TEXTIO does not include a read procedure
for hex numbers, the procedure �ll_memory reads each hex value as a string of characters
and then converts the string to an integer. Conversion of a single hex digit to an integer
value is accomplished by table look-up. The constant named lookup is an array of integers
indexed by characters in the range '0' to 'F'. This range includes the 23 ASCII characters:
'0', '1', '2', . . ., '9', ':', ';', ' , ', '5', ' . ', '?', '@', 'A', 'B', 'C', 'D', 'E', 'F'. The correspond-
ing array values are 0, 1, 2, c, 9, 21, 21, 21, 21, 21, 21, 21, 10, 11, 12, 13, 14, 15. The
21 could be replaced with any integer value, since the seven special characters in the index
range should never occur in practice. Thus, lookup('2') is the integer value 2, lookup('C') is
12, and so forth.

FIGURE 8-23: VHDL Code to Fill a Memory Array from a File

library IEEE;
use IEEE.numeric_bit.all; -- to use TO_UNSIGNED(int, size)
use std.textio.all;

entity testfill is
end testfill;

architecture fillmem of testfill is
type RAMtype is array (0 to 8191) of unsigned(7 downto 0);
signal mem: RAMtype := (others => (others => '0'));

procedure fill_memory(signal mem: inout RAMType) is
type HexTable is array (character range <>) of integer;
-- valid hex chars: 0, 1, ... A, B, C, D, E, F (upper-case only)
constant lookup: HexTable('0' to 'F'): =
 (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, −1, −1, −1,
 −1, −1, −1, −1, 10, 11, 12, 13, 14, 15);
file infile: text open read_mode is "mem1.txt"; -- open file for reading
-- file infile: text is in "mem1.txt"; -- VHDL '87 version
variable buff: line;
variable addr_s: string(4 downto 1);
variable data_s: string(3 downto 1); -- data_s(1) has a space
variable addr1, byte_cnt: integer;
variable data: integer range 255 downto 0;

424 Chapter 8 Additional Topics in VHDL

Procedure �ll_memory calls readline to read a line of text that contains a hex address
and an integer. The �rst call to read reads the address string from the line buffer, and the
second call to read reads an integer, which is the byte count for the next line. The integer
addr1 is computed using the look-up table for each character in the address string. The next
line of text is read into the buffer, and a loop is used to read each byte. Since data_s is three
characters long, each call to read reads two hex characters and a space. The hex characters
are converted to an integer and then to an unsigned vector, which is stored in the memory
array. The address is incremented before reading and storing the next byte. The procedure
exits when the end of �le is reached.

This chapter has introduced several important features of VHDL. Functions and pro-
cedures were introduced �rst. Attributes were presented next. Attributes associated with
signals allow checking of setup and hold times and other timing speci�cations. Attributes
associated with arrays allows one to write procedures that do not depend on the manner
in which the arrays are indexed. Operator overloading can be used to extend the de�ni-
tion of VHDL operators so that they can be used with different types of operands. The
IEEE Standard 1164 de�nes a system of 9-valued logic that is widely used with VHDL.
Multivalued logic and the associated resolution functions allows one to model tristate
buses and other systems where a signal is driven from more than one source. Generics
enable us to specify parameter values for a component when the component is instanti-
ated. Generate statements provide an ef�cient way to describe systems that have an
iterative structure. The TEXTIO package provides a convenient way of doing �le input
and output.

begin
 while (not endfile(infile)) loop
 readline(infile, buff);
 read(buff, addr_s); -- read addr hexnum
 read(buff, byte_cnt); -- read number of bytes to read
 addr1 := lookup(addr_s(4)) * 4096 + lookup(addr_s(3)) * 256
 + lookup(addr_s(2)) * 16 + lookup(addr_s(1));
 readline(infile, buff);
 for i in 1 to byte_cnt loop
 read(buff, data_s); -- read 2 digit hex data and a space
 data := lookup(data_s(3)) * 16 + lookup(data_s(2));
 mem(addr1) <= TO_UNSIGNED(data, 8);
 addr1:= addr1 + 1;
 end loop;
 end loop;
end fill_memory;
begin
 testbench: process
 begin
 fill_memory(mem);
 -- insert code which uses memory data
 end process;
end fillmem;

 Problems 425

Problems
8.1 Write a VHDL function that converts a 5-bit bit_vector to an integer. Note that the integer value of the binary

number a4a3a2a1a0 can be computed as

1 1 1 10 1 a4 2*2 1 a3 2*2 1 a2 2*2 1 a1 2*2 1 a0

 How much simulated time will it take for your function to execute?
8.2 Write a VHDL function that will create the 2’s complement of an n-bit vector. Use a call of the form comp2(bit_

vec, N) where N is the length of the vector. State any assumptions you make about the range of bit_vec. Do the
complement on a bit-by-bit basis using a loop.

8.3 Write a VHDL function that will return the largest integer in an array of N integers. The function call should be
of the form LARGEST(ARR, N).

8.4 A and B are bit vectors that represent unsigned binary numbers. Write a VHDL function that returns TRUE if
A . B. The function call should be of the form GT(A, B, N), where N is the length of the bit vectors. Do not
call any functions of procedures from within your code. Hint: start comparing the most signi�cant bits of A and
B �rst and proceed for left to right. As soon as you �nd a pair of unequal bits, you can determine whether or not
A . B. For example, if A 5 1011010 and B 5 1010110, you can determine that A . B when you make the fourth
comparison.

8.5 What are the major differences between VHDL functions and VHDL procedures?
8.6 A barrel shifter is a type of shifter that can shift a variable shift amount. Design a VHDL function for an 8-bit

barrel shifter that can shift 8-bit data to the left by any amount between 0 and 7. The inputs to the function are
the 8-bit data and the shift amount. The function should be of the form BSHIFT(DATA, N), where N is the shift
amount. Assume that 0’s are shifted in through the serial input as the data is shifted.

8.7 A barrel shifter is a type of shifter that can shift a variable shift amount. Design a VHDL function for an 8-bit
barrel shifter, that can shift 8-bit data to the left by any amount between 0 and 7. The inputs to the function are
the 8-bit data and the shift amount. The function should be of the form BSHIFT(DATA, N), where N is the shift
amount. Assume that DATA is an 8-bit bit_vector. Assume that the bits that are shifted out are shifted in as the
serial inputs, essentially performing a rotate.

8.8 This question is about adding some features to the barrel shifter design in question 8.6. If DATA passed to the
function is not 8-bits in width, report a message “DATA must be 8-bits wide.” If N is not in the range 0 to 7, report
a message “N must be between 0 and 7.” Use VHDL attributes to �nd the number of bits in DATA.

8.9 Write a VHDL procedure that counts the number of ones in an input bit-vector that is N bits long 1N ,5 31 2 .
The output should be an unsigned vector that is 5 bits long.

8.10 X and Y are bit-vectors of length N that represent signed binary numbers, with negative numbers represented in
2’s complement. Write a VHDL procedure that will compute D 5 X 2 Y. This procedure should also return the
borrow from the last bit position (B) and an over�ow �ag (V). Do not call any other functions or procedures in
your code. The procedure call should be of the form SUBVEC(X, Y, D, B, V, N);

8.11 Write a VHDL module that implements a 4-digit BCD adder with accumulator (see block diagram below). If
LD 5 1, then the contents of BCDacc are replaced with BCDacc 1 BCDin. Each 4-digit BCD signal should be
represented by an array of the following type:

type BCD4 is array (3 downto 0) of unsigned (3 downto 0);

 Write a procedure that adds two BCD digits and a carry and returns a BCD digit and a carry. Call this procedure
concurrently four times in your code.

426 Chapter 8 Additional Topics in VHDL

8.12 For the following VHDL code, list the values of B and C at each time a change occurs. Include all deltas, and
stop your listing when time . 8 ns. Assume that B is changed to "0110" at time 5 ns. Indicate the times at which
procedure P1 is called.

entity Q1 is
 port(B, C: inout bit_vector(3 downto 0));
end Q1;

architecture Q1 of Q1 is
 procedure P1(signal A: inout bit_vector) is
 begin
 for i in 1 to 3 loop
 A(i) <= A(i-1);
 end loop;
 A(0) <= A(3);
 end P1;
begin
 process
 begin
 wait until B'event;
 P1(B);
 wait for 1 ns;
 P1(B);
 end process;
 C <= B;
end Q1;

8.13 The following VHDL code is part of a process. Assume that A 5 B 5 '0' before the code is executed. Give the
values of the variables X1, X2, X3, and X4 immediately after the code is executed.

wait until clock'event and clock = '1';
A <= not B;
A <= transport B after 5 ns;
wait for 5 ns;
X1 := A'event;
X2 := A'delayed'event;
X3 := A'last_event;
X4 := A'delayed'last_event;

BCD
Adder

BCD
Adder

BCD
Adder

BCD
Adder

CLK
Ld

BCDacc

BCDin

Problems 427

8.14 The following VHDL code is part of a process. Assume that A 5 B 5 '0' before the code is executed.
(a) Give the values of the variables X1, X2, X3, and X4 immediately after the code is executed.

wait until clock'event and clock = '1';
B <= not A;
B <= transport B after 10 ns;
wait for 10 ns;
X1 := B'stable(5 ns);
X2 := B'quiet(10 ns);
X3 := B'last_event;
X4 := B'last_value;

(b) Draw the timing waveform for B'TRANSACTION.

8.15 Write a VHDL function that will take two integer vectors, A and B, and �nd the dot product C 5 a ai * bi. The
function call should be of the form DOT(A,B), where A and B are integer vector signals. Use attributes inside the
function to determine the length and ranges of the vectors. Make no assumptions about the high and low values
of the ranges. For example:

A 13 downto 1 2 5 11, 2, 3 2 , B 13 downto 1 2 5 14, 5, 6 2 , C 5 3 * 6 1 2 * 5 1 1 * 4 5 32

 Output a warning if the ranges are not the same.
8.16 Write a VHDL procedure that will add two n 3 m matrices of integers, C ,5 A 1 B. The procedure call should

be of the form addM(A, B, C). The procedure should report an error if the number of rows in A and B are not
the same or if the number of columns in A and B are not the same. Make no assumptions about the high and low
values or direction of the ranges for either dimension.

8.17 Write a VHDL procedure that will add two bit-vectors that represent signed binary numbers. Negative numbers
are represented in 2’s complement. If the vectors are of different lengths, the shorter one should be sign-extended
during the addition. Make no assumptions about the range for either vector. The procedure call should be of the
form Add2(A, B, Sum, V), where V 5 1 if the addition produces a 2’s complement over�ow.

8.18 A VHDL entity has inputs A and B, and outputs C and D. A and B are initially high. Whenever A goes low,
C will go high 5 ns later, and if A changes again, C will change 5 ns later. D will change if B does not change for
3 ns after A changes.
(a) Write the VHDL architecture with a process that determines the outputs C and D.
(b) Write another process to check that B is stable 2 ns before and 1 ns after A goes high. The process should also

report an error if B goes low for a time interval less than 10 ns.
8.19 Write an overloading function for the " , " operator for bit-vectors. Return a boolean TRUE if A is less than B,

otherwise FALSE. Report an error if the bit vectors are of different lengths.
8.20 Write an overloading function for the unary “-” operator for bit-vectors. If A is a bit-vector -A should return the

2’s complement of A.
8.21 Consider the following three concurrent statements, where R is a resolved signal of type X01Z:

R <= transport '0' after 2 ns, 'Z' after 8 ns;
R <= transport '1' after 10 ns;
R <= transport '1' after 4 ns, '0' after 6 ns;

 Draw the multiple drivers that will be created and the resolved output signal R from time 0 until time 12ns.
Assume initial value of Z for all signals.

428 Chapter 8 Additional Topics in VHDL

8.22 Consider the following three concurrent statements, where R is a resolved signal of type X01Z:

R <= transport '1' after 5 ns, 'Z' after 8 ns;
R <= transport '0' after 10 ns;
R <= transport '1' after 7 ns, '0' after 12 ns;

 Draw the multiple drivers that will be created and the resolved output signal R from time 0 until time 14 ns.
Assume initial value of Z for all signals.

8.23 Write a VHDL description of an address decoder/address match detector. One input to the address decoder is an
8-bit address, which can have any range with a length of 8 bits, for example: bit_vector addr(8 to 15). The
second input is check: x01z_vector(5 downto 0). The address decoder will output Sel 5 '1' if the upper 6 bits
of the 8-bit address match the 6-bit check vector. For example, if addr 5 ''10001010'' and check 5 ''1000XX'' then
Sel 5 '1'. Only the 6 leftmost bits of addr will be compared; the remaining bits are ignored. An 'X' in the check
vector is treated as a don't care.

8.24 Write a VHDL model for one �ip-�op in a 74HC374 (octal D-type �ip-�op with 3-state outputs). Use the IEEE-
standard 9-valued logic package. Assume that all logic values are 'x', '0', '1', or 'z'. Check setup, hold, and pulse
width specs using assert statements. Unless the output is 'z', the output should be 'x' if CLK or OC is 'x', or if an
'x' has been stored in the �ip-�op.

8.25 Write a VHDL function to compare two IEEE std_logic_vectors to see if they are equal. Report an error if any
bit in either vector is not '0', '1', or '–' (don't care), or if the lengths of the vectors are not the same. The function
call should pass only the vectors. The function should return TRUE if the vectors are equal, else FALSE. When
comparing the vectors, consider that '0' 5 '–', and '1' 5 '–'. Make no assumptions about the index range of the
two vectors (for example, one could be 1 to 7 and the other 8 downto 0).

8.26 Consider the following concurrent statements, where A, B, and C are of type std_logic:

A <= transport '1' after 5 ns, '0' after 10 ns, 'Z' after 15 ns;
B <= transport '0' after 4 ns, 'Z' after 10 ns;
C <= A after 6 ns;
C <= transport A after 5 ns;
C <= reject 3 ns B after 4 ns;

(a) Draw drivers (see Figure 2-27) for signals A and B.
(b) Draw the three drivers s0, s1 and s2 for C (similar to Figure 8-11).
(c) List the value for C each time it is resolved by the drivers, and draw a timing chart for C.

8.27 Sybtype X01LH of std_logic has values of 'X', '0', '1', 'L', and 'H'. Complete the following table for a resolution
function of this subtype.

'X' '0' '1' 'L' 'H'

'X'

'0'

'1'

'L'

'H'

8.28 Write an overloading function for "not", where the input and returned value are standard logic vectors. The "not"
function should basically simulate a group of inverters. The output bits should be one of the following: 'U', '0', '1',
or 'X'. An uninitialized input should give an uninitialized output.

Problems 429

8.29 In the following code, all signals are 1-bit std_logic. Draw a logic diagram that corresponds to the code. Assume
that a D �ip-�op with CE is available.

F <= A when EA = '1' else B when EB = '1' else 'Z';
process(CLK)
begin
 if CLK'event and CLK = '1' then
 if Ld = '1' then A <= B; end if;
 if Cm = '1' then A <= not A; end if;
 end if;
end process;

8.30 Design a memory-test system to test the �rst 256 bytes of a static RAM memory. The system consists of simple
controller, an 8-bit counter, a comparator, and a memory as shown below. The counter is connected to both the
address and data (IO) bus so that 0 will be written to address 0, 1 to address 1, 2 to address 2, . . . , and 255 to
address 255. Then the data will be read back from address 0, address 1, . . . , address 255 and compared with the
address. If the data does not match, the controller goes to the fail state as soon as a mismatch is detected; oth-
erwise, it goes to a pass state after all 256 locations have been matched. Assume that OE_b 5 0 and CS_b 5 0.
(a) Draw an SM chart or a state graph for the controller (5 states). Assume that the clock period is long enough

so that one word can be read every clock period.
(b) Write VHDL code for the memory-test system.

Counter

RAM
256 3 8

ControlComparator

clk

WEb

Eq

inc
K

address data

K = 1 when counter is in state 255

Eq = 1 when counter output = data from memory

WEb = 0 enables tristate buffer

8

8

8.31 Design a memory-test system similar to that of Problem 8.25, except write a checkerboard pattern into memory
(01010101 into address 0, 10101010 into address 1, etc.). Draw the block diagram and SM chart.

8.32 Design a memory tester that veri�es the correct operation of a 6116 static RAM (Figure 8-15). The tester should
store a checkerboard pattern (alternating 0s and 1s in the even addresses, and alternating 1s and 0s in the odd
addresses) in all memory locations and then read it back. The tester should then repeat the test using the reverse
pattern.
(a) Draw a block diagram of the memory tester. Show and explain all control signals.
(b) Draw an SM chart or state graph for the control unit. Use a simple RAM model and disregard timing.
(c) Write VHDL code for the tester and use a test bench to verify its operation.

430 Chapter 8 Additional Topics in VHDL

8.33 A clocked T �ip-�op has propagation delays from the rising edge of CLK to the changes in Q and Q' as follows:
if Q (or Q') changes to 1, tplh 5 8 ns, and if Q (or Q') changes to 0, tphl 5 10 ns. The minimum clock pulse width
is tck 5 15 ns, the setup time for the T input is tsu 5 4 ns, and the hold time is th 5 2 ns. Write a VHDL model for
the �ip-�op that includes the propagation delay and that reports if any timing speci�cation is violated. Write the
model using generic parameters with default values.

8.34 (a) Write a model for a D �ip-�op with a direct clear input. Use the following generic timing parameters:
tplh, tphl, tsu, th, and tcmin. The minimum allowable clock period is tcmin. Report appropriate errors if timing
violations occur.

(b) Write a test bench to test your model. Include tests for every error condition.
8.35 Write a VHDL model for an N-bit comparator using an iterative circuit. In the entity, use the generic parameter

N to de�ne the length of the input bit-vectors A and B. The comparator outputs should be EQ 5 '1' if A 5 B,
and GT 5 '1' if A . B. Use a for loop to do the comparison on a bit-by-bit basis, starting with the high-order
bits. Even though the comparison is done on a bit-by-bit basis, the �nal values of EQ and GT apply to A and B
as a whole.

8.36 Four RAM memories are connected to CPU busses as shown below. Assume that the following RAM component
is available:

component SRAM
port(cs_b, we_b, oe_b: in bit;
 address: in bit_vector(14 downto 0);
 data: inout std_logic_vector(7 downto 0));
end component;

 Write a VHDL code segment which will connect the four RAMs to the busses. Use a generate statement and
named association.

addr[14:0]data[15:8]

CS WE OE

addr[14:0]data[7:0]

CS WE OE

addr[14:0]data[23:16]

CS WE OE

dbus[31:0]

addr[14:0]data[31:24]

CS WE OE

Ram3 Ram2 Ram1 Ram0

32

15

8 88 815 15 15 15

15

abus[14:0] sel wr

CPU

8.37 Write structural VHDL code for a module that is an N-bit serial-in, serial-out right-shift register. Inputs to the
shift register are bit signals: SI (serial input), Sh (shift enable), and CLK. Your module should include a generic
in the entity declaration, and a generate statement in the architecture. Assume that a component for a D �ip-�op
with clock enable (CE) is available.

Problems 431

8.38 (a) Write VHDL code for a barrel shifter that can generate a shift left or right shift using conditional compilation.
A barrel shifter is a type of shifter that can shift a variable shift amount. You are to design a VHDL module
for an k-bit barrel shifter that can shift k-bit data to the left or right by any amount between 0 and k-1. The
input parameters are k (size of register), LEFT signal and the shift-amount. Your module should include a
generic in the entity declaration, and a conditional generate statement in the architecture. Use conditional
compilation so that a left shift register is generated if LEFT 5 1 and a right shift barrel shifter is generated if
LEFT 5 0. Assume that 0’s are shifted in through the serial input as the data is shifted.

(b) Redo part (a) assuming that the bits that are shifted out are shifted in as the serial inputs, essentially perform-
ing a rotate.

8.39 Write structural VHDL code for a module that has two inputs: an N-bit vector A, and a control signal B (1 bit).
The module has an N-bit output vector, C. When B 5 1, C , 5 A. When B 5 0, C is all 0’s. Use a generic to
specify the value of N 1default 5 4 2 . To implement the logic, use a generate statement that instantiates N 2-input
AND gates.

8.40 The Kogge-Stone adder is a pre�x adder with the pre�x-tree network structure explained in chapter 4. Develop a
VHDL model for an 8-bit Kogge-Stone adder using generate statements. This should be a structural model that
adhers to the tree structure of the Kogge-Stone adder.

8.41 The Brent-Kung adder is a pre�x adder with the network structure given below. Develop a VHDL model for
an 8-bit Brent-Kung adder using generate statements. This should be a structural model that adhers to the tree
structure of the Brent-Kung adder.

14 13 12 11 10 9 8 7 6 5 4 3 2 1 015Inputs

Outputs

1

2

3

4

C0

p15
g15

p0
g0

5

6

Ai Bi

(gi, pi)

Gx:y

(gx, px) (gy, py)

Px:y

Gi-1:0
Pi-1:0 Co

Ci

gi = AiBi
pi = Ai%Bi

Si = pi%Ci

Ci = Gi-1:0 + Pi-1:0 C0

Gx:y = gx + pxgy
Px:y = pxpy

Si

Ci Pip15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0

C16 C15 C14 C13 C12 C11 C10 C9 C8 C7 C6 C5 C4 C3 C2 C1

S15 S14 S13 S12 S11 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1 S0

432 Chapter 8 Additional Topics in VHDL

8.42 The Kogge-Stone adder is a pre�x adder with the pre�x-tree network structure explained in chapter 4. Develop
a VHDL model for a k-bit Kogge-Stone adder using generate statements. This should be a structural model that
adhers to the tree structure of the Kogge-Stone adder. Use generic parameters to create a model that can work
for any size k that is a multiple of 4. Assume k is not more than 64.

8.43 The Brent-Kung adder is a pre�x adder with the network structure given in question 8.41. Develop a VHDL
model for a k-bit Brent-Kung adder using generate statements. This should be a structural model that adhers to
the tree structure of the Brent-Kung adder. Use generic parameters to create a model that can work for any size
k that is a multiple of 4. Assume k is not more than 64.

8.44 Design a VHDL module that uses conditional compilation to produce an 8-bit Kogge-Stone adder or 8-bit Brent-
Kung adder from the same VHDL module depending on the signal K. If K equals 1, a Kogge-Stone adder should
be generated; otherwise, a Brent-Kung adder must be generated. Use conditional generate statements and generic
parameters as needed.

8.45 Create a 4 3 4 array multiplier using generate statements. Use full adder, half adder, and AND gate components
as in chapter 4.

8.46 B is an integer array with range 0 to 4. Write a VHDL code segment which will read a line of text from a �le named
"FILE2" and then read �ve integers into array B. Assume that TEXTIO libraries are available.

8.47 Write a procedure that has an integer signal and a �le name as parameters. Each line of the �le contains a delay
value and an integer. The procedure reads a line from the �le, waits for the delay time, assigns the integer value to
the signal, and then reads the next line. The procedure should return when end-of-�le is reached.

8.48 Write a procedure that logs the history of values of a bit-vector signal to a text �le. Each time the signal changes,
write the current time and signal value to the �le. VHDL has a built in function called NOW that returns the cur-
rent simulation time when it is called.

433

DESIGN OF RISC
MICROPROCESSORS

C H A P T E R

9

A microprocessor is an example of a complex digital system. This chapter describes two
example microprocessors: a microprocessor from MIPS Technologies, the MIPS R2000
[28,29], and a microprocessor from ARM Limited [6]. Both of these are popular RISC
microprocessors. A MIPS processor was used in Sony PlayStation and Playstation 2. The
ARM microprocessors are used in many smart phones. We will implement a subset of each
example Instruction Set Architecture (ISA). The term instruction set architecture denotes
the instructions that are visible to the assembly language programmer, the number of regis-
ters, the addressing modes, and the operations (opcodes) available in the particular proces-
sor. An introduction to the RISC philosophy is presented �rst. A description of the MIPS
ISA is presented next. The arithmetic, memory access, and control transfer instructions of
the MIPS ISA and a design to implement a subset of the ISA and a synthesizeable VHDL
model for the MIPS subset are then presented. Use of a test bench for testing the design is
illustrated. This is followed by a similar treatment of the ARM ISA. A description of a subset
of ARM instructions is provided, followed by a design and a VHDL implementation.

9.1 The RISC Philosophy
Many early microprocessors, such as the Intel 8086 and Motorola 68000, incorporated a
variety of powerful instructions and addressing modes. A natural consequence of this was
the complexity of the design, especially the control unit complexity. These microprocessors
included a microprogrammed control unit because it was dif�cult to design and debug a
hardwired control unit for such complex digital systems. (See Chapter 5 for a discussion of
tradeoffs between microprogramming and hardwiring.)

The value of simplicity became clearer in the late 1970s and early 1980s. The result was
the advent of RISC or the Reduced Instruction Set Computing philosophy. RISC proces-
sors are a type of microprocessor that use a small and simple set of instructions rather than
a variety of complex instructions and versatile addressing modes. The �rst RISC projects
came from IBM, Stanford University, and the University of California–Berkeley in the late
1970s and early 1980s. The IBM 801, Stanford MIPS, and Berkeley RISC 1 and 2 were all
designed with a similar philosophy, which has become known as RISC. In contrast, earlier
processors such as the Intel 8086 and the Motorola 68000/68020 started to be called CISC
(Complex Instruction Set Computing) processors, after the advent of the RISC philosophy.
The �rst generation of RISC processors included MIPS R2000 from MIPS, SPARC from Sun

434 Chapter 9 Design of RISC Microprocessors

MIPS

MIPS Technologies is a computer manufacturer that has designed and sold several
RISC microprocessors starting with the MIPS R2000 processor in the 1980s. The
term MIPS was commonly known to computer designers as a performance metric,
the Millions of Instructions Per Second metric. The MIPS in the name of the MIPS
Corporation, however, does not stand for that. It stands for Microprocessor without
hardware Interlocked Pipeline Stages. In a pipelined processor, a mechanism must
exist to enforce dependencies between instructions. So, if one instruction needs the
result of the previous one, the second instruction should not proceed. Enforcing
of this type of dependency is usually done by hardware interlocks. The �rst MIPS
processor, however, did not have hardware interlocks. It re�ected the early RISC ide-
alism that anything that can be done in software should be done in software. Pipeline
interlocks were implemented by software by inserting the appropriate number of nop
(no operation) instructions.

Certain design features have been characteristic of most RISC processors:

 ● Uniform instruction length: All instructions have the same length (e.g., 32 bits). This is
in sharp contrast to previous microprocessors, which contained instructions as small as a
byte and as large as 16 bytes.

 ● Few instruction formats: The RISC ISAs emphasized having as few instruction formats
as possible and encoding the different �elds in the instruction as uniformly as possible.
This greatly simpli�es instruction decoding.

 ● Few addressing modes: Most RISC processors support only one or two memory address-
ing modes. Addressing modes offer different ways an instruction can indicate the mem-
ory address to be accessed. Examples are direct addressing, immediate addressing, base
plus offset addressing, based indexed addressing, and indirect addressing. Many RISC
processors support only one addressing mode. Typically, this addressing mode speci�es
addresses with a register and an offset.

 ● Large number of registers: The RISC design philosophy generally incorporates a larger
number of registers to prevent the loss of performance by frequently accessing memory.
RISC processors are also often called register-register architectures. All arithmetic opera-
tions operate on register operands. CISC architectures typically contained 8 or 12 regis-
ters, whereas most RISC architectures contained 32 registers.

 ● Load/store architecture: RISC architectures are also called load /store architectures.
The key idea is the absence of arithmetic instructions that directly operate on
memory operands (i.e., arithmetic instructions that take one or more operands from
memory). The only instructions that are allowed to access memory are load and
store instructions. The load instructions bring the data to registers and arithmetic

Microsystems, and RS/6000 from IBM. The IBM RS/6000 has evolved into the POWERPC
and POWER architecture. The ARM instruction set from ARM Limited is another RISC
instruction set.

9.1 The RISC Philosophy 435

operations operate on the data in the registers. These architectures are also called
register- register architectures because input and output operands for computation
operations are in registers. A load /store architecture inherently means that it is also
a register-register architecture.

 ● No implied operands or side-effects: Most earlier ISAs contained implied operands,
such as accumulators, or implied results (side-effects), such as �ags (condition codes),
to indicate conditions such as carry, over�ow, and negative. Implied operands and
side-effects can cause dif�culties /challenges in pipelined and parallel implementations.
A principle behind RISC architectures is to have minimal implied operands/operations
and side-effects.

The RISC philosophy has been to adhere to the above features and embrace simplic-
ity of design. The terms RISC and CISC are used very often as antonyms, but perhaps it
is not clear how reduced is the opposite of complex. It is not even clear that RISC proces-
sors have a smaller instruction set than prior CISC processors. Some RISC ISAs have
1001 instructions, whereas some CISC processors have only 80 instructions. However,
these 80 CISC instructions could assume several addressing modes. A CISC processor, the
Motorola 68020, supported up to 20 different addressing modes. Considering all the differ-
ent forms an instruction could take, most RISC ISAs do contain fewer instructions than
CISC ISAs. The key point in the RISC philosophy has been the emphasis on simplicity:
having only simple basic operations, simplifying instruction formats, reducing the num-
ber of addressing modes, and eliminating complex operations. This computing paradigm
could have been called Simple Instruction Set Computing (SISC); however, SISC sounds
like CISC.

CISC architectures are not without advantages. Instruction encoding is denser in CISC
than RISC. The �xed instruction width in RISC leads to using more bits than necessary for
some instructions. In CISC ISAs, every instruction is just as wide as it needs to be. Hence,
code size is smaller in the CISC case. If instruction memory size has to be kept small, as in
embedded environments, CISC ISAs have an advantage.

Most modern microprocessors have RISC ISAs. Some examples are the MIPS R14000,
Sun UltraSPARC, IBM PowerPC, and HP PA-RISC. The Pentium 4 or the x86 processors in
general are examples of modern processors with a CISC ISA. (The term x86 is used to refer
to the different processors that have used the ISA that originated with Intel 8086. This list
includes Intel 8086, 80286, 80386, 80486, Pentium and AMD K5, K6, Opteron, etc.)

Whether RISC or CISC is better was a topic of intense debate in the 1980s and 1990s.
It has now become understood that decoding and processing is easy with a RISC ISA; how-
ever, it also has been shown that hardware can translate complex CISC-style instructions
into RISC-style instructions and process them. Pentium 4 and other high-end x86 processors
of today have a CISC ISA; however, they use hardware to convert each CISC instruction to
one or more RISC-type instructions or microoperations (called uops or R-ops) that can be
pipelined easily. In spite of all arguments that have taken place, there is no disagreement
about the ease of implementation of RISC ISAs.

The MIPS instruction set architecture is one of the earliest RISC ISAs and is one of the
simplest ones. It only has one memory addressing mode. In contrast, another early RISC
architecture, the SPARC, has two memory addressing modes. The MIPS ISA is described
in detail in a book by Gerry Kane, MIPS RISC Architecture [28]. It is also described in the
book Computer Organization and Design: The Hardware Software Interface, by Patterson
and Hennessey [41]. A very concise description of the MIPS ISA is included here.

436 Chapter 9 Design of RISC Microprocessors

9.2 The MIPS ISA
The MIPS ISA [28,29] contains a set of simple arithmetic, logical, memory access, branch,
and jump instructions. The architecture emphasizes simplicity and excludes instructions that
could take longer than the most common instructions.

There are 32 general-purpose registers in the MIPS architecture. Each register is 32 bits
wide. The MIPS registers are often referred to as $0, $1, $2, . . . , and $31 with a $ sign. The
MIPS instructions follow a three-address format for ALU instructions, meaning they specify
two source addresses and one destination address. For example, an add instruction that adds
registers $3 and $4 and writes the result to $5 is written as

add $5, $3, $4

Each group of instructions is presented below:

9.2.1 Arithmetic Instructions
The MIPS ISA contains instructions for performing addition, subtraction, multiplication,
and division of integers. The various arithmetic instructions are summarized in Table 9-1.
Addition and subtraction of signed or unsigned quantities can be accomplished using the add,
addu, sub, and subu instructions. Signed arithmetic instructions detect over�ows, whereas
unsigned arithmetic instructions do not detect over�ows. For example, the instruction

sub $5, $3, $4

will subtract the value in register $4 from the value in register $3 and write the result to reg-
ister $5. It is a signed instruction, and over�ow will be detected.

When an over�ow is detected, it is handled as an exception. The address of the instruc-
tion that caused the exception is saved, and control is transferred to the operating system,
which handles the exception.

Addition of the contents of a register with an immediate value speci�ed in the instruction
can be done using the addi and addiu instructions. The instruction

addi $5, $3, 400

The Single-Instruction Computer

It has also been shown in the past that a microprocessor can be designed with a single
instruction. This single instruction should be able to access memory operands, do
arithmetic operations, and do control transfers. A subtract instruction that operates
on memory operands, writes results to memory, and branches to an address if the
result of the subtraction is negative can be used to write any program. Will such
a single-instruction microprocessor qualify to be called a RISC? Probably not.
Although it is a single-instruction computer, it is not a register-register architecture,
and it is not an ISA that supports simple operations. It should be classi�ed under
a CISC category since every instruction is a complex branch and memory access
 instruction. More discussion of such a computer and illustration of a program written
using the single instruction can be found in [41].

9.2 The MIPS ISA 437

will add the value in register $3 to the immediate constant 400 and write the result to register
$5. The immediate constant is sign-extended before the addition. The action of the addiu
instruction is similar, except that the addiu instruction never causes an over�ow exception.

Multiplication of two 32-bit quantities results in a 64-bit result that cannot be contained
in one MIPS register. Hence, two special registers called HI and LO are used by the MIPS
processors to hold the products. Use of implied HI and LO registers is certainly a deviation
from the RISC philosophy. Table 9-1 illustrates the multiply and divide instructions in the
MIPS ISA and the use of the HI and LO registers. The use of these special registers also
necessitates special instructions to transfer data from these registers to the required destina-
tion registers. The mfhi and m�o instructions accomplish this task.

Instruction Assembly Code Operation Comments

add add $s1, $s2, $s3 $s1 5 $s2 1 $s3 Over�ow detected

subtract sub $s1, $s2, $s3 $s1 5 $s2 2 $s3 Over�ow detected

add immediate addi $s1, $s2, k $s1 5 $s2 1 k k, a 16-bit constant, is
sign-extended and added;
2’s complement over�ow
detected

add unsigned addu $s1, $s2, $s3 $s1 5 $s2 1 $s3 Over�ow not detected

subtract unsigned subu $s1, $s2, $s3 $s1 5 $s2 2 $s3 Over�ow not detected

add immediate
unsigned

addiu $s1, $s2, k $s1 5 $s2 1 k Same as addi except no
over�ow

move from co-
processor register

mfc0 $s1, $epc $s1 5 $epc epc is exception program
counter

multiply mult $s2, $s3 Hi, Lo 5 $s2 3 $s3 64-bit signed product in
Hi, Lo

multiply unsigned multu $s2, $s3 Hi, Lo 5 $s2 3 $s3 64-bit unsigned product
in Hi, Lo

divide div $s2, $s3 Lo 5 $s2 / $s3
Hi 5 $s2 mod $s3

Lo 5 quotient,
Hi 5 remainder

divide unsigned divu $s2, $s3 Lo 5 $s2 / $s3
Hi 5 $s2 mod $s3

Unsigned quotient
and remainder

move from Hi mfhi $s1 $s1 5 Hi Copy Hi to $s1

move from Lo m�o $s1 $s1 5 Lo Copy Lo to $s1

TABLE 9-1: Arithmetic
Instructions in the
MIPS ISA

9.2.2 Logical Instructions
The logical instructions in the MIPS ISA are presented in Table 9-2. The MIPS ISA contains
logical instructions for performing bit-wise AND and OR of register contents. The and and
or instructions perform these operations for register operands. The andi and ori instruc-
tions can be used when one operand is in a register and the other operand is an immediate
constant. The sll and srl instructions are provided to perform logical left and right shifts of
register contents (with zero �ll). The number of shifts is encoded as an immediate value in
the instruction.

438 Chapter 9 Design of RISC Microprocessors

9.2.3 Memory Access Instructions
The only instructions in the MIPS ISA to access the memory are load and store instructions.
A load instruction transfers data from memory to the speci�ed register. A store instruction
transfers data from a register to the speci�ed memory address.

The RISC researchers investigated the number of addressing modes that are needed to
ef�ciently code high-level language programs such as those in C. They concluded that one
addressing mode with a base register and an offset was suf�cient. The only addressing mode
that is supported for memory instructions in the MIPS processor is this addressing mode with
one base register and a signed offset. The memory address is computed as the sum of the
register contents and the offset speci�ed in the instruction.

Consider the MIPS load instruction

lw $5, 100($4)

This instruction computes the memory address as the sum of the value in register $4 and
the offset 100. So if register $4 contains 4000, the effective address is 4100. The content of
memory location 4100 is moved to register $5 in the processor. In the case of sw $6, 100($8),
the content of register $6 is written to the memory location pointed to by the sum of the
contents of register $8 and 100.

A group of 32 bits is called a word in the MIPS world. MIPS has instructions to load and
store words, halfwords (16 bits), or bytes (8 bits). These instructions are summarized in Table 9-3.

Instruction Assembly Code Operation Comments

and and $s1, $s2, $s3 $s1 5 $s2 AND $s3 logical AND

or or $s1, $s2, $s3 $s1 5 $s2 OR $s3 logical OR

and immediate andi $s1, $s2, k $s1 5 $s2 AND k k is a 16-bit constant; k is
0-extended �rst

or immediate ori $s1, $s2, k $s1 5 $s2 OR k k is a 16-bit constant; k is
0-extended �rst

shift left logical sll $s1, $s2, k $s1 5 $s2 ,, k Shift left by 5-bit constant k

shift right logical srl $s1, $s2, k $s1 5 $s2 .. k Shift right by 5-bit constant k

TABLE 9-2: Logical
Instructions in the
MIPS ISA

Instruction Assembly Code Operation Comments

load word lw $s1, k($s2) $s1 5 Memory 3$s2 1 k 4 Read 32 bits from memory;
memory address 5 register
content 1 k; k is 16-bit
offset

store word sw $s1, k($s2) Memory 3$s2 1 k 4 5 $s1 Write 32 bits to memory;
memory address 5 register
content 1 k; k is 16-bit offset;

load halfword lh $s1, k($s2) $s1 5 Memory 3$s2 1 k 4 Read 16 bits from memory;
sign-extend and load into
register

TABLE 9-3: Memory
Access Instructions in
the MIPS ISA

9.2 The MIPS ISA 439

9.2.4 Control Transfer Instructions
Typically program execution proceeds in a sequential fashion, but loops, procedures, func-
tions, and subroutines change the program control �ow. A microprocessor needs branch and
jump instructions in order to accomplish transfer of control whenever nonsequential control
�ow is required. The MIPS ISA includes two conditional branch instructions, branch on
equal (beq) and branch on not equal (bne), as illustrated in Table 9-4.

The MIPS instruction

beq $5, $4, 25

Instruction Assembly Code Operation Comments

store halfword sh $s1, k($s2) Memory 3$s2 1 k 4 5 $s1 Write 16 bits to memory

load byte lb $s1, k($s2) $s1 5 Memory 3$s2 1 k 4 Read byte from memory;
sign-extend and load to
register

store byte sb $s1, k($s2) Memory 3$s2 1 k 4 5 $s1 Write byte to memory

load byte
unsigned

lbu $s1, k($s2) $s1 5 Memory 3$s2 1 k 4 Read byte from memory;
byte is 0-extended

load upper
immediate

lui $s1, k $s1 5 k * 216 Loads constant k to upper
16 bits of register

Instruction Assembly Code Operation Comments

branch on equal beq $s1, $s2, k If 1$s1 5 5 $s2 2 go to
PC 1 4 1 k * 4

Branch if registers
are equal; PC-relative
branch; Target 5 PC 1
4 1 Offset * 4; k is
sign-extended

branch on not
equal

bne $s1, $s2, k If 1$s1/ 5 $s2 2 go to
PC 1 4 1 k * 4

Branch if registers are
not equal; PC-relative
branch; Target 5 PC 1
4 1 Offset * 4; k is
sign-extended

set on less than slt $s1, $s2, $s3 If 1$s2 , $s3 2$s1 5 1;
else $s1 5 0;

Compare and set
(2’s complement)

set on less than
immediate

slti $s1, $s2, k If 1$s2 , k 2 $s1 5 1;
else $s1 5 0;

Compare and set; k is
16-bit constant; sign-
extended and compared

set on less than
unsigned

sltu $s1, $s2, $s3 If 1$s2 , $s3 2 $s1 5 1;
else $s1 5 0;

Compare and set; natural
numbers

set on less than
immediate
unsigned

sltiu $s1, $s2, k If 1$s2 , k 2 $s1 5 1;
else $s1 5 0;

Compare and set;
natural numbers; k,
the16-bit constant, is sign-
extended; no over�ow

TABLE 9-4: Conditional
Control Related
Instructions in the
MIPS ISA

440 Chapter 9 Design of RISC Microprocessors

will compare the contents of $5 and $4 and branch to PC 1 4 1 100 if $4 and $5 are equal.
The constant offset provided in the branch instruction is speci�ed in terms of the number
of instructions from the current PC (program counter). MIPS uses byte addressing, and
hence the offset in words is multiplied by 4 to get the offset in bytes. The program counter
is assumed to point to the next instruction at PC 1 4 already; hence the target address is
computed as PC 1 4 1 4 * offset. The offset is 16 bits long, however one bit is used for sign.
Branching is thus possible to only 1/232K.

Having only two conditional branch instructions is in contrast to CISC processors that
provide branch on less than, branch on greater than, branch on higher than, branch on lower
than, branch on carry, branch on over�ow, branch on negative, and several such conditional
branch instructions. The MIPS philosophy was that only two conditional branch instructions
are necessary and that checking of other conditions can be accomplished using combinations
of instructions. In order to facilitate checking of less than and greater than, MIPS ISA pro-
vides the set on less than (slt) instructions. These are explicit compare instructions that will
set an explicit destination register to 1 or 0 depending on the results of the compare. The slt
instruction is used along with a bne or beq instruction to create the effect of branch on less
than, branch on greater than, and so on. These instructions are used for implementing loop
and if-then-else statements from high-level languages.

The MIPS ISA also includes three unconditional jump instructions as illustrated in Table 9-5.
These instructions are used for implementing function and procedure calls and returns.

Instruction Assembly Code Operation Comments

jump j addr Go to addr * 4; i.e.,
PC 5 addr * 4

Target address
5 Imm offset * 4; addr

is 26 bits

jump register jr $reg Go to $reg; i.e.,
PC 5 $reg

$reg contains 32-bit target
address

jump and link jal addr return
address 5 PC 1 4;
go to addr * 4

For procedure call, return
address saved in the link
register $31

TABLE 9-5:
Unconditional Control
Transfer Instructions in
the MIPS ISA

The jump instruction transfers control to the address speci�ed in the instruction. Since
the MIPS instruction is 32 bits wide, the number of bits available for encoding the address
will be (32 2 number of opcode bits). In the MIPS, the opcode consumes 6 bits; therefore,
only 26 bits are available for the address in the jump instruction. In order to increase the
range of addresses to which control can be transferred, MIPS designers consider the speci�ed
address as a word address (instead of a byte address) and multiply the speci�ed address by 4
to get the resulting byte address.

The jump register (jr) instruction is an indirect jump. In contrast, the jump instruction
described in the previous paragraph is called a direct jump because the jump address is directly
speci�ed in the instruction itself. In the case of the jump register instruction, the content of
the register is used as the address to which program should transfer control to. This type of
branch instruction is very useful for implementing case statements from high-level languages.

The jump and link (jal) instruction is speci�cally designed for procedure calls. It
computes the target address from the offset speci�ed in the instruction, but in addition to
transferring control to that address, it also saves the return address in link register $31. The
return address means the address to which the program counter should return after the

9.3 MIPS Instruction Encoding 441

subroutine or procedure call is completed. The return address is equal to the current PC 1 4,
since every instruction is four bytes wide and PC 1 4 is the address of the instruction follow-
ing the current instruction (the jal instruction).

The major classes of instructions in the MIPS ISA have been described. In order to become
familiar with the instructions, some assembly language programming is illustrated below.

Write a MIPS assembly language program for the following program that adds two arrays x(i) and y(i), each of which
has 100 elements.

 for i 5 1,100, i11 ; repeat 100 times

 y 1 i 2 5 x 1 i 2 1 y 1 i 2 ; add ith element of the arrays

Assume that the x and y arrays start at locations 4000 and 8000 (decimal).

Answer:

 andi $3, $3, 0 ;initialize loop counter $3 to 0

 andi $2, $2, 0 ;clear register for loop bound

 addi $2, $2, 400 ;loop bound

$label: lw $15, 4000($3) ;load x(i) to R15

 lw $14, 8000($3) ;load y(i) to R14

 add $24, $15, $14 ;x(i) + y(i)

 sw $24, 8000($3) ;save new y(i)

 addi $3, $3, 4 ;update address register, address = address + 4

 bne $3, $2, $label ;check if loop counter = loop bound

E X A M PLE

Several microprocessors with the MIPS ISA have been designed since the MIPS R2000
was designed in the 1980s. In those days, the main processor could not integrate the �oating-
point unit. Hence, the �oating-point units were implemented as a math coprocessor, the
MIPS R2010. Nowadays, the �oating-point unit is integrated with the main CPU. The MIPS
R2000 was followed by MIPS R3000, R4000, R8000, R10000, R12000, and the R14000. They
all have the MIPS ISA but different implementations with different levels of pipelining and
different techniques to obtain high performance.

9.3 MIPS Instruction Encoding
Adhering to the RISC philosophy, all instructions in the MIPS processor have the same
width, 32 bits. In a move toward simplicity, there are only three different instruction formats
for the MIPS instructions. The three formats are called R-format, I-format, and J-format, as
illustrated in Table 9-6.

442 Chapter 9 Design of RISC Microprocessors

The R-format is primarily for ALU instructions which require three operands. These
ALU instructions have two source operands (input registers) and one destination address
(result register) to be speci�ed. The jump register instruction (jr) also uses this format. The
instruction consists of six �elds, the �rst of which is the 6-bit opcode �eld. The opcode �eld is
followed by the three register �elds rs, rt, and rd, each of which takes 5 bits. The �rst two are
the source register �elds, and the third one is the destination register �eld. The next �eld is
called shift amount (shamt) �eld, which is used to specify the amount of shifting to be done
in shift instructions. Any number between 0 and 31 can be speci�ed as the shift amount. This
�eld is used only in shift instructions. The last �eld is an additional opcode �eld, called the
function �eld funct or F_code. The �rst opcode �eld can encode only 26 or 64 instructions.
The MIPS processor does have more than 64 instructions considering the different variations
of loads (byte load, halfword load, word load, �oating-point loads, etc.). Hence, more than
6 bits are required to fully specify an instruction. The MIPS designers chose a scheme in
which the �rst 6 bits are 0 for the R-format instructions, and then an additional �eld (the last
6 bits of the instruction) is used to further identify the instruction.

The I-format is for arithmetic instructions, load/store instructions, and branch instruc-
tions that need an immediate constant to be speci�ed in the instruction. These instructions
need only two registers to be speci�ed in addition to the immediate constant. The opcode
�eld takes 6 bits, and the two register �elds take 5 bits each. The remaining 16 bits are used
as an immediate constant to specify an operand for instructions such as addi, or to specify
the offset in a load/store instruction or to specify the branch offset in a conditional branch
instruction.

The J-format is for jump instructions. The �rst 6 bits of the instruction word are used
for the opcode, and the remaining 26 bits are used to specify the jump offset. Since the jump
offset is speci�ed as a word address rather than byte address, the offset is �rst multiplied by
4 and then concatenated to the highest 4 bits of the PC to get the 32-bit target address. MIPS
uses byte addressing for accessing instructions and data.

Table 9-7 illustrates the instruction encoding for the MIPS instructions discussed thus
far. The opcode, source, and destination are assigned the same �eld in the instruction format
as much as possible. The �rst 6 bits (bits 31–26) are for the opcode in all the three different
formats. The source and destination register �elds are in similar positions (bits 25–21, bits
20–16, and bits 15–11) as much as possible. This greatly simpli�es decoding.

The encoding is very regular; however, compromises had to be made to accommodate
various instructions into the same width. For instance, the destination register appears in
different �elds in three-register and two-register formats. Similarly, in a load instruction, the

Format Fields Used by

6 bits
31–26

5 bits
25–21

5 bits
20–16

5 bits
15–11

5 bits
10–6

6 bits
5–0

R-format opcode rs rt rd shamt F_code
(funct)

ALU instructions
except immediate,
Jump Register (JR)

I-format opcode rs rt offset/immediate Load, store, Immediate
ALU, beq, bne

J-format opcode target address Jump (J), Jump and
Link (JAL)

TABLE 9-6: Instruction
Formats in the
MIPS ISA

9.3 MIPS Instruction Encoding 443

second register �eld is a destination register; whereas in a store instruction, it is the source of
the data to be stored. In spite of these irregularities, the encoding is largely regular.

To increase the familiarity with the MIPS instruction encoding, let us practice some
machine coding.

Name Format

Fields Instruction
(operation dest,

src1, src2)
Bits

31–26
Bits

25–21
Bits

20–16
Bits

15–11
Bits
10–6

Bits
5–0

add R 0 2 3 1 0 32 add $1, $2, $3

sub R 0 2 3 1 0 34 sub $1, $2, $3

addi I 8 2 1 100 addi $1, $2, 100

addu R 0 2 3 1 0 33 addu $1, $2, $3

subu R 0 2 3 1 0 35 subu $1, $2, $3

addiu I 9 2 1 100 addiu $1, $2, 100

mfc0 R 16 0 1 14 0 0 mfc0 $1, $epc

mult R 0 2 3 0 0 24 mult $2, $3

multu R 0 2 3 0 0 25 multu $2, $3

div R 0 2 3 0 0 26 div $2, $3

divu R 0 2 3 0 0 27 divu $2, $3

mfhi R 0 0 0 1 0 16 mfhi $1

m�o R 0 0 0 1 0 18 m�o $1

and R 0 2 3 1 0 36 and $1, $2, $3

or R 0 2 3 1 0 37 or $1, $2, $3

andi I 12 2 1 100 andi $1, $2, 100

ori I 13 2 1 100 ori $1, $2, 100

sll R 0 0 2 1 10 0 sll $1, $2, 10

srl R 0 0 2 1 10 2 srl $1, $2, 10

lw I 35 2 1 100 lw $1, 100($2)

sw I 43 2 1 100 sw $1, 100($2)

lui I 15 0 1 100 lui $1, 100

beq I 4 1 2 25 beq $1, $2, 25

bne I 5 1 2 25 bne $1, $2, 25

slt R 0 2 3 1 0 42 slt $1, $2, $3

slti I 10 2 1 100 slti $1, $2, 100

sltu R 0 2 3 1 0 43 sltu $1, $2, $3

sltiu I 11 2 1 100 sltiu $1, $2, 100

j J 2 2500 j 2500

jr R 0 31 0 0 0 8 jr $31

jal J 3 2500 jal 2500

TABLE 9-7: Instruction
Encoding for the MIPS
Instructions

444 Chapter 9 Design of RISC Microprocessors

E X A M PLE

Create the machine code equivalent of the following assembly language program.

 andi $3, $3, 0 ; initialize loop counter $3 to 0
 andi $2, $2, 0 ; clear register for loop bound
 addi $2, $2, 4000 ; loop bound register
$label: lw $15, 4000($3) ; load x(i) to R15
 lw $14, 8000($3) ; load y(i) to R14
 add $24, $15, $14 ; x(i) + y(i)
 sw $24, 8000($3) ; save new y(i)
 addi $3, $3, 4 ; update address register, address = address + 4
 bne $3, $2, $label ; Check if loop counter = loop bound

Answer:

The �rst instruction

 andi $3, $3, 0

can be translated as follows. Table 9-7 shows that the opcode for andi is 12. Hence, the �rst 6 bits for the �rst instruction
will be 001100, as indicated in row 1 (after the header row) of Table 9-8. The source register �eld is next. It should be
00011 because the source register is $3. The destination register �eld is next. It should be 00011 because the destination
register is $3. The immediate constant is 0 and leads to sixteen 0’s in bits 0 to 15. This explains the contents of row 1. In
hex representation, it becomes 3063 0000.

The encoding of the last instruction is explained: bne $3, $2, label. The opcode is 5 (i.e., 000101). The next �eld
corresponds to register $3, so it is 00011. The next �eld is 00010 to indicate the register $2. The byte offset should be
224, but the instruction is supposed to contain the word offset, which is 224 divided by 4 (i.e., 26). In 2’s complement
representation, it is 1010. Sign extending to �ll the 16 bits, the result is 1111111111111010, which will occupy bits 0 to 15.

Machine code corresponding to all the instructions is shown in Table 9-8.

Instruction
Bits

31–26
Bits

25–21
Bits

20–16
Bits

15–11
Bits
10–6

Bits
5–0

Equivalent
Hex

andi $3, $3, 0 001100 00011 00011 00000 00000 000000 3063 0000

andi $2, $2, 0 001100 00010 00010 00000 00000 000000 3042 0000

addi $2, $2, 4000 001000 00010 00010 00001 11110 100000 2042 0FA0

lw $15, 4000($3) 100011 00011 01111 00001 11110 100000 8C6F 0FA0

lw $14, 8000($3) 100011 00011 01110 00011 11101 000000 8C6E 1F40

add $24, $15, $14 000000 01111 01110 11000 00000 100000 01EE C020

sw $24, 8000($3) 101011 00011 11000 00011 11101 000000 AC78 1F40

addi $3, $3, 4 001000 00011 00011 00000 00000 000100 2063 0004

bne $3, $2, 26 000101 00011 00010 11111 11111 111010 1462 FFFA

TABLE 9-8: MIPS
Machine Code for
Example. Binary
as Well as Hex
Representations Shown

9.4 Implementation of a MIPS Subset 445

9.4 Implementation of a MIPS Subset
This section, describes a simple implementation of a subset of the MIPS ISA, This subset,
illustrated in Table 9-9, includes most of the important instructions, including ALU, memory
access, and branch instructions. A naïve implementation of this instruction set is presented in

Arithmetic add
subtract
add
immediate

Logical and
or
and immediate
or immediate
shift left logical
shift right logical

Data Transfer load word
store word

Conditional branch branch on equal
branch on not equal
set on less than

Unconditional branch jump
jump register

TABLE 9-9: Subset
of MIPS Instructions
Implemented in This
Chapter

this section. Modern microprocessors implement features such as multiple instruction issue,
out-of-order execution, branch prediction, and pipelining. For the sake of simplicity, what
is presented here is a simple in-order, nonpipelined implementation. Some of the exercise
problems describe other implementations that will provide better performance.

9.4.1 Design of the Data Path
In order to design a microprocessor, �rst the sequence of operations during execution of
instructions is examined, and then the nature of the hardware required to accomplish the
instruction execution is described. In general, any microprocessor works in the following
manner:

1. The processor fetches an instruction.
2. It decodes the instruction that was fetched. Decoding means identifying what the instruc-

tion is.
3. It reads the operands and executes the instruction. For a RISC ISA, for arithmetic

instructions, the operands are in registers. The registers that contain the input operands
are called source registers. For memory access instructions, addresses are computed using
registers, and memory is accessed. After execution, the processor writes the result of the
instruction execution into the destination. The destination is a register for all instructions
other than the store instruction, which has to write the result into the memory.

446 Chapter 9 Design of RISC Microprocessors

Hence, the design must contain a unit to fetch the instructions, a unit to decode the
instructions, an arithmetic and logic unit (ALU) to execute the instructions, a register �le to
hold the operands, and the memory that stores instructions and data. These components are
described in the following subsections.

Instruction Fetch Unit
In general, a microprocessor has a special register called the program counter (PC), which
points to the next instruction in the instruction memory. The PC sends this address to the
instruction memory (or the instruction caches), which sends the instruction back. The proces-
sor increments the PC to point to the next instruction to be fetched. A block diagram for this
unit is shown in Figure 9-1.

FIGURE 9-1: Block
Diagram for Instruction
Fetch

Read
address

PC Instruction

Instruction memory
M

U

X

PC + 4

PC_Branch

PC_Jump

PC_JR

Select

The next PC is one of the following, depending on the current instruction:

a. PC 1 4: For instructions other than branch and jump instructions, the next instruction
is at address PC 1 4, since four bytes are needed for the current instruction.

b. PC_Branch: In the branch (bne and beq) instructions, the next PC is obtained by add-
ing the offset in the instruction to the current PC. In the MIPS ISA, the branch offset
is provided as a signed-word offset (number of words to jump forward or backward).
First the word offset is sign-extended, converted to a byte offset by multiplying by 4,
and then it is added to the current PC. Thus, the next PC for branch instructions is

PC_Branch 5 PC 1 4 1 Offset * 4

c. PC_Jump: In the jump (J) instruction, the new target is provided in the instruction. In
the MIPS ISA, the opcode takes 6 out of the 32 bits. Hence, the biggest jump address
that can be encoded is only 26 bits. In order to compute the 32-bit jump address, first,
the 26-bit word address in the instruction is shifted twice to the left, resulting in a 28-bit
address, which is a byte address. Then it is concatenated with the four highest bits of
the PC, yielding a 32-bit address. Thus, the next PC for jump instructions is

PC_Jump 5 PC31..28 0 0 Address * 4

 where 0 0 stands for concatenation.

d. PC_JR: In the jump register (JR) instruction, the jump target is obtained from the
register specified in the instruction. Thus, the next PC for a JR instruction is

PC_JR 5 3REG 4
 where [REG] indicates contents of the register.

9.4 Implementation of a MIPS Subset 447

The appropriate target addresses are computed and fed to the PC. A multiplexer is used to
select among the branch target, jump target, jump register target, or PC 1 4, depending on
the instruction.

There are several choices as to when the target addresses are computed. The default tar-
get, PC 1 4, can be computed at instruction fetch itself, since it needs no other information
other than the PC itself. In conditional branch instructions, the branch target (PC_Branch)
computation can be done as soon as the instruction is read; however, whether the branch is
taken or not will not be known until the registers are read and compared. In the case of the
jump instruction, the target (PC_Jump) can be computed as soon as the instruction is fetched,
since the information for the target is available in the instruction itself. In a jump register (jr)
instruction, the branch target (PC_JR) can be computed after the register is read.

Instruction Decode Unit
Decoding is fairly simple due to the simplicity of the RISC ISA. It can be observed from
Table 9-7 that the instruction formats in the MIPS ISA are very regular and uniform. The
�rst 6 bits of the instruction specify the opcode in most cases. But, as described in Section 9.3,
for the R-format ALU instructions, the �rst 6 bits are 0, and the last 6 bits of the instruction,
called F_code, need to be used to further identify the instruction.

The opcode is used to identify the instruction and the instruction format used by the
instruction. The uniformity of the instruction format allows many of the instruction �elds to
be directly used for register addressing and control signal generation. The instruction opcode
bits are fed to a control unit that generates the various control signals.

Instruction Execution Unit
Once the instruction is identi�ed at the decode stage, the next task is to read the operands
and perform the operation. In RISC instruction sets, the operands are in registers. The
MIPS architecture contains 32 registers, and these registers are collectively referred to as
the register �le. The register �le should have at least two read ports to support reading two
operands at the same time, and it should have one write port.

The operation of the register �le is as follows. The registers that hold the input operands
are called source registers, and the register that should receive the result is called the destina-
tion register. The source register addresses are applied to the register �le. The register �le
will produce the data from the corresponding registers on the output data lines. This data is
fed to the arithmetic and logic unit (ALU), which executes the instruction. The ALU con-
tains functional units such as adders and shifters. It may also include more complex units such
as multipliers, although our restricted design here does not include multiplication.

In most instructions, the result from the ALU should be written into the destination
register. To accomplish this, the ALU result is applied to the input data lines of the register
�le. The destination register name and the register write (RegW) command is applied to the
register �le. That causes the input data to get written into the destination register.

Figure 9-2 shows a block diagram of the datapath that is required to execute the ALU
and memory instructions. The data path includes an ALU, which will perform the following
operations: add, sub, and, and or. In the case of R-format instructions, both operands for
the ALU are read from the register �le. In the case of the I-format instructions, the immedi-
ate constant in the instruction is sign-extended to create the second operand. Since one of
the ALU operands comes from either the register �le or the sign extender, a multiplexer is
required to select the appropriate operand.

The ALU is also required for nonarithmetic instructions. For memory access instruc-
tions, address needs to be calculated. The ALU can be used for calculating the address.
For address calculation for load and store instructions, the �rst operand is obtained from the

448 Chapter 9 Design of RISC Microprocessors

register speci�ed in the instruction and the second operand is obtained by sign-extending the
immediate offset speci�ed in the instruction.

The ALU is required for conditional branch instructions also. As you know, MIPS
has only two branch instructions, branch on equal (beq) and branch not equal (bne). The
comparison for determining whether the registers are equal can be done by the ALU. Both
operands for this comparison can be obtained from the register �le. The data path also has
to include a data memory unit because load and store instructions have to access the data
memory unit. Modern microprocessors contain on-chip data caches. You will not be design-
ing a data cache memory; however, assume the presence of on-chip data memory that can be
accessed by the instructions in one cycle after the data address is provided to the memory.

Overall Data Path
The overall data path is shown in Figure 9-3. It integrates the fetch and execute hardware
from Figures 9-1 and 9-2 and adds other required elements for correct operation. In addition,
control signals are shown.

FIGURE 9-2: Required Data Path for Computation and Memory Instructions

ALU
 Read
 data

 Address

Data memory

 Write
 data

Sign extend

 16 32

Source
 register 1

 Registers

 Source
 register 2

 Destination
 register

Write
data

SR1
Data

 SR2
 Data

SR1

SR2

DR

 Immediate
 offset

M

U

X

M

U

X

Figure 9-3 also shows use of several multiplexers and how the different bits of the instruc-
tion are connected to the register �le. As Table 9-6 illustrates, bits 21 to 25 of the instruction
contains one of the source register addresses in all ALU instructions. Hence, these bits can
be directly connected to the �rst source register address of the register �le. Any instruction
with a second register source contains the register address in bits 16 to 20. Hence, these bits
can also be directly connected to the source register address of the register �le. However, the
destination register address appears in different �elds in different instructions. In R-format
instructions, the destination register address appears in bits 11 to 15. In I-format instruc-
tions, however, the destination address is in bits 16 to 20. Hence, a multiplexer is required to
choose the appropriate destination register address. Another multiplexer chooses between
the immediate operand or register operand for the ALU. A third multiplexer is used to select
whether ALU output or memory data will be written to the destination register.

9.4 Implementation of a MIPS Subset 449

FIGURE 9-3: Overall Data Path

ALU

Instruction [25 – 21]

Read
data

Address

Data memory

Write
data

Sign Extend

16 32

Source
register 1 (SR1)

 Registers

Source
register 2 (SR2)

Destination
register 1

Write
data

SR1
Data

SR2
Data

A

d

d

PC

4

Adder
Shift
left 2

Shift
left 2

Instruction [20 – 16]

Instruction [15 – 11]

Instruction
[15 – 0]

Instruction[25 – 0] Jump address [31 – 0]

Instruction
[31 – 0]

Instruction memory

Read
address

Control unit

 26 28

PC + 4 [31 – 28]

PC_Jump

PC + 4

PC_Branch

PC_JR

Next PC

PCSelect

Control signals

ALU or MEM

REG or IMM

DRSelect

RegW

OP

M

U

X

4

M

U

X

2

M

U

X

3

M

U

X

1

Figure 9-3 also illustrates the details of the computation of the target addresses in the
various kinds of instructions. Default next address of PC 1 4 is calculated with an adder.
Addition of the branch offset to the PC is also done using a separate adder. A multiplexer is
used to select the appropriate PC.

In summary:

 ● MUX 1 selects a destination register address from an appropriate register �eld depending on
the instruction format. For R-format instructions, bits 20–16 yield the destination address,
and for I-format instructions, bits 15–11 of instruction provide the destination address.

 ● MUX 2 selects whether the second operand for ALU comes from a register or an immedi-
ate constant. For R-format ALU instructions and conditional branch instructions, the regis-
ter is chosen. For I-format ALU instructions, the immediate constant provides the operand.

 ● MUX 3 selects between the memory or the ALU output for data to go into the destina-
tion register. For load instructions, the memory data is chosen.

 ● MUX 4 selects between the four possible next PC values depending on the type of instruction.

9.4.2 Instruction Execution Flow
Figure 9-4 illustrates the �ow of execution for a possible implementation.

The �rst step is fetch for all instructions. The address in the program counter (PC) is sent
to the instruction memory unit. All instructions also need to update the PC to point to the

450 Chapter 9 Design of RISC Microprocessors

next instruction. While PC should be updated differently for branch or jump instructions, the
vast majority of instructions are in sequence, and hence PC can be updated to point to the next
instruction in sequence. Branch and jump instructions can later modify the PC appropriately.

The second step is decode. Depending on the opcode that is encountered, different
actions follow. For R-type instructions, and for some I-type instructions (e.g., bne and beq),
both ALU operands are read from registers. For other I-type instructions, one operand is
read from the register �le and the immediate constant in the instruction is sign-extended as
the other operand. Reading of a register source satis�es requirements for a jump register (jr)
instruction, which is an R-type instruction. The ALU operation required for each instruction
is identi�ed during the decode step. For instance, the bne and beq instructions need a subtract
operation. The load and store instructions require an add operation. If the jump opcode is
encountered, a jump target is calculated. Since the jump instruction does not need any fur-
ther action, �ow of control can go to step 1.

Step 3 is the actual execution of the instructions. Depending on the instruction, different
ALU operations are performed during this step. The different actions are shown in boxes
labeled 3a, 3b, and so on for the different types of instructions. Each instruction goes through
only one of these operations, depending on what type of instruction it is. All instructions
other than the jump instruction must come to this step. The jump register (jr) instruction
does not need any arithmetic operation, but the content of the register fetched during step 2
must be loaded into the PC. For load and store instructions, the ALU performs an addition
to calculate the memory address.

FIGURE 9-4: Flow Chart for Instruction Processing

Fetch instruction
PC = PC + 4

Decode

Read two
operands

Perform
ALU operation

Write result to
destination reg

Read address reg

Add reg with offset
to get address

Access memory

Read address reg Read registers

Compare them

Load data to reg

Write data to
address in memory

If condition true
PC = PC + 4 + offset

PC = PC31..28 ||
Offset * 4

Add reg with offset
to get address

ALU Load Store Branch
(conditional)

Jump

Read register

PC = [Reg]

JR

1

2

3a 3b 3c 3d 3e

4a 4b 4c 4d

5

9.5 VHDL Model of the MIPS Subset 451

Step 4 varies widely between the instructions. Arithmetic and logic instructions (of
R-type and I-type) can write their computation result to the destination register. Branch
instructions must examine their condition and decide to take the branch or not. If the branch
is to be taken, the branch target address is calculated. For load instructions, a memory read
operation is initiated. For memory store instructions, the data from the second source regis-
ter is steered to the memory, and a memory write operation is initiated. This is the �nal step
for all instructions other than load instructions.

Step 5 is required only for load instructions. The data output from memory is written into
the destination register.

This instruction �ow can be implemented in a variety of ways. In the most naïve imple-
mentation, you can have a very slow clock and the processor performs all operations required
for each instruction in one clock cycle. The disadvantage with this scheme is that all instruc-
tions will be as slow as the slowest instruction because the clock cycle has to be long enough
for the slowest instruction. Another option is to do an implementation where each instruc-
tion takes multiple cycles, but just enough cycles to �nish all operations for each class of
instruction. For instance, Figure 9-4 can be considered as an SM chart with each box taking
one cycle. In this case, a jump instruction can �nish in two cycles, while an ALU instruction
needs four cycles and a load instruction takes �ve cycles. The next section, presents the
VHDL model of such an implementation.

9.5 VHDL Model of the MIPS Subset
The VHDL model for the processor is organized as in Figure 9-5. The instruction memory,
data memory, and register �le are created as components with their architecture and entity
descriptions. The main code, the MIPS entity embeds the control sequencing the instruc-
tions through the various stages of its operation. The instruction and data memory units are
combined to be a single memory for simplicity, and the use of the address and data buses is
illustrated. Later, when a test bench is used, the test bench is allowed to directly write into
the instruction memory in order to deposit instructions to be tested.

FIGURE 9-5:
Organization of the
VHDL Model for the
Processor

Entity
Architecture

Entity
Architecture

MIPS

Entity
Architecture

Register
�le

Entity
Architecture

Memory

Complete
MIPS

Data

Addr

Let us model the register and memory components �rst.

452 Chapter 9 Design of RISC Microprocessors

9.5.1 VHDL Model for the Register File
Figure 9-6 shows the VHDL model for the register �le. The REG entity is used to represent
the 32 MIPS registers. Each register is 32 bits long. The destination register address is DR,
and the source register addresses are SR1 and SR2. Since there are 32 registers, DR, SR1, and
SR2 are 5 bits each. The outputs ReadReg1 and ReadReg2 are the contents of the registers
speci�ed by SR1 and SR2. ReadReg1 is fed straight to the ALU. ReadReg2 can be used as
a second ALU input, or as the input to data memory in the case of store instructions. The
control signal RegW is used to control the write operation to the register �le. If RegW is true,
the data on lines Reg_In is written into the register pointed to by DR.

If this code is synthesized for a Xilinx Spartan FPGA, the reads have to be performed
asynchronously as in the provided code in order to get the register �le mapped into distrib-
uted RAM. As you know from Chapter 6, the Xilinx Spartan/Virtex FPGAs contain dedi-
cated block RAM. It is desirable to perform reads synchronously; however, then the register
�le gets synthesized into BlockRAM with current Xilinx synthesis tools. The asynchronous
reads were used to allow generation of distributed RAM for the register �le.

FIGURE 9-6: VHDL Code for Register File

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

entity REG is
port(CLK: in std_logic;
 RegW: in std_logic;
 DR, SR1, SR2: in unsigned(4 downto 0);
 Reg_In: in unsigned(31 downto 0);
 ReadReg1, ReadReg2: out unsigned(31 downto 0));
end REG;

architecture Behavioral of REG is
 type RAM is array (0 to 31) of unsigned(31 downto 0);
 signal Regs: RAM := (others => (others => '1')); -- set all reg bits to '1'
begin
 process(clk)
 begin
 if CLK = '1' and CLK'event then
 if RegW = '1' then
 Regs(to_integer(DR)) <= Reg_In;
 end if;
 end if;
 end process;
 ReadReg1 <= Regs(to_integer(SR1)); -- asynchronous read
 ReadReg2 <= Regs(to_integer(SR2)); -- asynchronous read
end Behavioral;

9.5.2 VHDL Model for Memory
Figure 9-7 illustrates the VHDL code for the memory unit. The VHDL model is similar to
the SRAM model that you did in Chapter 8. This SRAM model has tristated input-output

9.5 VHDL Model of the MIPS Subset 453

lines and allows easy testing with a test bench, where the test bench can write instructions
into the memory and the processor can read instruction and read/write data. The test bench
and the processor can drive the data bus of the memory. Although Figure 9-3 illustrated
separate instruction and data memories, for convenience and for illustrating the use of
address and data buses, a uni�ed memory module which stores both instructions and data is
used. The memory consists of 128 locations, each 32 bits wide. Assume that the instructions
are the �rst 64 words in the array, and the other 64 words are allocated for data memory. The
signal Address speci�es the location in memory to be read from or stored to. The address bus
is actually 32 bits wide, but only the seven lower bits are used since only a small memory is
implemented.

The address bus will be driven by the processor appropriately for instruction and data
access. The address input may come from the program counter for reading the instruction,
or from the ALU that computes the address to access the data portion of the memory.

FIGURE 9-7: VHDL Code for the Uni�ed Instruction/Data Memory

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

entity Memory is
 port(CS, WE, Clk: in std_logic;
 ADDR: in unsigned(31 downto 0);
 Mem_Bus: inout unsigned(31 downto 0));
end Memory;

architecture Internal of Memory is
 type RAMtype is array (0 to 127) of unsigned(31 downto 0);
 signal RAM1: RAMtype := (others => (others => '0'));
 signal output: unsigned(31 downto 0);
begin
 Mem_Bus <= (others => 'Z') when CS = '0' or WE = '1'
 else output;
 process(Clk)
 begin
 if Clk = '0' and Clk'event then
 if CS = '1' and WE = '1' then
 RAM1(to_integer(ADDR(6 downto 0))) <= Mem_Bus;
 end if;
 output <= RAM1(to_integer(ADDR(6 downto 0)));
 end if;
 end process;
end Internal;

The chip select (CS) and write enable (WE) signals allow the processor to control the reads
and writes. When CS and WE are true, the data on Mem_Bus gets written to the memory
location pointed to by address ADDR.

For simplicity, the address is shown as a word address in the VHDL code for the memory.
Hence, branch and jump offsets are used as such in Figure 9-8 without multiplying by 4.

454 Chapter 9 Design of RISC Microprocessors

In the actual MIPS processor, the memory is byte-addressable. Therefore, each instruction
memory access should obtain the data found in the speci�ed location concatenated with the
next three memory locations. For example, if address 5 0, the instruction register must be
loaded with the contents of MEM[0], MEM[1], MEM[2], and MEM[3]. The instructions are
stored depending on the endianness of the machine (See sidebar). Many modern micropro-
cessors support both big-endian and little-endian approaches.

9.5.3 VHDL Code for the MIPS Processor CPU
This section, presents the VHDL code for the central processing unit (CPU) of the micro-
processor. The register module that was created in the earlier section is used here. Figure 9-8

Little-Endian and Big-Endian

When you store 16-bit or 32-bit data into byte-addressable memory, there are two
possible ways to store the data: little-endian and big-endian. In a little-endian system,
the least signi�cant byte in the sequence is stored �rst. In a big-endian system, the
most signi�cant byte in the sequence is stored at the lowest storage address (i.e., �rst).
Let us consider how a MIPS instruction will be stored into byte-addressable memory
in the two systems. The MIPS instruction andi $3, $3, 0 will be encoded as 30630000
(hex). When this instruction is stored at address 2000, depending on whether big-
endian or little-endian system is used, the memory will look as follows:

Address

Big-Endian
Representation of

30630000hex

Little-Endian
Representation of

30630000hex

2000 30 00

2001 63 00

2002 00 63

2003 00 30

shows a VHDL model for the MIPS instructions in Table 9-9. The VHDL model generally
follows the �ow in Figure 9-4, implementing the fetch, decode, and execute phases of an
instruction. In order to increase the readability of the code, several aliases are de�ned. The
most signi�cant 6 bits of the instruction are denoted by the alias Opcode. The lowest 6 bits
of the instruction are denoted with the alias F_Code. The shift amount in shift instructions
is denoted using NumShift. The two register source �elds are aliased to SR1 and SR2. The
following statements accomplish this aliasing:

alias opcode: unsigned(5 downto 0) is Instr(31 downto 26);
alias SR1: unsigned(4 downto 0) is Instr(25 downto 21);
alias SR2: unsigned(4 downto 0) is Instr(20 downto 16);
alias F_Code: unsigned(5 downto 0) is Instr(5 downto 0);
alias NumShift: unsigned(4 downto 0) is Instr(10 downto 6);

For readability of the code, constant declarations are also used to associate the various
opcodes with the corresponding codes from Table 9-7. For instance, the load instruction

9.5 VHDL Model of the MIPS Subset 455

lw has 35 as its opcode, and the store instruction sw has 43 as its opcode. Several statements,
such as the following, are used in order to denote the various opcodes:

constant lw : unsigned(5 downto 0) := "100011"; -- 35
constant sw : unsigned(5 downto 0) := "101011"; -- 43

Sign extension of the immediate quantity is accomplished by the following statement:

Imm_Ext <= x"FFFF"&Instr(15 downto 0) when Instr(15) = '1' else
 x"0000"&Instr(15 downto 0);

Following are the signals used in the VHDL model:

MIPS Processor Model Signals:

CLK (input) Clock.

Rst (input) Synchronous reset.

CS (output) Memory chip select. When CS is active and WE is inactive, the memory module outputs the
memory contents at the address speci�ed by Addr to mem_bus.

WE (output) Memory write enable. When WE and CS are active, the memory module stores the contents of
mem_bus to the location speci�ed by Addr during the falling edge of the clock.

Addr (ouput) Memory address. During state 0 (fetch instruction from memory), Addr is connected to the PC.
Otherwise, it is connected to the ALU result (32 bits).

Mem_Bus (in/out) Tristate memory bus; carries data to and from the memory module. The MIPS module outputs
to the bus during memory writes. The memory module outputs to the bus during memory reads.
When not in use, the bus is at “hi-Z” (32 bits).

Op ALU operation select; determines the speci�c operation (e.g., add, and, or) to be performed by
ALU. Determined during decode.

Format Indicates whether the current instruction is of R, I, or J format.

Instr The current instruction (32 bits).

Imm_Ext Sign-extended immediate constant from the instruction (32 bits).

PC Current program counter (32 bits).

NPC Next program counter (32 bits).

ReadReg1 Contents of the �rst source register (SR1) (32 bits).

ReadReg2 Contents of the second source register (SR2) (32 bits).

Reg_In Data input to registers. When executing a load instruction, Reg_In is connected to the memory
bus. Otherwise, it is connected to the ALU result (32 bits).

ALU_InA First operand for the ALU (32 bits).

ALU_InB Second operand for the ALU. ALU_InB is connected to Imm_Ext during immediate mode
instructions. Otherwise, it is connected to ReadReg2 (32 bits).

ALU_Result Output of ALU (32 bits).

ALUorMEM Select signal for the Reg_In multiplexer; indicates if the register input should come from the
memory, or the ALU.

456 Chapter 9 Design of RISC Microprocessors

Two processes are used in the code. Since you have used separate clock cycles for the
fetch operation, decode operation, execute operation, and so on, it is necessary to save sig-
nals created during each stage for later use. The statements such as

OpSave <= Op;
REGorIMM_Save <= REGorIMM;
ALUorMEM_Save <= ALUorMEM;
ALU_Result_Save <= ALU_Result;

are used in the clocked process (the second process) for saving (explicit latching) of the
relevant signals.

MIPS Processor Model Signals:

REGorIMM Select signal for the ALU_InB multiplexer; determines if the second ALU operand is a register
output or sign extended immediate constant.

RegW Indicates if the destination register should be written to. Some instructions do not write any
results to a register (e.g., branch, store).

FetchDorI Select signal for the Address multiplexer; determines if Addr is the location of an instruction to
be fetched, or the location of data to be read or written.

Writing Control signal for the MIPS processor output to the memory bus. Except during memory writes,
the output is “hi-Z” so the bus can be used by other modules. Note Writing cannot be replaced
with WE because WE is of mode out. Writing is used in mode in too.

DR Address of destination register (5 bits).

State Current state.

nState Next state.

FIGURE 9-8: VHDL Code for the MIPS Subset Implementation

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

entity MIPS is
 port(CLK, RST: in std_logic;
 CS, WE: out std_logic;
 ADDR: out unsigned (31 downto 0);
 Mem_Bus: inout unsigned(31 downto 0));
end MIPS;

architecture structure of MIPS is
 component REG is
 port(CLK: in std_logic;
 RegW: in std_logic;
 DR, SR1, SR2: in unsigned(4 downto 0);
 Reg_In: in unsigned(31 downto 0);
 ReadReg1, ReadReg2: out unsigned(31 downto 0));

9.5 VHDL Model of the MIPS Subset 457

 end component;
 type Operation is (and1, or1, add, sub, slt, shr, shl, jr);
 signal Op, OpSave: Operation := and1;
 type Instr_Format is (R, I, J); -- (Arithmetic, Addr_Imm, Jump)
 signal Format: Instr_Format := R;
 signal Instr, Imm_Ext: unsigned (31 downto 0);
 signal PC, nPC, ReadReg1, ReadReg2, Reg_In: unsigned(31 downto 0);
 signal ALU_InA, ALU_InB, ALU_Result: unsigned(31 downto 0);
 signal ALU_Result_Save: unsigned(31 downto 0);
 signal ALUorMEM, RegW, FetchDorI, Writing, REGorIMM: std_logic := '0';
 signal REGorIMM_Save, ALUorMEM_Save: std_logic := '0';
 signal DR: unsigned(4 downto 0);
 signal State, nState: integer range 0 to 4 := 0;
 constant addi: unsigned(5 downto 0) := "001000"; -- 8
 constant andi: unsigned(5 downto 0) := "001100"; -- 12
 constant ori: unsigned(5 downto 0) := "001101"; -- 13
 constant lw: unsigned(5 downto 0) := "100011"; -- 35
 constant sw: unsigned(5 downto 0) := "101011"; -- 43
 constant beq: unsigned(5 downto 0) := "000100"; -- 4
 constant bne: unsigned(5 downto 0) := "000101"; -- 5
 constant jump: unsigned(5 downto 0) := "000010"; -- 2
 alias opcode: unsigned(5 downto 0) is Instr(31 downto 26);
 alias SR1: unsigned(4 downto 0) is Instr(25 downto 21);
 alias SR2: unsigned(4 downto 0) is Instr(20 downto 16);
 alias F_Code: unsigned(5 downto 0) is Instr(5 downto 0);
 alias NumShift: unsigned(4 downto 0) is Instr(10 downto 6);
 alias ImmField: unsigned (15 downto 0) is Instr(15 downto 0);
begin
 A1: Reg port map (CLK, RegW, DR, SR1, SR2, Reg_In, ReadReg1, ReadReg2);
 Imm_Ext <= x"FFFF" & Instr(15 downto 0) when Instr(15) = '1'
 else x"0000" & Instr(15 downto 0); -- Sign extend immediate field
 DR <= Instr(15 downto 11) when Format = R
 else Instr(20 downto 16); -- Destination Register MUX (MUX1)
 ALU_InA <= ReadReg1;
 ALU_InB <= Imm_Ext when REGorIMM_Save = '1' else ReadReg2; -- ALU MUX (MUX2)
 Reg_in <= Mem_Bus when ALUorMEM_Save = '1' else ALU_Result_Save; -- Data MUX
 Format <= R when Opcode = 0 else J when Opcode = 2 else I;
 Mem_Bus <= ReadReg2 when Writing = '1' else
 "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ"; -- drive memory bus only during writes
 ADDR <= PC when FetchDorI = '1' else ALU_Result_Save; --ADDR Mux

 process(State, PC, Instr, Format, F_Code, opcode, Op, ALU_InA, ALU_InB, Imm_Ext)
 begin
 FetchDorI <= '0'; CS <= '0'; WE <= '0'; RegW <= '0'; Writing <= '0';
 ALU_Result <= "00000000000000000000000000000000";
 nPC <= PC; Op <= jr; REGorIMM <= '0'; ALUorMEM <= '0';
 case state is
 when 0 => --fetch instruction
 nPC <= PC + 1; CS <= '1'; nState <= 1; -- increment by 1 since word address
 FetchDorI <= '1';

458 Chapter 9 Design of RISC Microprocessors

 when 1 =>
 nState <= 2; REGorIMM <= '0'; ALUorMEM <= '0';
 if Format = J then
 nPC <= "000000" & Instr(25 downto 0); nState <= 0; --jump, and finish
 -- offset not multiplied by 4 since mem is word address
 elsif Format = R then -- register instructions
 if F_code = "100000" then Op <= add; -- add
 elsif F_code = "100010" then Op <= sub; -- subtract
 elsif F_code = "100100" then Op <= and1; -- and
 elsif F_code = "100101" then Op <= or1; -- or
 elsif F_code = "101010" then Op <= slt; -- set on less than
 elsif F_code = "000010" then Op <= shr; -- shift right
 elsif F_code = "000000" then Op <= shl; -- shift left
 elsif F_code = "001000" then Op <= jr; -- jump register
 end if;
 elsif Format = I then -- immediate instructions
 REGorIMM <= '1';
 if Opcode = lw or Opcode = sw or Opcode = addi then Op <= add;
 elsif Opcode = beq or Opcode = bne then Op <= sub; REGorIMM <= '0';
 elsif Opcode = andi then Op <= and1;
 elsif Opcode = ori then Op <= or1;
 end if;
 if Opcode = lw then ALUorMEM <= '1'; end if;
 end if;
 when 2 =>
 nState <= 3;
 if OpSave = and1 then ALU_Result <= ALU_InA and ALU_InB;
 elsif OpSave = or1 then ALU_Result <= ALU_InA or ALU_InB;
 elsif OpSave = add then ALU_Result <= ALU_InA + ALU_InB;
 elsif OpSave = sub then ALU_Result <= ALU_InA - ALU_InB;
 elsif OpSave = shr then ALU_Result <= ALU_InB srl to_integer(numshift);
 elsif OpSave = shl then ALU_Result <= ALU_InB sll to_integer(numshift);
 elsif OpSave = slt then -- set on less than
 if ALU_InA < ALU_InB then ALU_Result <= X"00000001";
 else ALU_Result <= X"00000000";
 end if;
 end if;
 if ((ALU_InA = ALU_InB) and Opcode = beq) or
 ((ALU_InA /= ALU_InB) and Opcode = bne) then
 nPC <= PC + Imm_Ext; nState <= 0;
 elsif opcode = bne or opcode = beq then nState <= 0;
 elsif OpSave = jr then nPC <= ALU_InA; nState <= 0;
 end if;
 when 3 =>
 nState <= 0;
 if Format = R or Opcode = addi or Opcode = andi or Opcode = ori then
 RegW <= '1';
 elsif Opcode = sw then CS <= '1'; WE <= '1'; Writing <= '1';
 elsif Opcode = lw then CS <= '1'; nState <= 4;

9.5 VHDL Model of the MIPS Subset 459

The multiplexer at the input of the program counter is not explicitly coded. The various
data transfers are coded behaviorally in the various states. A good synthesizer will be able to
generate the multiplexer to accomplish the various data transfers. Similarly, the multiplexer
to select the destination register address is also not explicitly coded. If the synthesis tool gen-
erates inef�cient hardware for this multiplexed data transfer, you can code the multiplexer
into the data path and generate control signals for the select signals.

9.5.4 Complete MIPS
The processor module and the memory are integrated to yield the complete MIPS model
(Figure 9-9). Component descriptions are created for the processor and the memory units.
These components are integrated by using port-map statements. The high-level entity is
called Complete_MIPS. The address and data buses are brought out as outputs from the
high-level entity. If no outputs are shown in an entity, when the code is synthesized, it results
in empty blocks. Depending on the synthesis tool, unused signals (and corresponding nets)
may be deleted from the synthesized circuit.

The model shown in Figure 9-9 was synthesized. The Xilinx ISE tools targeted for a
Spartan 3 FPGA yield 1108 four-input LUTs, 660 slices, 111 �ip-�ops, and 1 block RAM. The
register �le takes 194 four-input LUTs. Since one LUT can give 16 bits of storage, thirty-two
32-bit registers would need the storage from 64 LUTs. Since the register �le has two read

 end if;
 when 4 =>
 nState <= 0; CS <= '1';
 if Opcode = lw then RegW <= '1'; end if;
 end case;
 end process;

 process(CLK)
 begin
 if CLK = '1' and CLK'event then
 if rst = '1' then
 State <= 0;
 PC <= x"00000000";
 else
 State <= nState;
 PC <= nPC;
 end if;
 if State = 0 then Instr <= Mem_Bus; end if;
 if State = 1 then
 OpSave <= Op;
 REGorIMM_Save <= REGorIMM;
 ALUorMEM_Save <= ALUorMEM;
 end if;
 if State = 2 then ALU_Result_Save <= ALU_Result; end if;
 end if;
 end process;
end structure;

460 Chapter 9 Design of RISC Microprocessors

ports, it would need 128 LUTs. Additional LUTs are required for the address decoder and
the control signals. In order to implement the design on a prototyping board, interface to the
input and display modules should be added.

9.5.5 Testing the MIPS Processor Model
The overall MIPS VHDL model is tested using a test bench illustrated in Figure 9-10. The
test bench must verify the proper operation of each implemented instruction. The test bench
consists of a MIPS program with test instructions and VHDL code to load the program into
memory and verify the program’s output. Use a constant array of instructions to write into
the memory and a constant array of expected outputs to which you will compare the proces-
sor execution result.

However, note that now the memory is connected to the processor and test bench, and
that means both our test bench and the processor will try to control the two signals at the
same time. One way to resolve this is to put muxes at the input ports of the memory. There
are a few muxes for that purpose: Address_Mux (for choosing the address), CS_Mux for
choosing the CS signal, and WE_Mux (for choosing the WE signal). The select signal for

FIGURE 9-9: VHDL Code Integrating the Processor and Memory Modules

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

entity Complete_MIPS is
 port(CLK, RST: in std_logic;
 A_Out, D_Out: out unsigned(31 downto 0));
end Complete_MIPS;

architecture model of Complete_MIPS is
 component MIPS is
 port(CLK, RST: in std_logic;
 CS, WE: out std_logic;
 ADDR: out unsigned(31 downto 0);
 Mem_Bus: inout unsigned(31 downto 0));
 end component;
 component Memory is
 port(CS, WE, Clk: in std_logic;
 ADDR: in unsigned(31 downto 0);
 Mem_Bus: inout unsigned(31 downto 0));
 end component;
 signal CS, WE: std_logic;
 signal ADDR, Mem_Bus: unsigned(31 downto 0);
begin
 CPU: MIPS port map (CLK, RST, CS, WE, ADDR, Mem_Bus);
 MEM: Memory port map (CS, WE, CLK, ADDR, Mem_Bus);
 A_Out <= ADDR;
 D_Out <= Mem_Bus;
end model;

9.5 VHDL Model of the MIPS Subset 461

the muxes is init. When the signal is '1', the three muxes select the address and CS and WE
signals from the test bench. Otherwise, these signals from the processor module are chosen.
Also assert the reset of our CPU throughout the initialization process to make sure the CPU
does not run until the test bench �nishes writing the instructions into the memory. When init
is '0', the CPU and memory are connected for normal operation.

As the MIPS program executes, each test instruction stores its result in a different reg-
ister. After all of the test instructions have been executed, the program performs a series of
store instructions. Each of these instructions places the contents of a different register onto
the bus as it executes. So if there are 10 instructions that you want to verify, you also have 10
store word instructions. During each store, the value on the bus is compared to the expected
result for that register with an assert statement. In the MIPS processor, register $0 is always 0.
That in the register �le. Hence you clear register $0 using an instruction. The �rst instruction
in the test sequence does that. In normal MIPS processor code, you will not �nd instructions
with register $0 as the destination. Essentially, writes to register $0 are ignored in MIPS.

FIGURE 9-10: Test Bench for the Processor Model

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

entity MIPS_Testbench is
end MIPS_Testbench;

architecture test of MIPS_Testbench is
 component MIPS
 port(CLK, RST: in std_logic;
 CS, WE: out std_logic;
 ADDR: out unsigned (31 downto 0);
 Mem_Bus: inout unsigned(31 downto 0));
 end component;

 component Memory
 port(CS, WE, CLK: in std_logic;
 ADDR: in unsigned(31 downto 0);
 Mem_Bus: inout unsigned(31 downto 0));
 end component;

 constant N: integer : = 8;
 constant W: integer : = 26;
 type Iarr is array(1 to W) of unsigned(31 downto 0);
 constant Instr_List: Iarr : = (
 x"30000000", -- andi $0, $0, 0 => $0 = 0
 x"20010006", -- addi $1, $0, 6 => $1 = 6
 x"34020012", -- ori $2, $0, 18 => $2 = 18
 x"00221820", -- add $3, $1, $2 => $3 = $1 + $2 = 24
 x"00412022", -- sub $4, $2, $1 => $4 = $2 – $1 = 12
 x"00222824", -- and $5, $1, $2 => $5 = $1 and $2 = 2
 x"00223025", -- or $6, $1, $2 => $6 = $1 or $2 = 22
 x"0022382A", -- slt $7, $1, $2 => $7 = 1 because $1<$2

462 Chapter 9 Design of RISC Microprocessors

 x"00024100", -- sll $8, $2, 4 => $8 = 18 * 16 = 288
 x"00014842", -- srl $9, $1, 1 => $9 = 6/2 = 3
 x"10220001", -- beq $1, $2, 1 => should not branch
 x"8C0A0004", -- lw $10, 4($0) => $10 = 5th instr = x"00412022" = 4268066
 x"14620001", -- bne $1, $2, 1 => must branch to PC+1+1
 x"30210000", -- andi $1, $1, 0 => $1 = 0 (skipped if bne worked correctly)
 x"08000010", -- j 16 => PC = 16
 x"30420000", -- andi $2, $2, 0 => $2 = 0 (skipped if j 16 worked correctly)
 x"00400008", -- jr $2 => PC = $2 = 18 = PC+1+1. $3 wrong if fails
 x"30630000", -- andi $3, $3, 0 => $3 = 0 (skipped if jr $2 worked correctly)
 x"AC030040", -- sw $3, 64($0) => Mem(64) = $3
 x"AC040041", -- sw $4, 65($0) => Mem(65) = $4
 x"AC050042", -- sw $5, 66($0) => Mem(66) = $5
 x"AC060043", -- sw $6, 67($0) => Mem(67) = $6
 x"AC070044", -- sw $7, 68($0) => Mem(68) = $7
 x"AC080045", -- sw $8, 69($0) => Mem(69) = $8
 x"AC090046", -- sw $9, 70($0) => Mem(70) = $9
 x"AC0A0047" -- sw $10, 71($0) => Mem(71) = $10
);
 -- The last instructions perform a series of sw operations that store
 -- registers 3–10 to memory. During the memory write stage, the testbench
 -- will compare the value of these registers (by looking at the bus value)
 -- with the expected output. No explicit check/assertion for branch
 -- instructions, however if a branch does not execute as expected, an error
 -- will be detected because the assertion for the instruction after the
 -- branch instruction will be incorrect.
 type output_arr is array(1 to N) of integer;
 constant expected: output_arr: = (24, 12, 2, 22, 1, 288, 3, 4268066);
 signal CS, WE, CLK: std_logic : = '0';
 signal Mem_Bus, Address, AddressTB, Address_Mux: unsigned(31 downto 0);
 signal RST, init, WE_Mux, CS_Mux, WE_TB, CS_TB: std_logic;
begin
 CPU: MIPS port map (CLK, RST, CS, WE, Address, Mem_Bus);
 MEM: Memory port map (CS_Mux, WE_Mux, CLK, Address_Mux, Mem_Bus);

 CLK <= not CLK after 10 ns;
 Address_Mux <= AddressTB when init = '1' else Address;
 WE_Mux <= WE_TB when init = '1' else WE;
 CS_Mux <= CS_TB when init = '1' else CS;
 process
 begin
 rst <= '1';
 wait until CLK = '1' and CLK'event;

 --Initialize the instructions from the testbench
 init <= '1';
 CS_TB <= '1'; WE_TB <= '1';
 for i in 1 to W loop
 wait until CLK = '1' and CLK'event;
 AddressTB <= to_unsigned(i-1,32);
 Mem_Bus <= Instr_List(i);

9.5 VHDL Model of the MIPS Subset 463

The following command �le was used to test the VHDL model. All the signals that you
are interested in are not available in the topmost entity, which here is the test bench. In such
cases, the full path describing the signal (speci�cally pointing to the component in which
the signal is appearing) must be provided for correct simulation. The configure list
-delta collapse command removes outputs at intermediate deltas.

add list -hex sim:/mips_testbench/cpu/instr
add list -unsigned sim:/mips_testbench/cpu/npc
add list -unsigned sim:/mips_testbench/cpu/pc
add list -unsigned sim:/mips_testbench/cpu/state
add list -unsigned sim:/mips_testbench/cpu/alu_ina
add list -unsigned sim:/mips_testbench/cpu/alu_inb
add list -signed sim:/mips_testbench/cpu/alu_result
add list -signed sim:/mips_testbench/cpu/addr
configure list -delta collapse
run 2330

The simulation results are illustrated as follows:

 end loop;
 wait until CLK = '1' and CLK'event;
 Mem_Bus <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ";
 CS_TB <= '0'; WE_TB <= '0';
 init <= '0';
 wait until CLK = '1' and CLK'event;
 rst <= '0';

 for i in 1 to N loop
 wait until WE = '1' and WE'event; -- When a store word is executed
 wait until CLK = '0' and CLK'event;
 assert(to_integer(Mem_Bus) = expected(i))
 report "Output mismatch:" severity error;
 end loop;

 report "Testing Finished:";
 end process;
end test;

MIPS Instruction ns Instr PC State ALU_InA ALU_InB ALU_Result Addr

andi $0, $0, 0 570 30000000 0 0 – – 0 0

908 30000000 1 1 – – 0 X

610 30000000 1 2 – 0 0 X

630 30000000 1 3 – 0 0 0

addi $1, $0, 6 650 30000000 1 0 0 0 0 1

670 20010006 2 1 0 6 0 0

690 20010006 2 2 0 6 6 0

710 20010006 2 3 0 6 0 6

464 Chapter 9 Design of RISC Microprocessors

MIPS Instruction ns Instr PC State ALU_InA ALU_InB ALU_Result Addr

ori $2, $0, 18 730 20010006 2 0 0 6 0 2

750 34020012 3 1 0 18 0 6

770 34020012 3 2 0 18 18 6

790 34020012 3 3 0 18 0 18

add $3, $1, $2 810 34020012 3 0 0 18 0 3

830 00221820 4 1 6 18 0 18

850 00221820 4 2 6 18 24 18

870 00221820 4 3 6 18 0 24

sub $4, $2, $1 890 00221820 4 0 6 18 0 4

910 00412022 5 1 18 6 0 24

930 00412022 5 2 18 6 12 24

950 00412022 5 3 18 6 0 12

and $5, $1, $2 970 00412022 5 0 18 6 0 5

990 00222824 6 1 6 18 0 12

1010 00222824 6 2 6 18 2 12

1030 00222824 6 3 6 18 0 2

or $6, $1, $2 1050 00222824 6 0 6 18 0 6

1070 00223025 7 1 6 18 0 2

1090 00223025 7 2 6 18 22 2

1110 00223025 7 3 6 18 0 22

slt $7, $1, $2 1130 00223025 7 0 6 18 0 7

1150 0022382A 8 1 6 18 0 22

1170 0022382A 8 2 6 18 1 22

1190 0022382A 8 3 6 18 0 1

sll $8, $2, 4 1210 0022382A 8 0 6 18 0 8

1230 00024100 9 1 0 18 0 1

1250 00024100 9 2 0 18 288 1

1270 00024100 9 3 0 18 0 288

srl $9, $1, 1 1290 00024100 9 0 0 18 0 9

1310 00014842 10 1 0 6 0 288

1330 00014842 10 2 0 6 3 288

1350 00014842 10 3 0 6 0 3

beq $1, $2, 1 1370 00014842 10 0 0 6 0 10

1390 10220001 11 1 6 18 0 3

1410 10220001 11 2 6 18 212 3

lw $10, 4($0) 1430 10220001 11 0 6 18 0 11

9.6 Design of an ARM Processor 465

The initial cycles that are used to load the instructions into the memory module are
not shown. The presented data corresponds to the cycles once the instruction fetch by the
processor begins. Only the �rst store instruction is shown here. But all store instructions are
tested in the test bench. More comprehensive tests can be devised by reading the data from
the stored locations in the memory.

9.6 Design of an ARM Processor
An ARM processor is one of a family of CPUs developed by ARM Limited, based on the
RISC (reduced instruction set computer) architecture philosophy. ARM processors are
extensively used in consumer electronic devices such as smartphones, tablets, multimedia
players, and other mobile/embedded devices. More recently, they are entering into serv-
ers also. ARM licenses the ISA and their designs as IP (intellectual property) cores and
other companies typically incorporate the ARM designs into their SoC (System-on-a-Chip)
designs.

There have been several versions of the ARM ISA, since 1980s such as v1, v2, v4, v5, v7,
and v8. A very concise description of some ARM instructions here is provided here. These
are not particularly from any one version; however, they are simply provided as examples
of the general nature of the instruction set. Many of the described instructions are from the
v4 version. This is not a complete description of the ISA or a design compatible with any
particular ARM design. This treatment is for educational purposes, in order to illustrate the
implementation of an ISA using behavioral VHDL.

MIPS Instruction ns Instr PC State ALU_InA ALU_InB ALU_Result Addr

1450 8C0A0004 12 1 0 – 0 212

1470 8C0A0004 12 2 0 4 4 212

1490 8C0A0004 12 3 0 4 0 4

1510 8C0A0004 12 4 0 4 0 4

bne $1, $2, 1 1530 8C0A0004 12 0 0 4 0 12

1550 14620001 13 1 24 1 0 4

1570 14620001 13 2 24 18 6 4

j 16 1590 14620001 14 0 24 18 0 14

1610 08000010 15 1 0 0 0 6

jr $2 1630 08000010 16 0 0 0 0 16

1650 00400008 17 1 18 0 0 6

1670 00400008 17 2 18 0 0 6

sw $3, 64($0) 1690 00400008 18 0 18 0 0 18

1710 AC030040 19 1 0 24 0 0

1730 AC030040 19 2 0 64 64 0

1750 AC030040 19 3 0 64 0 64

466 Chapter 9 Design of RISC Microprocessors

9.6.1 The ARM ISA
The ARM instruction set architecture (ISA) [6,24] contains a set of simple arithmetic, logical,
memory access, and branch instructions. The architecture emphasizes simplicity and de�nes
instructions in such a manner as to keep them simple with the aim of keeping the cycles per
instruction (CPI) taken during execution low.

The ARM ISA has two variants: the 32-bit ARM and the 16-bit Thumb instruction sets.
This chapter focuses on the 32-bit ARM instruction set of the ARM ISA.

There are 16 general purpose registers in the ARM architecture. Each register is 32 bits
wide. There is also a dedicated current program status register (CPSR). The ARM registers
are referred to as R0, R1, R2, …, and R15. While the general purpose registers can be used
for any purpose, R13, R14, and R15 are typically also used as the stack pointer, link register,
and the program counter (PC), respectively.

ARM instructions generally follow a three-address format for ALU instructions, mean-
ing they specify two source addresses and one destination address. For example, an add
instruction that adds registers R3 and R4 and writes the result to R5 is written as:

ADD R5, R3, R4

In the instruction show above, the registers R3 and R4 holding the input operands are
called the source registers, and the register R5 holding the result is called the destination
register. There are also some 4-address instructions, such as the long multiply, which will be
explained later.

Each group of instructions is described below:

Arithmetic Instructions
The ARM instruction set contains instructions for performing the addition, subtraction,
and multiplication of integers. The various arithmetic instructions are summarized in Table
9-10. In addition to addition of two operands, there is also an add with carry instruction. For
example the instruction

ADC R5, R3, R4

will add the value in register R4 with the value in register R3 and CARRY �ag and write the
result to register R5. In addition to subtract, there is also a reverse subtract (RSB) instruc-
tion in the ARM ISA. In most arithmetic and logic instructions, the second source operand
format can be a register or an immediate value, both possibly shifted/rotated. The number of
bits to shift by is speci�ed either as an immediate or as a value of the register. There are �ve
different types of shifts supported for this purpose.

LSL Logical shift left
LSR Logical shift right
ASR Arithmetic shift right
ROR Rotate right
RRX Extended rotate

The following four instructions illustrate four different forms the second source operand Src2
may take:

 (i) immediate constant with no rotate
 (ii) immediate constant with rotation

9.6 Design of an ARM Processor 467

 (iii) register shifted using immediate constant, and
 (iv) register shifted using register value.

ADD R5, R3, #4 ;R5 = R3 + #4, immediate operand, no rotate
ADD R5, R3, #44 ROR 6 ;R5 = R3 + #44 << 6, immediate is rotated
ADD R5, R3, R4, LSR #2 ;R5 = R3 + (R4 >> 2), reg is immediate-shifted
ADD R5, R3, R4, ROR R2 ;R5 = R3 + (R4 ROR R2), reg is register-shifted

There are also move instructions (MOV) whose second operand can assume various imme-
diate and register forms. The MOV instructions can be used as various forms of rotate and
shift instructions.

The ARM instruction set has multiply and multiply-accumulate instructions. Multiplication
of two 32-bit quantities results in a 64-bit result that cannot be contained in one ARM regis-
ter. The ARM instruction set allows short multiply (MUL) for cases where the product �ts in
32-bits and long forms (UMULL, SMULL) for full-length product. In the case of the 64-bit
product, another destination register Ra is speci�ed to hold the lower half of the product.
The multiply-accumulate (MLA) instruction is an integrated multiply and add operation
speci�ed in a single instruction. This can also be 32-bit and 64-bit versions of this fused
multiply-add instruction. Integrated multiply-add instructions are also called fused-multiply-
add (FMA) or multiply-accumulate (MAC) instructions in many ISAs.

Instruction Assembly Code Operation Comments

add ADD Rd, Rn, Src2 Rd 5 Rn 1 Src2 Src2 can be immediate, rotated
immediate, immediate-shifted
register, or register-shifted register

add with carry ADC Rd, Rn, Src2 Rd 5 Rn 1 Src2 1 C Src2 has 4 forms as above.

subtract SUB Rd, Rn, Src2 Rd 5 Rn 2 Src2 Src2 has 4 forms as above

subtract with carry SBC Rd, Rn, Src2 Rd 5 Rn 2 Src2 2 C' Src2 has 4 forms as above

reverse subtract RSB Rd, Rn, Src2 Rd 5 Src2 2 Rn Src2 has 4 forms as above

reverse subtract with
carry

RSC Rd, Rn, Src2 Rd 5 Src2 2 Rn 2 C' Src2 has 4 forms as above

move MOV Rd, Src2 Rd 5 Src2 Can be used as shift and rotate
instructions by adjusting Src2 as
desired.

move negative MVN Rd, Src2 Rd 5 ,Src2

multiply MUL Rd, Rn, Rm Rd 5 Rn * Rm 32-bit product

unsigned multiply long UMULL Rd, Rn, Rm, Ra Rd, Ra 5 1Rn * Rm 2 64-bit product

signed multiply long SMULL Rd, Rn, Rm, Ra Rd, Ra 5 1Rn * Rm 2 64-bit product

multiply-accumulate MLA Rd, Rn, Rm, Ra Rd 5 1Rn * Rm 2 1 Ra low 32-bits only in result

TABLE 9-10: Arithmetic Instructions in the ARM Instruction Set

468 Chapter 9 Design of RISC Microprocessors

Logical Instructions
The logical instructions in the ARM instruction set are presented in Table 9-11. The ARM
instruction set contains logical instructions for performing bit-wise AND, XOR, and OR
of register contents. The AND, EOR, and ORR instructions perform these operations for
register operands. These instructions can be used with the second operand in a register or as
an immediate constant. The various data processing addressing modes for Src2 are available
for logic instructions as well. The MOV instruction can be used to perform shift and rotate
instructions, as the second operand of MOV can be in a variety of immediate and register
shifted formats. The number of shifts is encoded as an immediate value in the instruction
or in a register speci�ed in the instruction. The MOV instruction may be categorized as an
arithmetic instruction or logic instruction due to the various forms in which it is used. The
extended rotate (RRX) instruction accomplishes rotating through carry, that is, rotates
5C, Rd6 right once depositing it into 5Rd, C6.

There are also compare and test instructions which do not use any destination registers
but only modify the condition �ags. The TST instruction performs an AND operation,
whereas the TEQ instruction performs an XOR operation. Both instructions affect the con-
dition �ags, depending on the result of the operation they did, but no destination register
other than the �ags are affected. The CMP and CMN instructions are similar in that they
have no destination other than �ags; however, they perform subtraction (for compare) and
addition (for compare negated) operations.

Instruction Assembly Code Operation Comments

unsigned multiply
accumulate long

UMLAL Rd, Rn, Rm, Ra 5Rd, Ra6 5 1Rn * Rm 2
1 5Rd, Ra6

64-bit product; Rm, Rn unsigned

signed multiply
accumulate long

SMLAL Rd, Rn, Rm, Ra 5Rd, Ra6 5 1Rn * Rm 2
1 5Rd, Ra6

64-bit product; Rm, Rn signed

Instruction Assembly Code Operation Comments

and AND Rd, Rn, Src2 Rd 5 Rn AND Src2 Bitwise AND

xor EOR Rd, Rn, Src2 Rd 5 Rn XOR Src2 Bitwise XOR

or ORR Rd, Rn, Src2 Rd 5 Rn OR Src2 Bitwise OR

Bit clear BIC Rd, Rn, Src2 Rd 5 Rn & ,Src2 Bit-wise Clear

Bitwise NOT MVN Rd, Src2 Rd 5 ,Rn Bit-wise NOT or Move negated

test TST Rn, Src2 Set �ags based on Rn AND Src2 Flags affected

test equivalence TEQ Rn, Src2 Set �ags based on Rn XOR Src2 Flags affected

compare CMP Rn, Src2 Set �ags based on Rn 2 Src2 Flags affected

compare negative CMN Rn, Src2 Set �ags based on Rn 1 Src2 Flags affected

logical shift left LSL Rd, Rm, #2 or
MOV Rd, Rm, LSL #2

Rd 5 Rm ,, 2 Shift source is in Src2 of MOV

logical shift right LSR Rd, Rm, #2 or
MOV Rd, Rm, LSR #2

Rd 5 Rm .. 2 Shift source is in Src2 of MOV

TABLE 9-11: Logical Instructions in the ARM Instruction Set

9.6 Design of an ARM Processor 469

Conditional Execution
A feature of the ARM instruction set is that it contains conditional instructions, that is,
instructions that are executed only if a certain condition is true. Conditional execution of
an instruction typically depends on the N, Z, C, and V �ags in the CPSR set by previously
executed instructions. An instruction is executed only if the N, Z, C, or V �ag satis�es the
condition speci�ed in it. If the �ags do not satisfy the condition, the instruction acts as a no
operation; that is execution advances to the next instruction. These �ag are held in the top
4 bits of the 32-bit Current Program Status Register (CPSR). The ARM instructions are
32-bits wide, and each instruction contains a 4-bit condition code, speci�ed by bits 31–28.
In certain situations, using conditional execution instead of branching brings in ef�ciency
and speeds up overall operation. Conditional execution was an original feature of the ARM
instruction set, and most ARM instructions can be conditionally executed. More recently,
in recent ARM ISAs such as the ARM v8, there are some instructions which can only be
executed unconditionally.

Instruction Assembly Code Operation Comments

arithmetic shift right ASR Rd, Rm, #2 or
MOV Rd, Rm, ASR #2

Rd 5 Rm ... 2 Shift source is in Src2 of MOV

rotate right ROR Rd, Rm, #2 or
MOV Rd, Rm, ROR #2

Rd 5 Rm ror Src2 Shift source is in Src2 of MOV

rotate right extend RRX Rd or
MOV Rd, RRX #2

5Rd, C6 5 5C, Rd6 Rotate right through carry

Note: Src2 can have 4 forms as in arithmetic instructions.

cond

31 28 27 0

While there are only four �ags, N, Z, C, and V, in assembly language, several mnemon-
ics are used. The list of condition mnemonics in the ARM assembly language are given in
Table 9-12. A few instructions that use cond 5 1111 do exist in recent ARM instruction sets,
but this book does not use instructions with cond 5 1111.

cond
(hex) Mnemonic Description CPSR condition

0 EQ Equal Z 55 1

1 NE Not Equal Z 55 0

2 CS/HS Carry Set, unsigned higher or same C 55 1

3 CC/LO Carry Clear, unsigned lower C 55 0

4 MI Minus (last result 2ve) N 55 1

5 PL Plus (last result 0 or 1ve) N 55 0

6 VS V �ag set (over�ow V 55 1

TABLE 9-12:
Conditional Encoding
and Mnemonics in the
ARM Instruction Set

470 Chapter 9 Design of RISC Microprocessors

Affecting Condition Flags:
The compare (CMP, CMN) and test (TST, TEQ) instructions always affect the N, Z, C, and
V �ags, but other data-processing instructions can be made to affect/not affect condition
�ags. For example, the ADD instruction does not affect �ags; whereas, it has a version called
ADDS that affects �ags. Similarly, subtract, shift, logical, move, and multiply instructions can
have versions with an S appended to cause it to affect various �ags as indicated in Table 9-13.
The �ags are affected if S equals 1.

cond
(hex) Mnemonic Description CPSR condition

7 VC V �ag clear V 55 0

8 HI Higher (unsigned) C 55 1 && Z 55 0

9 LS Lower or same (unsigned) C 55 0 0 0 Z 55 1

A GE Greater than or equal (signed) N 55 V

B LT Less than (signed) N !5 V

C GT Greater than or equal (signed) N 55 V && Z 55 0

D LE less than or equal (signed) N !5 V 0 0 Z 55 1

E 5\AL6 Always Always TRUE

Instruction
Group Opcodes

Condition Flags
affected

add ADDS, ADCS N, Z, C, V

subtract SUBS, SBCS, RSBS, RSCS N, Z, C, V

shifts ASRS, LSLS, LSRS, RORS, RRXS N, Z, C

logical ANDS, ORRS, EORS, BICS N, Z, C

move MOVS, MVNS N, Z, C

multiply MULS, MLAS, SMULLS, SMLALS, UMLALS,
UMULLS

N, Z

compare CMP, CMN (always affects �ags—no S needed) N, Z, C, V

test TST, TEQ (always affects �ags—no S needed) N, Z, C

TABLE 9-13: Flags
Affected by Various
Instructions

The generalized format for the data processing instructions can be written as

<opcode>{<cond>}{S} {Rd}, {Rn}, <Src2>

where

 <opcode> describes the operation of the instruction

<cond> describes the condition to be considered before conditional execution

S bit indicates whether the instruction must update the condition codes after
execution

9.6 Design of an ARM Processor 471

Rd speci�es the destination register

Rn speci�es the �rst source operand register, and

Src2 speci�es the second source operand. This takes multiple forms described later.

Instruction Assembly Code Operation Comments

load register LDR Rd, 3Rn, 1 d Src2 4 Rd 5 Memory 3Rn 1 2 Src2 4 Read 32 bits from memory;
memory address according to Src2

store register STR Rd, 3Rn, 1 2 Src2 4 Memory 3Rn 1 2 Src2 4 5 Rd Write 32 bits to memory; memory
address according to Src2

load byte LDRB Rd, 3Rn, 1 2 Src2 4 Rd 5 Memory 3Rn 1 2 Src2 47..0 Read byte from memory; memory
address according to Src2

store byte STRB Rd, 3Rn, 1 2 Src2 4 Memory 3Rn 1 2 Src2 4 5 Rd7..0 Write byte to memory; memory
address according to Src2

load halfword LDRH Rd, 3Rn, 1 2 Src2 4 Rd 5 Memory 3Rn 1 2 Src2 415..0 Read byte from memory; memory
address according to Src2

store halfword STRH Rd, 3Rn, 1 2 Src2 4 Memory 3Rn 1 2 Src2 4 5 Rd15..0 Write byte to memory; memory
address according to Src2

swap register
with memory

SWP Rd,Rm,[Rn] tmp5Memory 3Rn 4
Memory 3Rn 45Rm
Rd5tmp

Rd gets data from memory.
Memory gets content of Rm.

TABLE 9-14: Memory Access Instructions in the ARM Instruction Set

Memory Access Instructions
Consistent to the RISC philosophy, the only instructions in the ARM instruction set to access
memory are load and store instructions. This RISC feature helps to keep pipelined implemen-
tations simpler. As opposed to this, in ISAs like the Intel x86, add and other compute instruc-
tions can specify operands directly from memory often leading to complications in pielined
and out of order processor implementations. To deal with this problem, many x86 processors
break an x86 instruction into smaller RISC_style operations. In the ARM instruction set, a
load instruction transfers data from memory to the speci�ed register. A store instruction trans-
fers data from a register to the speci�ed memory address. The compute operations operate
on the data in registers or on immediate data but not directly on data located in the memory.

A group of 32 bits is called a word in the ARM world. The ARM instruction set has
instructions to load and store words, half-words (16 bits), or bytes (8 bits). These instructions
are summarized in Table 9-14.

There are many types of ADD instructions depending on the COND and S bits, as in the
following examples:

ADDS R5, R3, R4 ; unconditional add, affects condition codes

ADDEQ R5, R3, #78 ; conditional add, executed only if Z=1,
 immediate operand, does not affect condition
codes.

ADDEQS R5, R3, #78 ; conditional add, executed only if Z=1,
immediate operand, affects condition codes.

472 Chapter 9 Design of RISC Microprocessors

There are several addressing modes used to calculate the address for a load and store
instruction as illustrated in Table 9-15. Typically, the memory address is computed as the sum
of a register (called base register) and the offset speci�ed in the instruction.

Consider the ARM load instruction:

LDR R1, [R2, #8]

This instruction computes the memory address as the sum of the value in register R2
and the immediate offset 8. So if register R2 contains 4000, the effective address is 4008. The
content of memory location 4008 is moved to register R1 in the processor.

The offset can be located in a register, often called the index register. In the instruction,

LDR R1, [R2, R3]

R2 is the base register, and R3 is the index register. The effective address is the sum of
the two registers.

The ARM instruction set also allows scaling the offset. For instance, in the instruction

LDR R1, [R2, R3, LSL #2]

the effective address is obtained by shifting the index register R3 left by 2 and then
adding to the base register R2.

Address mode Example Memory address Base Register

Immediate offset LDR R1, [R2, #8] 3R2 1 8 4 Unchanged

Register offset LDR R1, 3R2, 1/2 R3 4 3R2 1/2 R3 4 Unchanged

Scaled reg offset LDR R1, [R2, 1/2 R3, LSL #2] 3R2 1/2 1R3 ,, 2 2 Unchanged

Pre-index Auto-update

Immediate offset LDR R1, [R2, #8]! 3R2 1 8 4 R2 1/2 offset

Register offset LDR R1, 3R2, 1/2 R3 4! 3R21/2 R3 4 R2 1/2 R3

Scaled reg offset LDR R1, [R2, 1/2 R3, LSL #2] ! 3R2 1/2 1R3 ,, 2 2 4 R2 1/2 1R3 LSL 2 2
Post-index Auto-update

Imm post-index LDR R1, [R2], #1/2 offset [R2] R2 1/2 offset

Reg post-index LDR R1, [R2], R3 [R2] R2 1 R3 4
Scaled reg post LDR R1, [R2], 1/2 R3, LSL #2 [R2] R2 1 1R3 LSL 2 2

TABLE 9-15: Addressing Modes for Memory Instructions

The three addressing modes discussed above can also be used in an auto-update man-
ner, where in addition to the memory access, the base register is automatically updated.
The update can happen before the memory access or after the memory access. If the update
 happens before the memory access, it is called pre-indexing. The ! sign at the end of the
assembly instruction indicates that the instruction is in pre-index mode. In the case of
post-indexing, the memory access happens with the base register alone, and the address is
updated according to the addressing mode after the access, in effect, preparing the address
for the next access. The assembly code indicates the use of post-indexing using the square

9.6 Design of an ARM Processor 473

brackets around the base address register only. The auto-update addressing modes are very
useful while marching through arrays and other data structures.

The store instructions are similar except that data moves to the memory. Addressing
modes work in exactly the same manner as in the LDR instructions. For example, in the case
of STR R6, [R8, #100], the content of register R6 is written to the memory location
pointed to by the sum of the contents of register R8 and 100.

There is also a SWAP instruction, which is a special instruction that combines a load and
a store, to accomplish the swapping of a register and a memory location. This instruction
is an atomic operation; that is, it reads and writes to the memory location in the same bus
operation, preventing any other instruction from reading or writing to that location until this
instruction is completed. It is used by operating systems for semaphores and mutual exclu-
sion. The SWAP instruction can operate with a word size or byte size.

Control Transfer Instructions
Typically program execution proceeds in a sequential fashion, but loops, procedures, func-
tions, and subroutines change the program control �ow. A microprocessor needs control
transfer instructions in order to accomplish transfer of control whenever nonsequential
control �ow is required. The ARM instruction set includes two types of branch instruc-
tions, branch label and branch-with-link label as illustrated in Table 9-16. These instruc-
tions can be conditional on various �ags leading to instructions such as branch less than
(BLT), branch greater than (BGT), branch not equal (BNE), and so forth. The �ags were
speci�ed.

The ARM instruction

BEQ L1

checks the Z �ag, and if it is equal to 1, jumps to the label L1. The constant offset provided in
the branch instruction is speci�ed in terms of the number of instructions from the current PC
(program counter). ARM uses byte addressing, and hence, the offset in words is multiplied
by 4 to get the offset in bytes. The program counter is assumed to point to the next instruction
at PC 1 4 in many architectures. In the ARM designs, the program counter register R15 is
assumed to be at PC 1 8. A pipelined execution model, which performs FETCH, DECODE,
and EXECUTE in three distinct stages, is assumed and exposed to the instructions. Hence
the program counter, which is visible to the user as R15, runs ahead of the current instruction.
If an instruction is reading the PC, it will be able to do it only in the EXECUTE stage, by
which time, two subsequent instructions are already in the pipeline, and the PC would have
updated to PC 1 8.

Since the program counter read is assumed to yield PC 1 8, the target address is com-
puted as PC 1 8 1 4 * offset. The offset is 24 bits long; however, one bit is used for sign. The
multiplication of the offset by 4 provides 2 more bits to the address, effectively providing
a branch range of 1/2 32M. The branch instructions are used for implementing loop and
if-then-else statements from high-level languages.

The branch and link (BL) instruction is speci�cally designed for procedure calls. It
computes the target address from the offset speci�ed in the instruction, but in addition to
transferring control to that address, it also saves the return address in link register R14. The
return address means the address to which control should return to after the subroutine or
procedure call is completed. The return address is equal to the current PC 1 4, since every
instruction is four bytes wide and PC 1 4 is the address of the instruction following the cur-
rent instruction (the BL instruction). As mentioned before, register R15 is used as the PC. If
R15 is updated, the written value becomes the current PC.

474 Chapter 9 Design of RISC Microprocessors

In some ISAs, the term branch is used to indicate conditional control transfer instruc-
tions as opposed to jump for unconditional control transfer. The ARM instruction set does
not make such a distinction. In the ARM instruction set, typically all instructions can be con-
ditional or unconditional, and branch instructions can also be conditional or unconditional.

The major classes of instructions in the ARM instruction set have been described. In
order to become familiar with the instructions, some assembly language programming is
illustrated below:

Problem: Write a ARM assembly language program for the following program which adds
two arrays x(i) and y(i), each of which has 100 elements.

for i=1,100, i++ ; repeat 100 times
y(i) = x(i) + y(i) ; add ith element of the arrays

Assume that the x and y arrays start at locations 4000 and 8000 (decimal).

Answer:

 MOV R2, #4000 ;initialize address register for X
 MOV R3, R2, LSL 1, ;initialize address register for Y
 MOV R1, #0 ;initialize loop counter R1 to 0
Rlabel: LDR R4, [R2, R1] ;load x(i) to R4
 LDR R5, [R3,R1] ;load y(i) to R5
 ADD R6, R5, R4 ;x(i) + y(i)
 STR R6, [R3, R1] ;save new y(i)
 ADD R1, R1, #4 ;increment
 CMP R1, #400 ;i
 BNE Rlabel ;branch back if loop not done

First two address base registers are initialized for each of the arrays. Since 8000 needs
more than 12 bits, it is obtained by shifting the 4000. A loop counter is also initialized. The
loop counter updates in multiples of 4 because it is a byte address (each instruction is 4 bytes).
Here R1 keeps the incremented part of the address which is used for addressing both x and
y arrays. The compare instruction sets �ags which are checked by the branch instruction. An
instruction that affects �ags is needed before the branch instruction.

Instruction Assembly Code Operation Comments

Branch B <cond> label PC 5 label Branch if cond is
true; label offset is
signed 24 bits

Branch and link BL <cond> label PC 5 label
Link register
LR 5 address of the
instruction after the
BL instruction

Branch if cond is
true; Save return
address in LR is
typically R14.

TABLE 9-16: Control
Instructions in the
ARM Instruction Set

The assembler mnemonics for B <Cond> and BL <Cond> can be confusing at times. For
instance, BLT is a B instruction with LT condition code and not a BL instruction. One has
to be careful with the LS, LT, LE condition codes while interpreting B and BL instructions.

9.7 ARM Instruction Encoding 475

There are several ways this code can be written. This version does not use preindexing
or postindexing. Incrementing of the address for the y array cannot be done until the STR
instruction writes the result back, hence postindexing is not used for the LDR instruction
loading the y array. Post-indexing could be used for the STR instruction so it is autoupdated
for the next access; however, an instruction that affects �ags is required before the branch
instruction. Alternate code implementations using postindexing can be used, and the follow-
ing sequence has one less instruction in each iteration. The SUBS instruction is used which
sets the condition �ags.

 MOV R2, #4000 ;initialize address register for X
 MOV R3, R2, LSL 1, ;initialize address register for Y
 MOV R1, #100 ;initialize loop counter R1 to 0
Rlabel: LDR R4, [R2], #4 ;load x(i) to R4
 LDR R5, [R3] ;load y(i) to R5
 ADD R6, R5, R4 ;x(i) + y(i)
 STR R6, [R3], #4 ;save new y(i)
 SUBS R1, R1, #1 ;decrement ; i
 BNZ Rlabel ;branch back if loop not done

9.7 ARM Instruction Encoding
Adhering to the RISC philosophy, all instructions in the ARM processor have the same
width, 32 bits. In a move toward simplicity, the number of different formats are kept small.
The requirements for each class of instructions, such as data processing, memory accessing,
and so forth, are presented.

9.7.1 Data Processing Instructions
There are three different formats for data-processing instructions as illustrated in
Table 9-17. The most signi�cant 4 bits (bits 31-28) are for conditional execution in all cases.
The next two bits (bits 27-26) are 00 for all data processing instructions. The next 6 bits
de�ne the functionality of the data processing instruction, the �rst of which is the I bit
(bit 25) used to specify immediate addressing mode. The last of this group of bits (bit 20)
is called the S bit, which indicates whether the instruction must update the condition codes
after execution. Bits 21-24 indicate the speci�c data processing operation like ADD or SUB.
Since there are 4 such bits, 16 different arithmetic and logic operations are possible with
this format. The multiply instructions use a different encoding and will be described later.
Destination register is speci�ed in bits 12-15, and one source register is speci�ed in bits
19-16. The second source operand can be speci�ed in multiple ways, leading to the 3 formats
illustrated in Table 9-17. If bit 25 (the I-bit) is 1, Src2 operand (bits 11-0) is in immediate
format. The immediate constant is in the lower 8 bits, and it is rotated right according to
the rotate �eld in bits 11-8. The rotating amount is twice the 4-bit rotate �eld; for example
if the rotate �eld is 4, the rotating amount is 8. Table 9-17 illustrates a few example instruc-
tions and their encoding.

In formats 2 and 3, the I-bit (bit 25) equals 0. If I-bit is 0, Src2 is a register, but the regis-
ter is possibly shifted. A shifted register operand value is the value of a register, shifted (or
rotated) before it is used as the data processing operand. The amount of shifting is indicated

476 Chapter 9 Design of RISC Microprocessors

by an immediate constant located in bits 7-11, if bit 4 is 0. If bit 4 is 1, the shift amount is
indicated by a register speci�ed in bits 8-11. The immediate format only allows right rotation
of the immediate constant, but the register format allows various types of shifts according to
bits 5-6. There are �ve different types of shifts supported for this purpose.

LSL Logical shift left

LSR Logical shift right

ASR Arithmetic shift right

ROR Rotate right

RRX Rotate right extended

It should be noted that 5 different shifts are encoded with the 2 sh-type bits, as illustrated in
Table 9-18, basically utilizing one of the bit 4 5 0 conditions for an extended rotate through
the carry. This extended rotate accomplishes rotating 5C, Rd6 right once depositing it into
5Rd, C6.

Immediate format, Bit 25 I51

Register format (immediate-shifted), Bit 25 I50; Bit 450

Register format (register-shifted), Bit 25 I50; Bit 451

Format 31–28 27–26 25 24–21 20 19–16 15–12 11–8 7 6–5 4 3–0

Immediate cond 00 1 opcode S Rn Rd rotate immed

Immediate-
shifted
register

cond 00 0 opcode S Rn Rd shamt sh-type 0 Rm

Register-
shifted
register

cond 00 0 opcode S Rn Rd Rs 0 sh-type 1 Rm

TABLE 9-17: Instruction
Formats for Data
Processing Instructions
in the ARM
Instruction Set

Bits 6–5 (sh-type) Bits 11–7 (shamt) Bits 11–8 (Rs) Bit 4 Shift action

00 (LSL) 0 to 31 - 0 LSL #shamt

- Rs 1 LSL Rs

01 (LSR) 0 - 0 LSR #32

1 to 31 - 0 LSR #shamt

- Rs 1 LSR Rs

10 (ASR) 0 - 0 ASR #32

1 to 31 - 0 ASR #shamt

- Rs 1 ASR Rs

11 (ROR/RRX) 0 - 0 RRX

1 to 31 - 0 ROR #shamt

- Rs 1 ROR Rs

TABLE 9-18: Shift
Types for Register
Format Data Processing
Instructions in the
ARM Instruction Set

9.7 ARM Instruction Encoding 477

9.7.2 Multiply Instructions
The multiply instruction with a 32-bit result has a simple three address format similar to the
data processing instructions; however, the destination register �eld is in bits 16-19 instead of
bits 12-15. The encoding is illustrated in Table 9-19. The four bits 4-7 are 1001 for all multiply
instructions. The source registers are in bits 0-3 and 8-11. For the long multiply instructions,

MUL cond 0000 000 S Rd 0000 Rs 1001 Rn

MLA cond 0000 001 S Rd Ra Rm 1001 Rn

UMULL cond 0000 100 S Rd Ra Rm 1001 Rn

UMLAL cond 0000 101 S Rd Ra Rm 1001 Rn

SMULL cond 0000 110 S Rd Ra Rm 1001 Rn

SMLAL cond 0000 111 S Rd Ra Rm 1001 Rn

TABLE 9-19: Instruction
Encoding for Multiply
Instructions in the
ARM Instruction Set

Instruction
31–28
cond 27–26

25
I 24–21

20
S

19–16
Rn

15–12
Rd 11–8 7

6–5
sh-type 4

3–0
Rm

AND R5,R3,R4 1110 00 0 0000 0 0011 0101 00000 00 0 0100

ANDS R5,R3,R4 1110 00 0 0000 1 0011 0101 00000 00 0 0100

ANDEQ R5,R3, R4 0000 00 0 0000 0 0011 0101 00000 00 0 0100

ANDEQS R5,R3,R4 0000 00 0 0000 1 0011 0101 00000 00 0 0100

ADD R5,R3,#4 1110 00 1 0100 0 0011 0101 0000 00000100

ADD R5,R3,#44 ROR 2 1110 00 1 0100 0 0011 0101 0010 00101100

ADDGTS R5,R3,#8 1100 00 1 0100 1 0011 0101 0000 00001000

ADD R5,R3,R2 LSL #8 1110 00 0 0100 0 0011 0101 01000 00 0 0010

ADD R5,R3, R2 LSR R4 1110 00 0 0100 0 0011 0101 0100 0 01 1 0010

Question: Encode the following ARM instructions into machine code.

AND R5,R3,R4
ANDS R5,R3,R4
ANDEQ R5,R3,#8
ANDEQS R5,R3,#8
ADD R5,R3,#4
ADD R5,R3,#44 ROR 2
ADDGTS R5,R3,#8
ADD R5,R3,R2 LSL #8
ADD R5,R3, R2 LSR R4

Answer: The encoding is shown below. The opcode for AND is 0000 and goes in bits 24-21. The unconditional opera-
tion in the �rst two instructions lead to bits 1110 in position 31-28. Bits 26-27 are 00 for all data processing instructions.
The S-bit (bit 20) is set for instructions ANDS, ANDEQS, and ADDGTS. The I-bit is 1 for instructions which have
an immediate offset in the assembly instruction. The destination register 5 is in bits 12-15. The various source register
addresses are in bits 19-16, 3-0. If rotation amount is speci�ed in a register, the register address is in bits 11-8.

E X A M PLE

478 Chapter 9 Design of RISC Microprocessors

the lower part of the result is kept in an extra register indicated in bits 12-15. There are signed
and unsigned varieties of the long multiply instructions. For the fused multiply-add (MLA),
there are three source registers, and the third source register is in bits 12-15.

9.7.3 Memory Access Instruction Formats
Table 9-20 illustrates the instruction encoding for the load/store instructions in the ARM
instruction set. The opcode, source, and destination are assigned the same �elds as in the
data processing instruction format as much as possible. The �rst 4 bits (bits 31-28) are for
conditional execution. The next two bits (bits 27-26) are 01 for loads and stores. The next bit
(bit 25) is the I-bit and indicates whether the lowest 12-bits are in immediate or register for-
mat. The source and destination register �elds are in similar positions (bits 19-16, bits 15-12,
and bits 3-0) as much as possible. This greatly simpli�es decoding.

The encoding is very regular; however, compromises had to be made to accommodate
various instructions into the same width. For instance, in a load instruction, the second reg-
ister �eld is a destination register; whereas in a store instruction, it is the source of the data
to be stored. In the scaled-register addressing mode, there are in effect 3 source registers.
For example, the instruction STR R1, [R2, R3, LSL #2] has 3 sources; R1 is the data
source, and R2 and R3 are used in the computation of the address. In spite of such irregulari-
ties, one can say that the encoding is largely regular.

Bits 20-25 are used for controlling pre-indexing, post-indexing, data size (word/byte), and
direction of data (load or store), according to Table 9-20. For pre-indexing, one should use
P51, W51, whereas for normal accesses, set P51, W50. For post-indexing, set P50, W50.

Bit Meaning

P (pre/post index) P51 means pre-indexing. indicates the offset is applied to the base register, and the result is
used as the address.
P50 means post-indexing indicates the base register value is used for the address, the offset
is then applied to the base register and written back to the base register.

U (offset add/sub) U51 indicates offset is added to the base
U50 indicates offset subtracted from the base

B (byte/word) B51 means byte accessing
B50 means word accessing

W (write-back) For pre-indexed cases (i.e., P 5 1),
W51 means the calculated address will be written back to the base register (i.e., pre-index)
W50 means the base register will not be updated (normal access).
W50 for post indexing, but post-indexing always updates the base register.

L (load/store) L51 indicates load instruction
L50 indicates store instruction

TABLE 9-21: Encoding of PUBWL Bits for Load Store Instructions

Format 31–28 27–26 25 24 23 22 21 20 19–16 15–12 11–7 6–5 4 3–0

Immediate cond 01 0 P U B W L Rn Rd offset_12

Register cond 01 1 P U B W L Rn Rd 00000000 Rm

Scaled register cond 01 1 P U B W L Rn Rd shift_imm5 sh-type 0 Rm

TABLE 9-20: Instruction Encoding for Load Store Instructions in the ARM Instruction Set

Several example load/store instructions and their encoding are shown in Table 9-21

9.7 ARM Instruction Encoding 479

Question: Encode the following ARM instructions into corresponding binary machine code.

LDR R1, [R2,#8]
LDR R1, [R2,#8]!
LDR R1, [R2], #8

Answer: These instructions use immediate addressing, hence the I-bit equals 0. They perform normal accessing, pre-
indexing, and post-indexing, respectively. In the three cases, the settings for P and W should be 10, 11, and 00 respectively.

Format 31–28 27–26 25 24 23 22 21 20 19–16 15–12 11–7 6–5 4 3–0

Immediate cond 01 0 P U B W L Rn Rd 12_bit_offset

LDR R1, [R2,#8] 1110 01 0 1 1 0 0 1 R2 R1 000000001000

LDR R1, [R2,#8]! 1110 01 0 1 1 0 1 1 R2 R1 000000001000

LDR R1, [R2], #8 1110 01 0 0 1 0 0 1 R2 R1 000000001000

Question: Encode the following ARM instructions into corresponding binary machine code.

LDR R1, [R2,R3]
LDR R1, [R2,R3]!
LDR R1, [R2] ,R3

Answer: These instructions use register plus register addressing, hence the I-bit equals 1. They perform normal access-
ing, pre-indexing, and post-indexing respectively. In the three cases, the settings for P and W should be 10, 11, and 00,
respectively.

Format 31–28 27–26 25 24 23 22 21 20 19–16 15–12 11–7 6–5 4 3–0

Register cond 01 1 P U B W L Rn Rd 00000000 Rm

LDR R1, [R2,R3] 1110 01 1 1 1 0 0 1 R2 R1 00000000 R3

LDR R1, [R2,R3]! 1110 01 1 1 1 0 1 1 R2 R1 00000000 R3

LDR R1, [R2] ,R3 1110 01 1 0 1 0 0 1 R2 R1 00000000 R3

Question: Encode the following ARM instructions into corresponding binary machine code.

LDR R1, [R2,R3,LSL #2]
LDR R1, [R2,R3,LSL #2]!
LDR R1, [R2], R3,LSL #2

Answer: These instructions use scaled register addressing, hence the I-bit equals 1. They perform normal accessing, pre-
indexing, and post-indexing, respectively. In the three cases, the settings for P and W should be 10, 11 and 00, respectively.

Format 31–28 27–26 25 24 23 22 21 20 19–16 15–12 11–7 6–5 4 3–0

Scaled register cond 01 I P U B W L Rn Rd shift_imm5 sh-type2 0 Rm

LDR R1, [R2,R3,LSL #2] 1110 01 1 1 1 0 0 1 R2 R1 2 00 0 R3

LDR R1, [R2,R3,LSL #2]! 1110 01 1 1 1 0 1 1 R2 R1 2 00 0 R3

LDR R1, [R2], R3,LSL #2 1110 01 1 0 1 0 0 1 R2 R1 2 00 0 R3

E X A M PLE

480 Chapter 9 Design of RISC Microprocessors

Question: Encode the following ARM instruction into corresponding binary machine code.

STR R1, [R2, #8]

Answer: This is a normal access, hence P 5 1, W50. Bit 20 equals 0 to indicate a store. U bit equals 0 and B bit equals
0 since the access is for a word.

Example 31–28 27–26 25 24 23 22 21 20 19–16 15–12 11–7 6–5 4 3–0

STR R1, [R2, #8] E 01 0 1 1 0 0 0 R2 R1 8

B cond 101 0 signed_immed_24

BL cond 101 0 signed_immed_24

 31–28 27 26 25 24 23 22 21 20 19–16 15–12 11–0

AND cond 0 0 I 0 0 0 0 S Rn Rd Src2

EOR cond 0 0 I 0 0 0 1 S Rn Rd Src2

SUB cond 0 0 I 0 0 1 0 S Rn Rd Src2

RSB cond 0 0 I 0 0 1 1 S Rn Rd Src2

ADD cond 0 0 I 0 1 0 0 S Rn Rd Src2

ADC cond 0 0 I 0 1 0 1 S Rn Rd Src2

SBC cond 0 0 I 0 1 1 0 S Rn Rd Src2

RSC cond 0 0 I 0 1 1 1 S Rn Rd Src2

TST cond 0 0 I 1 0 0 0 S Rn Rd Src2

TEQ cond 0 0 I 1 0 0 1 S Rn Rd Src2

CMP cond 0 0 I 1 0 1 0 S Rn Rd Src2

CMN cond 0 0 I 1 0 1 1 S Rn Rd Src2

ORR cond 0 0 I 1 1 0 0 S Rn Rd Src2

MOV cond 0 0 I 1 1 0 1 S Rn Rd Src2

BIC cond 0 0 I 1 1 1 0 S Rn Rd Src2

MVN cond 0 0 I 1 1 1 1 S Rn Rd Src2

LDR cond 0 1 I P U 0 W 1 Rn Rd Src2

LDRB cond 0 1 I P U 1 W 1 Rn Rd Src2

STR cond 0 1 I P U 0 W 0 Rn Rd Src2

STRB cond 0 1 I P U 1 W 0 Rn Rd Src2

TABLE 9-22: ARM Instruction Encoding

(a) Summary

9.7.4 Branch instructions
The branch instructions have a 24-bit offset in the lower 24 bits of the instruction as in the
following examples:

Table 9-22 illustrates a summary of encoding of all instructions discussed.

E X A M PLE

9.7 ARM Instruction Encoding 481

 31–28 27 26 25 24 23 22 21 20 19–16 15–12 11–0

B cond 101 0 signed_immed_24

BL cond 101 0 signed_immed_24

MUL cond 0000 0 0 0 S Rd 0000 Rs 1001 Rn

MLA cond 0000 0 0 1 S Rd Ra Rm 1001 Rn

UMULL cond 0000 1 0 0 S Rd Ra Rm 1001 Rn

UMLAL cond 0000 1 0 1 S Rd Ra Rm 1001 Rn

SMULL cond 0000 1 1 0 S Rd Ra Rm 1001 Rn

SMLAL cond 0000 1 1 1 S Rd Ra Rm 1001 Rn

Format 11-8 7 6-5 4 3-0

Immediate (Bit 2551) rotate_4 immed_8

Immediate-shifted register (Bit 2550) shamt_5 sh-type 0 Rm

Register-shifted register (Bit 2550) Rs 0 sh-type 1 Rm

(b) Src2 formats (bits 11-0) for data processing instructions

Format 11–7 6–5 4 3–0

Immediate (Bit 2550) offset_12

Register (Bit 2551) 00000000 Rm

Scaled register (Bit 2551) shift_imm5 sh-type 0 Rm

(c) Src2 formats (bits 11-0) for LDR/STR instructions

To increase the familiarity with the ARM instruction encoding, let us practice some
machine coding.

Question: Create the machine code equivalent of the following assembly language
program.

 MOV R2, #4000 ; initialize address register for X
 MOV R3, R2, LSL 1, ; initialize address register for Y
 MOV R1, #0 ; initialize loop counter R1 to 0
Rlabel: LDR R4, [R2, R1] ; load x(i) to R4
 LDR R5, [R3,R1] ; load y(i) to R5
 ADD R6, R5, R4 ; x(i) + y(i)
 STR R6, [R3, R1] ; save new y(i)
 ADD R1, R1, #4 ; increment
 CMP R1,#400 ; i
 BNE Rlabel ; branch back if loop not done

482 Chapter 9 Design of RISC Microprocessors

Answer:
Machine code corresponding to all the instructions is shown in Table 9-23. MOV is a data

processing instruction and has 00 in bits 27-26. Since it is unconditional, the cond bits are
1110. The opcode for MOV is 1101 and goes into bits 24-21. Constant 4000 can be obtained
by shifting the number of 250 four times to the left. However, 32_bit immediate format has
only 4-bits of ROR and 8-bits of immediate constant. Hence, 4000 can be obtained by rotat-
ing right 28 times. In order to rotate right 28 times, the rotate constant needs to be 14 because
the number of rotates is twice as much as the rotate-amount in bits 11-7.

The constant 8000 can be obtained by shifting 4000 left by 1, which is done in the sec-
ond MOV instruction. The LDR, STR, and ADD instructions are similar to the examples
presented earlier in the chapter. Hence they are not described in detail here. The compare
instruction is a data processing instruction and hence has 00 in bits 26-27. It uses an immedi-
ate constant; hence, the I-bit is 1. Opcode bits are 1010, and the S-bit is a 1 because �ags are
affected. The constant 400 for compare is obtained by shifting 00011001 (i.e., hex value 19)
right by 28 times. The rotate constant is 14 (i.e., hex value E) in order to accomplish 28 shifts.
From Table 9-12, NE (Not Equal) has cond bits 0001. The B instruction has 10 in bits 27-26.
Since the program counter is pointing to two instructions after the BNE instruction 1PC18 2 ,
branch offsets have to be computed with respect to PC18. In order to branch back to the
�rst LDR instruction, the offset will be 28. When 28 is encoded as a 2’s complement binary
number, it becomes FFFFF8.

Instruction
Bits

31–28
Bits

27–26
Bits
25

Bits
24–21

Bits
20

Bits
19–16

Bits
15–12

Bits
11–4

Bits
3–0

Equivalent
Hex

MOV R2, 4000 1110 00 1 1101 0 0000 0010 11101111 1010 E3A02EFA

MOV R3, R2 LSL 1 1110 00 0 1101 0 0000 0011 00001000 0010 E1A03082

MOV R1, 0 1110 00 1 1101 0 0000 0001 00000000 0000 E3A01000

LDR R4, [R2, R1] 1110 01 1 1100 1 0010 0100 00000000 0001 E7924001

LDR R5, [R3, R1] 1110 01 1 1100 1 0011 0101 00000000 0001 E7935001

ADD R6, R5, R4 1110 00 0 0101 0 0100 0110 00000000 0100 E0856004

STR R6, [R3, R1] 1110 01 1 1100 0 0011 0110 00000000 0001 E7836001

ADD R1, R1, 4 1110 00 1 0100 0 0001 0001 00000000 0100 E2811004

CMP R1, 400 1110 00 1 1010 1 0001 0000 11100001 1001 E3510E19

BNE-8 0001 10 1 0111 1 1111 1111 11111111 1001 1AFFFFF8

TABLE 9-23: ARM Machine Code for Example 2. Binary as Well as Hex Representations Are Shown

9.8 Implementation of a Subset of ARM Instructions 483

9.8 Implementation of a Subset of ARM Instructions
This section describes a simple implementation of a subset of the ARM instruction set,
This subset, illustrated in Table 9-24, includes most of the important instructions, including
ALU, memory access, and branch instructions. What is presented in this section is a naïve
implementation of this instruction set. Modern microprocessors implement features, such as
pipelining, multiple instruction issue (superscalar execution), out-of-order execution, branch
prediction, and so on. For the sake of simplicity, what is presented here is a simple in-order,
non-pipelined implementation. Some of the exercise problems describe other implementa-
tions that will provide better performance.

Data processing

AND

EOR

SUB

RSB

ADD

ADC

SBC

RSC

TST

TEQ

CMP

CMN

ORR

MOV

BIC

MVN

Memory Access

Load word (LDR)

Loadbyte (LDRB)

Store Word (STR)

Store byte (STRB)

Control Transfer
Branch (B)

branch with link (BL)

Multiply

MUL

MLA

UMULL

SMULL

SMLAL

UMLAL

TABLE 9-24: Subset
of ARM Instructions
Described in This
Chapter. Instructions
Implemented in the
VHDL Model are
shown in boldface.

484 Chapter 9 Design of RISC Microprocessors

9.8.1 Design of the Data Path
In order to design a microprocessor, �rst you will examine the sequence of operations dur-
ing execution of instructions, and then describe the nature of the hardware required to
accomplish the instruction execution. In general, any microprocessor works in the following
manner:

1. The processor fetches an instruction.
2. It decodes the instruction that was fetched. Decoding means identifying what the instruc-

tion is.
3. It reads the operands and executes the instruction. For a RISC ISA, for arithmetic

instructions, the operands are in registers. The registers that contain the input operands
are called source registers. For memory access instructions, addresses are computed using
registers, and memory is accessed. After execution, the processor writes the result of the
instruction execution into the destination. The destination is a register for all instructions
other than the store instruction, which has to write the result into the memory.

Hence, the design must contain a unit to fetch the instructions, a unit to decode the
instructions, an arithmetic and logic unit (ALU) to execute the instructions, a register �le
to hold the operands, and the memory that stores instructions and data. The control unit
generates the appropriate control signals for each of the operations. These components are
described below:

Instruction Fetch Unit
In general, a microprocessor has a special register called the Program Counter (PC), which
points to the next instruction in the instruction memory. The PC sends this address to the
instruction memory, which sends the instruction back. The processor increments the PC to
point to the next instruction to be fetched. In the ARM processor, due to the exposure of the
pipeline to the ARM ISA, the program counter is assumed to point to two instructions down
the instruction stream, that is, PC18. If one needs access to the PC value, it is accomplished
by reading R15, which is assumed to contain PC18. If R15 is updated, the written value
becomes the current PC.

The next PC is one of the following depending on the current instruction:

a. PC 1 4: For instructions other than branch instructions and branches that are not
taken due to the condition not satisfied, the next instruction is at address PC14, since
four bytes are needed for the current instruction.

b. PC_Branch: In the branch (B and BL) instructions, the next PC is obtained by adding the
offset in the instruction to the current PC. In the ARM instruction set, the branch offset
is provided as a signed word offset (number of words to jump forward or backward).
First the word offset is sign-extended, converted to a byte offset by multiplying by 4 and
then it is added to the current PC. But due to the ARM instruction set feature that read-
ing PC (R15) yields PC18, the next PC for branch instructions that are taken is:

PC_taken 5 PC 1 8 1 Offset * 4.

The branch instruction B reads PC18 (from R15) and adds it to the 24-bit immediate
constant to create the branch target. The condition evaluation will tell whether the branch is
taken or not. After each instruction fetch, PC gets either PC14 or PC181immed-offset*4
depending on whether branch is taken or not.

9.8 Implementation of a Subset of ARM Instructions 485

A block diagram for this unit is shown in Figure 9-11.

FIGURE 9-11: Block
Diagram for Instruction
Fetch

PC + 8 +
Offset * 4

Offset * 4

PC + 8
R15 ADD

MUX
Instn

MemoryPC + 4
PC

The appropriate target addresses are computed and fed to the PC. A multiplexer is used
to select between the branch target, or PC 1 4, depending on the instruction (branch or non-
branch) and depending on whether the branch is taken or not. There should also be a port
to write PC18 to R15.

There are several choices as to when the target addresses are computed. The default tar-
get, PC 1 4, can be computed at instruction fetch itself, since it needs no other information
other than the PC itself. In conditional branch instructions, the branch target (PC_Branch)
computation can be done as soon as the instruction is read; however, whether the branch is
taken or not will not be known until the condition code is processed.

Figure 9-11 also shows the instruction memory unit. In the initial design, you are going to
use a separate instruction memory and separate data memory in alignment with the popular
scheme of separate instruction and data caches found in modern processors. You will not
be designing a cache memory; however, you will assume the presence of on-chip instruction
memory that can be accessed by the processor in one cycle after the address is provided to it.

Instruction Decode Unit
Decoding is fairly simple due to the simplicity of the RISC ISA. One can observe from
Table 9-22 that the instruction formats in the ARM instruction set are regular and uniform.
The uniformity of the instruction format allows many of the instruction �elds to be directly
used for register addressing and control signal generation. The �rst 4 bits of the instruction
specify the condition code which can be decoded according to Table 9-12. The next two bits
26-27 have value 00 for data processing, 01 for memory access, and 10 for branches. Bit 25
indicates the use of immediate addressing mode except in branch and multiply instructions.
The data processing opcode is located in bits 21-24. Bit 20 indicates whether instruction
output must affect condition �ags. In majority of the instructions, the destination register
is in bits 12-15, except in multiply where it is in bits 19-16. The functionality of the instruc-
tion is decided mainly by bits 20-27; however, bits 4-7 have to be used in some instructions
to decipher the instruction. The addressing modes for the second source operand do create
some complexity in the decoding process. Table 9-18 is used for decoding the various types
of shifts.

The condition code can be decoded during the decode stage.

Instruction Execution Unit
Once the instruction is identi�ed at the decode stage, the next task is to read the operands
and perform the operation. In RISC instruction sets, the operands are in registers. The
ARM architecture contains 16 registers, and these registers are collectively referred to as

486 Chapter 9 Design of RISC Microprocessors

the register �le. The register �le should have at least two read ports to support reading two
operands at the same time, and it should have one write port.

The operation of the register �le is as follows. The registers that hold the input oper-
ands are called source registers, and the register that should receive the result is called the
 destination register. The source register addresses are applied to the register �le. The register
�le will produce the data from the corresponding registers on the output data lines. This
data is fed to the arithmetic and logic unit (ALU), which executes the instruction. The ALU
contains functional units such as adders, and AND, OR, XOR units.

Figure 9-13 shows a block diagram of the datapath that is required to execute the ALU
and memory instructions. The datapath includes an ALU, which will perform the following
operations: add, sub, and, xor and or. In the case of register-register instructions, both oper-
ands for the ALU are read from the register �le. In the case of the immediate instructions,
the immediate constant in the instruction is sign-extended to create the second operand.
Since one of the ALU operands comes from either the register �le or the sign extender, a
multiplexer is required to select the appropriate operand.

The ALU is also required for non-arithmetic instructions. For memory access instruc-
tions, you have to �rst calculate the address to be accessed. The ALU can be used for calcu-
lating the address. For address calculation for load and store instructions, the �rst operand
is obtained from the register speci�ed in the instruction, and the second operand is obtained
either from the immediate-shifted register or scaled register.

Some computation is required for branch instructions to compute the target address. The
addition of the offset to the PC to compute the target address can be done by the ALU or by
a dedicated adder. If it is done by the ALU, that saves extra hardware, but register R15 has to
be read from the register �le and offset*4 has to be fed to the other input of the ALU. Since
the conditional branch instructions do not need to access other registers during execution, it
is possible to read R15 from the register �le using one of the register ports to avoid an extra
adder. In the design presented in Figure 9-13, PC18 (R15) is read through the �rst port of
the register �le. The immediate constant is extended and fed to the second input of the ALU.

Ordinarily shifters will be part of the ALU. But in the ARM instruction set, shifting is
de�ned to be part of one operand that goes into many other instructions; that is, the shifted
operand is to be used as one of the ALU operands for many other instructions. Hence the
organization of the shifter must be as in Figure 9-12 (a). The ALU operates on one register
and another pre-shifted register.

The ALU should include adders, AND, OR, XOR units to support the various data
processing instructions. It should also include more complex units such as multipliers, and
fused multiply add units in order to implement multiply and multiply-accumulate (MLA)
instructions. A fused multiply-adder is illustrated in Figure 9-12 (b).

In most instructions, the result from the ALU should be written into the destination
register. To accomplish this, the ALU result is applied to the input data lines of the register
�le. The destination register name and the register write (RegW) command is applied to the
register �le. That causes the input data to get written into the destination register.

The condition code �eld indicates what �ags need to be considered. The appropriate
�ags can be accessed and condition evaluated to know whether the results of the instruction
should get written into registers or memory.

The datapath also has to include a data memory unit because load and store instructions
have to access the data memory unit. Modern microprocessors contain on-chip data caches.
You will not be designing a cache memory; however, you will assume the presence of on-
chip data memory that can be accessed by the instructions in one cycle after the address is
provided to the memory.

9.8 Implementation of a Subset of ARM Instructions 487

Figure 9-13 also shows use of several multiplexers and how the different bits of the
instruction are connected to the register �le. As Table 9-21 illustrates, bits 16 to 19 of the
instruction contains one of the source register addresses in all ALU instructions. Hence,
these bits can be connected to the �rst source register address of the register �le. Any instruc-
tion with a second register source contains the register address in bits 0 to 3. Hence, these bits
must be connected to the source register address of the register �le. The program counter
(PC) has to be read by reading R15 in branch instructions. Hence, the address for R15 can be

FIGURE 9-12: (a) Barrel
shifter used for Src2
operand to the ALU
(b) Fused Multiply Add
Unit

Rn

Rm

Rd

Immed shamt
or Rs

Barrel
shifter

ALU

Rn

Rm

Ra

Rd = Rn * Rm
 + Ra

Mul

Add

FIGURE 9-13: Required Data Path for Computation and Memory Instructions

Source
Register 1 (SR1) SR1

Data

SR2

Data

Registers

Source

Destination

Write
Data

Register 2 (SR2)

Register 1

ALU
 Read
 data

 Address

Data memory

 Write
 data

24 32

Instr [19–16]

Instr [19-7]

15

15

Instr [23-0]

M
U
X

Instr [3-0]

Instr [15-12]

Instr [15-12]

Instr [19-16]

M
U
X

Extend
Shift
left 2

M
U
X

3

M
U
X

2

M
U
X

1

Barrel
shifter

488 Chapter 9 Design of RISC Microprocessors

fed to source address as a choice. A multiplexer can choose between bits 19 to 16 or R15 for
the �rst source address. In some instructions, such as the STR and MLA, the second source
address is in bits 15 to 12. A multiplexer can choose between Rm (bits 3 to 0) and bits 12 to 15
for source address 2. In most the instructions that you are implementing, the the destination
register address appears in bits 12 to 15. In the multiply instruction, however, the destina-
tion address is in bits 16 to 19. Hence, a multiplexer is required to choose the appropriate
destination register address. Yet another multiplexer is used to select whether ALU output
or memory data will be written to the destination register.

The second operand to the ALU comes from the second register port, or the 24-bit
branch offset or the 8-bit constant for data processing instructions or the 12-bit offset for
load/store instructions. The immediate constants are sign-extended or shifted before feed-
ing in to the ALU. A multiplexer chooses between the register operand or the immediate
constants for the ALU.

The barrel shifter is placed outside the main ALU. The control bits of the barrel shifter
will be from the Rs �eld in bits 8-11 or shift amount (shamt) in bits 7-11. A third source will
connect the Rs �eld to the barrel shifter. A multiplexer will select between the shifted or
original register. If shift instructions have to be implemented, the third read register port
must be added.

Overall Data Path
The overall data path is shown in Figure 9-14. It integrates the fetch and execute hardware
from Figures 9-11 and 9-13 and adds other required elements for correct operation. In addi-
tion, control signals are also shown.

FIGURE 9-14: Overall Data Path

PC Select
Reg W
OP
Mem Write
ALU or MEM
REG or IMM

Read
data

Address

Data memory

Men Write

Write
data

Source
Register 1 (SR1)

 Registers

Source
Register 2 (SR2)

Destination
Register 1

Write
Data

SR1
Data

SR2
Data

A

d

d

PC

4

Instr [23-0]

Instr
[31 – 0]

Instruction Memory

Read
Address

Control
unit

Barrel
Shifter

Next PC

PC + 4 PC + 4

PCSelect

ALU or MEM

REG or IMM

RegW

OP

M

U

X

4

A
L
U

M

U

X

3

24 32
Extend

Shift
left 2

Instr [19–16]

Instr [11–7]

15

15

M
U
X

Instr [3–4]
Instr [15–12] M

U
X

Instr [15–12]

Instr [19–16]

DR Select

M
U
X

1

M

U

X

2

9.8 Implementation of a Subset of ARM Instructions 489

Figure 9-14 also illustrates the details of the computation of the target addresses in the
various kinds of instructions. Default next address of PC 1 4 is calculated with an adder.
Addition of the branch offset to the PC is also done using a separate adder.

Several multiplexers are shown in this data path:

 ● Mux 1 selects a destination register address from an appropriate register �eld depending
on the instruction format. For data processing instructions, bits 15-12 yield the destina-
tion address, and for multiply instruction, bits 19-16 of instruction provide the destina-
tion address.

 ● Mux 2 selects whether the second operand for ALU comes from a register or an immedi-
ate constant.

 ● Mux 3 selects between the memory or the ALU output for data to go into the destination
register. For load instructions, the memory data is chosen.

 ● Mux 4 selects between the two possible next PC values depending on the type of
instruction.

 ● Mux 5 selects between the different source addresses coming to register port 1.
 ● Mux 6 selects between the different source addresses coming to register port 2.

The scaled register addressing mode for data processing and memory access instructions
increases the complexity of the hardware quite a bit. A barrel shifter needs to be introduced
and a third port to the register �le.

9.8.2 Instruction Execution Flow
Figure 9-15 illustrates the �ow of execution for a possible implementation.

The �rst step is fetch for all instructions. The address in the Program Counter (PC) is
sent to the instruction memory unit. All instructions also need to update the PC to point to
the next instruction. While PC should be updated differently for branch instructions, the vast
majority of instructions are in sequence, and hence, PC can be updated to point to the next
instruction in sequence. Branch instructions can later modify the PC to the branch target
address if branch has to be taken.

The second step is decode. Depending on the opcode that is encountered, different
actions follow. For register-register operations, both ALU operands are read from registers.
For instructions with an immediate operand, one operand is read from the register �le, and
the immediate constant in the instruction is sign-extended.

The second operand may have to be shifted before feeding in to the ALU. The shifting
can be done as a separate pre-processing step or integrated to the ALU. In Figure 9-15, it
is shown as a pre-processing step integrated into the decode stage. The cycle time achieved
in an implementation will depend on whether the shifting happens as a step by itself, during
decode, or during execution.

The ALU operation required for each instruction is identi�ed during the decode step.
For instance, the branch instructions need an add operation if the main ALU is used for the
branch target computation. The load and store instructions require an add operation for
address computation.

Step 3 is the actual execution of the instructions. Depending on the instruction, different
ALU operations are performed during this step. The different actions are shown in boxes
labeled 3a, 3b, and so forth for the different types of instructions. Each instruction goes
only through one of these operations, depending on what type of instruction it is. For load
and store instructions, the ALU performs an addition to calculate the memory address. For
branch instructions, the branch target address is computed during this step. In a pipelined

490 Chapter 9 Design of RISC Microprocessors

implementation, the computation of the branch target could be done during the decode stage
thereby reducing the branch penalty. However, in the presented design, PC is accessed as
R15 during register read, and the target computation is done during the execute stage.

Step 4 varies widely between the instructions. Arithmetic and logic instructions can write
their computation result to the destination register. For load instructions, a memory read
operation is initiated. For memory store instructions, the data from the data source register
is steered to the memory, and a memory write operation is initiated. Branch instructions
update the PC, depending on the result of the condition evaluation. This is the �nal step for
all instructions other than load instructions.

Step 5 is required only for load instructions. The data output from memory is written into
the destination register.

One can implement this instruction �ow in a variety of ways. In the most naïve implemen-
tation, one can have a very slow clock, and the processor performs all operations required for
each instruction in one clock cycle. The disadvantage with this scheme is that all instructions
will be as slow as the slowest instruction because the clock cycle has to be long enough for the
slowest instruction. Another option is to do an implementation where each instruction takes
multiple cycles, but just enough cycles to �nish all operations for each class of instruction.
For instance, Figure 9-15 can be considered as an ASM chart with each box taking one cycle.
In this case an ALU instruction needs four cycles and a load instruction takes 5 cycles. The
next section presents the VHDL model of such an implementation.

FIGURE 9-15: Flow
Chart for Instruction
Processing

ALU Load Store B

1

2

3b 3c 3d3a

4b 4c 4d

5

Fetch intruction
 PC = PC + 4

 Decode

Read two
operands

 Perform
ALU operation

Write result to
destination reg

Read address reg

Add reg with offset
 to get address

Access Memory

Read address reg Read R15

Add

Load data to reg

Write data to add-
-ress in memory

 If condition true
PC = PC + 8 + offset * 4

Write to R15

Add reg with offset
 to get address

Shift operand 2

4a

9.9 VHDL Model of the ARM Subset 491

9.9 VHDL Model of the ARM Subset
The VHDL model for the processor is organized as in Figure 9-16. The instruction memory,
data memory, and register �le are created as components with their architecture and entity
descriptions. The main code, the ARM entity embeds the control sequencing the instructions
through the various stages of its operation. The instruction and data memory units were
combined to be a single memory and illustrate the use of the address and data buses. Later
when you use a test bench, you will allow the test bench to directly write into the instruction
memory in order to deposit instructions to be tested.

FIGURE 9-16:
Organization of the
VHDL Model for the
Processor

Entity
Architecture

Entity
Architecture

Memory

Entity
Architecture

ARM

Entity
Architecture

Register
File

Complete
ARM

Data

Addr

Let us model the register and memory components �rst.

9.9.1 VHDL Model for the Register File
Figure 9-17 shows the VHDL model for the register �le. The REG entity is used to represent
the 16 ARM registers. Each register is 32 bits long. The destination register address is DR,
and the source register addresses are SR1 and SR2. Since there are 16 registers, DR, SR1, and
SR2 are 4 bits each. The outputs Reg1 and Reg2 are the contents of the registers speci�ed by
SR1 and SR2. Reg1 is fed straight to the ALU. Reg2 can be used as a second ALU input or
as the input to data memory in the case of store instructions. The control signal RegW is used
to control the write operation to the register �le. If RegW is true, the data on lines Reg_In is
written into the register pointed to by DR.

If this code is synthesized for a Xilinx Spartan™ FPGA, the reads have to be performed
asynchronously as in the provided code in order to get the register �le mapped into distrib-
uted RAM. As you know from Chapter 6, the Xilinx Spartan/Virtex FPGAs contain dedi-
cated block RAM. It is desirable to perform reads synchronously, however. Then the register
�le gets synthesized into BlockRAM with current Xilinx synthesis tools. The asynchronous
reads to allow generation of Distributed RAM for the register �le was used.

492 Chapter 9 Design of RISC Microprocessors

9.9.2 VHDL Model for Memory
Figure 9-18 illustrates the VHDL code for the memory unit. The VHDL model is similar to
the SRAM model that you did in Chapter 8. This SRAM model has tristated input-output
lines and allows easy testing with a test bench, where the test bench can write instructions
into the memory and the processor can read instruction and read/write data. The test bench
and the processor can drive the data bus of the memory. Although Figures 9-13 and 9-14
illustrated separate instruction and data memories, for convenience and for illustrating use
of address and data buses, a uni�ed memory module which stores both instructions and data
has been used. The memory consists of 128 locations, each 32 bits wide. Assume that the
instructions are the �rst 64 words in the array, and the other 64 words are allocated for data
memory. The signal Address speci�es the location in memory to be read from or stored to.
The address bus is actually 32 bits wide but use only the 7 lower bits that implement only a
small memory.

The address bus will be driven by the processor appropriately for instruction and data
access. The address input may come from the program counter for reading the instruction
or from the ALU that computes the address to access the data portion of the memory. The
chip select (CS) and write enable (WE) signals allow the processor to control the reads and

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

entity REG is
 port(CLK: in std_logic;
 RegW: in std_logic;
 DR, SR1, SR2, Rm: in unsigned(3 downto 0);
 Reg_In: in unsigned(31 downto 0);
 ReadReg1, ReadReg2, ReadReg3: out unsigned(31 downto 0));
end REG;

architecture Behavioral of REG is
 type RAM is array (0 to 15) of unsigned(31 downto 0);
 signal Regs: RAM := (others => (others => '1')); -- set all reg bits to '1'
begin
 process(clk)
 begin
 if CLK = '1' and CLK'event then
 if RegW = '1' then
 Regs(to_integer(DR)) <= Reg_In;
 end if;
 end if;
 end process;
 ReadReg1 <= Regs(to_integer(SR1)); --asynchronous read
 ReadReg2 <= Regs(to_integer(SR2)); --asynchronous read
 ReadReg3 <= Regs(to_integer(Rm)); --asynchronous read
end Behavioral;

FIGURE 9-17: VHDL Code for Register File

9.9 VHDL Model of the ARM Subset 493

writes. When CS and WE are true, the data on Mem_Bus gets written to the memory location
pointed to by address ADDR.

For simplicity, the address is shown as a word address in the VHDL code for the memory.
In the actual ARM processor, the memory is byte-addressable. Therefore, each instruction
memory access should obtain the data found in the speci�ed location concatenated with the
next three memory locations. For example, if address 5 0, the instruction register must be
loaded with the contents of MEM[0], MEM[1], MEM[2], and MEM[3]. The instructions
are stored, depending on the endianness of the machine. Many modern microprocessors
support both big endian and little endian approaches. More on endianness can be found in
Section 9.2.4.

9.9.3 VHDL Code for the ARM Processor CPU
This section presents the VHDL code for the Central Processing Unit (CPU) of the
microprocessor. The register module that was created in the earlier section is used here.
 Figure 9-19 shows a VHDL model for the ARM instructions in Table 9-21. It generally
follows the �ow in Figure 9-15, implementing the fetch, decode, and execute phases
of an instruction. In order to increase the readability of the code, several aliases are
de�ned. The most signi�cant 4 bits of the instruction are denoted by the alias Cond.

FIGURE 9-18: VHDL Code for the Uni�ed Instruction/Data Memory

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

entity Memory is
 port(CS, WE, Clk: in std_logic;
 ADDR: in unsigned(31 downto 0);
 Mem_Bus: inout unsigned(31 downto 0));
end Memory;

architecture Internal of Memory is
 type RAMtype is array (0 to 127) of unsigned(31 downto 0);
 signal RAM1: RAMtype := (others => (others => '0'));
 signal output: unsigned(31 downto 0);
begin
 Mem_Bus <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ" when CS = '0' or WE = '1'
 else output;
 process(Clk)
 begin
 if Clk = '0' and Clk'event then
 if CS = '1' and WE = '1' then
 RAM1(to_integer(ADDR(6 downto 0))) <= Mem_Bus;
 end if;
 output <= RAM1(to_integer(ADDR(6 downto 0)));
 end if;
 end process;
end Internal;

494 Chapter 9 Design of RISC Microprocessors

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

entity ARM is
 port(CLK, RST: in std_logic;
 CS, WE: out std_logic;
 ADDR: out unsigned (31 downto 0);
 Mem_Bus: inout unsigned(31 downto 0));
end ARM;

architecture structure of ARM is
 component REG is
 port(CLK: in std_logic;
 RegW: in std_logic;
 DR, SR1, SR2, Rm: in unsigned(3 downto 0);
 Reg_In: in unsigned(31 downto 0);
 ReadReg1, ReadReg2, ReadReg3: out unsigned(31 downto 0));
 end component;
 type Operation is (and1,xor1,sub,add,mov);
 signal Op, OpSave: Operation := and1;
 type Instr_type is (DP, LDST, BR); -- (dataproc, LDST, BR)
 signal I_type: Instr_type := DP;
 signal Instr, Imm24_Ext, Imm12_Ext, Imm8_Ext: unsigned (31 downto 0);
 signal PC, nPC, ReadReg1, ReadReg2, ReadReg3, Reg_In: unsigned(31 downto 0);
 signal ALU_InA, ALU_InB : unsigned(31 downto 0);
 signal ALU_Result, ALU_Result_Save: unsigned(32 downto 0) :=
"000000000000000000000000000000000";
 signal REGorImm81224, REGorImm81224_Save: unsigned(1 downto 0) := "00";
 signal ALUorMEM, ALUorMEM_Save, RegW, FetchDorI, Writing, REGorIMM: std_logic := '0';
 signal DR: unsigned(3 downto 0);
 signal State, nState : integer range 0 to 4 := 0;
 signal SR1, SR2 : unsigned(3 downto 0);
 signal cond_flag : std_logic;
 signal shifter_operand_flag, shifter_operand_flag_Save : std_logic;
 signal shifter_operand : unsigned(32 downto 0);
 signal ReadReg2_NumShift : unsigned(31 downto 0);
 signal N, Z, C, V : std_logic := '0';
 signal nN, nZ, nC, nV : std_logic := '0';
 alias U: std_logic is Instr(23);
 signal i : integer range 0 to 31 := 0;
 alias Cond : unsigned(3 downto 0) is Instr(31 downto 28);
 alias op_bits : unsigned(1 downto 0) is Instr(27 downto 26);
 alias I_bit : std_logic is Instr(25);
 alias S_bit : std_logic is Instr(20);
 alias dp_opcode : unsigned(3 downto 0) is Instr(24 downto 21);
 alias Rm : unsigned(3 downto 0) is Instr(3 downto 0);
 alias Rotate_imm : unsigned(3 downto 0) is Instr(11 downto 8);

FIGURE 9-19: VHDL Code for the ARM Subset Implementation

9.9 VHDL Model of the ARM Subset 495

 alias NumShift : unsigned(4 downto 0) is Instr(11 downto 7);
 alias sh_type : unsigned(1 downto 0) is Instr(6 downto 5);

begin
 A1: REG port map (CLK, RegW, DR, SR1, SR2, Rm, Reg_In, ReadReg1, ReadReg2,
ReadReg3);
 Imm24_Ext <= x"FF" & Instr(23 downto 0) when Instr(23) = '1'
 else x"00" & Instr(23 downto 0);
 Imm12_Ext <= x"FFFFF" & Instr(11 downto 0) when Instr(11) = '1'
 else x"00000" & Instr(11 downto 0); -- Sign extend immediate field
 Imm8_Ext <= (x"FFFFFF" & Instr(7 downto 0)) ror (to_integer(Rotate_imm * 2))
when Instr(7) = '1'
 else (x"000000" & Instr(7 downto 0)) ror (to_integer(Rotate_imm * 2));
 -- Sign extend immediate field
 SR1 <= "1111" when I_type = BR
 else Instr(19 downto 16); -- Source Register MUX (MUX5)
 SR2 <= Instr(15 downto 12) when (I_type = LDST and Instr(20)= '0')
 else Instr(3 downto 0); -- Source Register MUX (MUX6)
 DR <= Instr(15 downto 12); -- Destination Register MUX (MUX1)
 ALU_InA <= ReadReg1;
 ALU_InB <= ReadReg2 when (REGorImm81224_Save = "00" and I_type = DP and
NumShift = "00000")
 else ReadReg2_NumShift when (REGorImm81224_Save = "00" and I_type
= DP and NumShift /= "00000")
 else ReadReg3 when (REGorImm81224_Save = "00" and I_type = LDST)
 else Imm8_Ext when REGorImm81224_Save = "01"
 else Imm12_Ext when REGorImm81224_Save = "10"
 else Imm24_Ext; -- ALU operand 2 MUX (MUX2)
 Reg_in <= Mem_Bus when ALUorMEM_Save = '1' else ALU_Result_Save(31 downto 0);
-- Data MUX
 I_type <= DP when op_bits = "00" else LDST when op_bits = "01" else BR when
op_bits = "10" else DP;
 Mem_Bus <= ReadReg2 when Writing = '1' else
 "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ"; -- drive memory bus only during writes
 ADDR <= PC when FetchDorI = '1' else ALU_Result_Save(31 downto 0); --ADDR Mux
 shifter_operand_flag_Save <= shifter_operand_flag;
 process (Cond, N, Z, V, C)
 begin
 case (to_integer(Cond)) is
 when 0 => cond_flag <= Z; --eq
 when 1 => cond_flag <= not Z; --ne
 when 2 => cond_flag <= C; --hs
 when 3 => cond_flag <= not C; --lo
 when 4 => cond_flag <= N; --mi
 when 5 => cond_flag <= not N; --pl
 when 6 => cond_flag <= V; --vs
 when 7 => cond_flag <= not V; --vc
 when 8 => cond_flag <= C and (not Z); --hi
 when 9 => cond_flag <= (not C) or Z; --ls
 when 10 => cond_flag <= N xnor V; --ge

496 Chapter 9 Design of RISC Microprocessors

 when 11 => cond_flag <= N xor V; --lt
 when 12 => cond_flag <= (N xnor V) and (not Z); --gt
 when 13 => cond_flag <= (N xor V) or Z; --le
 when 14 => cond_flag <= '1'; --al
 when others => cond_flag <= '1';
 end case;
 end process;

 process (op_bits, Sh_type, I_bit, shifter_operand, ReadReg2, S_bit,
 C, ReadReg2_NumShift)
 begin
 shifter_operand <= "000000000000000000000000000000000";
 ReadReg2_NumShift <= "00000000000000000000000000000000";
 shifter_operand_flag <= '0';
 if (op_bits = "00" and I_bit = '0') then
 case (Sh_type) is
 when "00" => if NumShift = "00000" then -- LSL
 shifter_operand <= C & ReadReg2;
 ReadReg2_NumShift <= ReadReg2;
 else
 shifter_operand <= ('0' & ReadReg2) sll to_integer(NumShift);
 ReadReg2_NumShift <= shifter_operand(31 downto 0);
 end if;
 if S_bit = '1' then shifter_operand_flag <= shifter_operand(32);
 end if;
 when "01" => if NumShift = "00000" then -- LSR
 shifter_operand <= "00000000000000000000000000000000" & ReadReg2(31);
 ReadReg2_NumShift <= shifter_operand(31 downto 0);
 else
 shifter_operand <= (ReadReg2 & '0') srl to_integer(NumShift);
 ReadReg2_NumShift <= shifter_operand(32 downto 1);
 end if;
 if S_bit = '1' then shifter_operand_flag <= shifter_operand(0);
 end if;
 when '10" => if NumShift = "00000" then -- ASR
 if ReadReg2(31) = '0' then ReadReg2_NumShift <= x"00000000";
 elsif ReadReg2(31) ='1' then ReadReg2_NumShift <= x"ffffffff";
 else ReadReg2_NumShift <= x"ffffffff";
 end if;
 else
 shifter_operand <= (ReadReg2 & '0') srl to_integer(NumShift);
 end if;
 if S_bit = '1' then shifter_operand_flag <= shifter_operand(0);
 end if;
 when "11" => if (NumShift = "00000") then -- RRX
 shifter_operand <= C & ReadReg2;
 ReadReg2_NumShift <= shifter_operand(32 downto 1);
 if S_bit = '1' then shifter_operand_flag <= shifter_operand(0);
 end if;

9.9 VHDL Model of the ARM Subset 497

 else -- ROR
 ReadReg2_NumShift <= ReadReg2 ror to_integer(NumShift);
 if S_bit = '1' then shifter_operand_flag <= ReadReg2_NumShift(31);
 end if;
 end if;
 when others => null;
 end case;
 end if;
 end process;

 process(State, PC, Instr, dp_opcode, Op, ALU_InA, ALU_InB,
 Imm8_Ext, Imm12_Ext, Imm24_Ext,
 N, Z, V, C, cond_flag, I_type, OpSave, ALU_Result, ALU_Result_Save,
shifter_operand_flag)
 begin
 FetchDorI <= '0'; CS <= '0'; WE <= '0'; RegW <= '0'; Writing <= '0';
 ALU_Result <= "000000000000000000000000000000000";
 nPC <= PC; nState <= State; nN <= N; nZ <= Z; nC <= C; nV <= V;
 REGorImm81224 <= "00"; ALUorMEM <= '0'; REGorIMM <= '0'; Op <= and1;
 case State is
 when 0 => --fetch instruction
 nPC <= PC + 1; CS <= '1'; nState <= 1;
 FetchDorI <= '1';
 when 1 =>
 REGorImm81224 <= "00"; ALUorMEM <= '0';
 if cond_flag = '0' then nState <= 0;
 else
 nState <= 2;
 if I_type = BR then
 REGorImm81224 <= "11";
 Op <= add;
 elsif I_type = DP then -- data processing instructions
 if dp_opcode = "0000" then Op <= and1; -- and
 elsif dp_opcode = "0001" then Op <= xor1; -- exclusive or
 elsif dp_opcode = "0010" then Op <= sub; -- sub
 elsif dp_opcode = "0100" then Op <= add; -- add
 elsif dp_opcode = "1101" then Op <= mov; -- move
 end if;
 if I_bit = '1' then REGorImm81224 <= "01"; end if;
 elsif I_type = LDST then
 if U = '1' then Op <= add;
 elsif U = '0' then Op <= sub;
 end if;
 if S_bit = '1' then ALUorMEM <= '1'; end if;
 if I_bit = '0' then REGorImm81224 <= "10"; end if;
 end if;
 end if;
 when 2 =>
 nState <= 3;

498 Chapter 9 Design of RISC Microprocessors

 if OpSave = and1 then ALU_Result(31 downto 0) <= ALU_InA and ALU_InB;
 elsif OpSave = xor1 then ALU_Result(31 downto 0) <= ALU_InA xor ALU_InB;
 elsif (OpSave = add and I_type /= LDST) then ALU_Result <= (ALU_InA(31) &
ALU_InA) + (ALU_InB (31) & ALU_InB);
 elsif (OpSave = add and I_type = LDST) then ALU_Result <= ((ALU_InA(31) &
ALU_InA) + (ALU_InB (31) & ALU_InB)) srl 2;
 elsif (OpSave = sub and I_type /= LDST) then ALU_Result <= (ALU_InA(31) &
ALU_InA) - (ALU_InB (31) & ALU_InB);
 elsif (OpSave = sub and I_type = LDST) then ALU_Result <= ((ALU_InA(31) &
ALU_InA) - (ALU_InB (31) & ALU_InB)) srl 2;
 elsif OpSave = mov then ALU_Result(31 downto 0) <= ALU_InB;
 end if;
 when 3 =>
 nState <= 0;
 if I_type = DP and S_bit = '1' then
 nN <= ALU_Result(31);
 if ALU_Result_Save = "000000000000000000000000000000000" then nZ <= '1';
 else nZ <= '0'; end if;
 if OpSave = sub then
 nC <= ALU_Result(32);
 nV <= (ALU_InA(31) and ('1' xor ALU_InB(31)) and (not
ALU_Result(31))) or ((not ALU_InA(31)) and ('1' xor (not ALU_InB(31))) and
ALU_Result(31));
 elsif OpSave = add then
 nC <= ALU_Result(32);
 nV <= (ALU_InA(31) and ('0' xor ALU_InB(31)) and (not
ALU_Result(31))) or ((not ALU_InA(31)) and ('0' xor (not ALU_InB(31))) and
ALU_Result(31));
 else
 nV <= V;
 if I_bit = '0' then nC <= shifter_operand_flag_Save;
 elsif I_bit = '1' and rotate_imm /= "0000" then nC <= ALU_InB(31);
 elsif I_bit = '1' and rotate_imm = "0000" then nC <= C;
 end if;
 end if;
 end if;
 if I_type = DP then
 RegW <= '1';
 elsif I_type = BR then
 nPC <= PC + Imm24_Ext; -- operates as nPC <= PC + 8 + (Imm24_Ext srl 2)
 elsif I_type = LDST and S_bit = '0' then CS <= '1'; WE <= '1'; Writing <= '1';
 elsif I_type = LDST and S_bit = '1' then CS <= '1'; nState <= 4;
 end if;
 when 4 =>
 nState <= 0; CS <= '1'; RegW <= '1';
 end case;
 end process;

9.9 VHDL Model of the ARM Subset 499

 process(CLK)
 begin
 if CLK = '1' and CLK'event then
 if RST = '1' then
 State <= 0;
 PC <= x"00000000";
 else
 State <= nState;
 PC <= nPC;
 end if;
 if State = 0 then Instr <= Mem_Bus; end if;
 if State = 1 then
 OpSave <= Op;
 REGorImm81224_Save <= REGorImm81224;
 ALUorMEM_Save <= ALUorMEM;
 if cond_flag = '1' then State <= nState;
 else State <= 0;
 end if;
 end if;
 if State = 2 then ALU_Result_Save <= ALU_Result; end if;
 if State = 3 then N <= nN; Z <= nZ; C <= nC; V <= nV; end if;
 end if;
 end process;
end structure;

The lowest 12 bits of the instruction are denoted with the alias Src2. The shift amount in
shift instructions is denoted using NumShift. The two register source �elds are aliased to
SR1 and SR2. The following statements accomplish this aliasing:

alias Cond : unsigned(3 downto 0) is Instr(31 downto 28);
alias op-bits : unsigned(1 downto 0) is Instr(27 downto 26);
alias I_bit : unsigned(0 downto 0) is Instr(25);
alias dp_opcode : unsigned(3 downto 0) is Instr(24 downto 21);
alias mopcode : unsigned(3 downto 0) is Instr(7 downto 4);
alias Rs : unsigned(3 downto 0) is Instr(11 downto 9);
alias Rm : unsigned(3 downto 0) is Instr(3 downto 0);
alias NumShift : unsigned(4 downto 0) is Instr(11 downto 7);
alias Src2 : unsigned(11 downto 0) is Instr(11 downto 0);
alias sh_type : unsigned(1 downto 0) is Instr(6 downto 5);

For readability of the code, constant declarations have been used to associate the vari-
ous opcodes with the corresponding codes from Table 9-21. For instance, the add instruction
ADD has 0100 as its opcode, and the or instruction ORR has 1100 as its opcode. Several
statements, such as the following, are used in order to denote the various opcodes.

constant ADD : unsigned(3 downto 0) := "0100";
constant ORR : unsigned(3 downto 0) := "1100";

500 Chapter 9 Design of RISC Microprocessors

Sign extension of the immediate quantity is accomplished by the following statement.

Imm_Ext <= x"FFFF"&Instr(15 downto 0) when Instr(15) = '1' else

x"0000"&Instr(15 downto 0);

Sign extension of the branch offset is accomplished by the following statement.

B_Imm_Ext <= x"FF"&Instr(23 downto 0) when Instr(23) = '1' else

x"00"&Instr(23 downto 0);

Since you are implementing a non-pipelined version of the instruction set, do not con-
sider the behavior that program counter should point to PC18. After each instruction is
fetched, the program counter is updated to point to the instruction subsequent to the one it
is processing (i.e., PC11 since word addressing is used.

Following are the signals used in the VHDL model:

ARM Processor Model Signals:

Clk (input) Clock

Rst (input) Synchronous reset

CS (output) Memory chip select. When CS is active and WE is inactive, the memory module outputs the
memory contents at the address speci�ed by Addr to mem_bus.

WE (output) Memory write enable. When WE and CS are active, the memory module stores the contents
of mem_bus to the location speci�ed by Addr during the falling edge of the clock.

Addr (ouput) Memory address. During state 0 (fetch instruction from memory), Addr is connected to the
PC. Otherwise, it is connected to the ALU result. (32 bits)

Mem_Bus (in /out) Tri-state memory bus; carries data to and from the memory module. The processor module
outputs to the bus during memory writes. The memory module outputs to the bus during
memory reads. When not in use, the bus is at “hi-Z”. (32 bits)

Op ALU operation select; determines the speci�c operation (e.g., add, and, or) to be performed
by ALU. Determined during decode.

Format Indicates whether the current instruction is of I, or R format

Instr The current instruction (32 bits)

Imm8_Ext Sign-extended 8-bit immediate constant from the instruction (in data proc)

Imm12_Ext Sign-extended 12-bit immediate constant from the instruction (in ld/st)

Imm24_Ext Sign extended 24-bit immediate constant from the instruction (in Branch)

PC Current program counter (32 bits)

NPC Next program counter (32 bits)

ReadReg1 Contents of the 1st source register (SR1) (32 bits)

ReadReg2 Contents of the 2nd source register (SR2) (32 bits)

Reg_In Data input to registers. When executing a load instruction, Reg_In is connected to the
memory bus. Otherwise, it is connected to the ALU result. (32 bits)

ALU_InA 1st operand for the ALU (32 bits)

9.9 VHDL Model of the ARM Subset 501

ARM Processor Model Signals:

ALU_InB 2nd operand for the ALU. ALU_InB is connected to Imm_Ext during immediate mode
instructions. Otherwise, it is connected to ReadReg2. (32 bits)

ALU_Result Output of ALU (32 bits)

ALUorMEM Select signal for the Reg_In multiplexer; indicates if the register input should come from
the memory, or the ALU.

REGorIMM Select signal for the ALU_InB multiplexer; determines if the second ALU operand is a regis-
ter output or sign-extended immediate constant.

RegW Indicates if the destination register should be written to. Some instructions do not write any
results to a register (e.g., branch, store).

FetchDorI Select signal for the Address multiplexer; determines if Addr is the location of an instruc-
tion to be fetched, or the location of data to be read or written.

Writing Control signal for the processor output to the memory bus. Except during memory writes,
the output is ‘hi-Z’ so the bus can be used by other modules. Note Writing cannot be
replaced with WE, because WE is of mode out. Writing is used in mode in too.

DR Address of destination register (5 bits)

State Current state

nState Next state

CPSR Current Processor Status Register (N,Z,C,V)

Since you have used separate clock cycles for the fetch operation, decode operation,
execute operation, and so forth, it is necessary to save signals created during each stage for
later use. The statements such as

OpSave <= Op;
REGorImm81224_Save <= REGorIMM;
ALUorMEM_Save <= ALUorMEM;
ALU_Result_Save <= ALU_Result;

are used in the clocked process for saving (explicit latching) of the relevant signals.
The multiplexer at the input of the program counter is not explicitly coded. The various

data transfers are coded behaviorally in the various states. A good synthesizer will be able to
generate the multiplexer to accomplish the various data transfers. Similarly, the multiplexer
to select the destination register address is also not explicitly coded. If the synthesis tool gen-
erates inef�cient hardware for this multiplexed data transfer, one can code the multiplexer
into the data path and generate control signals for the select signals.

9.9.4 Integrated ARM
The processor module and the memory are integrated to yield the integrated ARM model
presented in Figure 9-20. Component descriptions are created for the processor and the
memory units. These components are integrated by using port-map statements. The high
level entity is called Complete_ARM. The address and data buses were brought out as
outputs from the high-level entity. If no outputs are shown in an entity, when the code is
synthesized, it results in empty blocks. Depending on the synthesis tool, unused signals (and
corresponding nets) may be deleted from the synthesized circuit.

502 Chapter 9 Design of RISC Microprocessors

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

entity Complete_ARM is
 port(CLK, RST: in std_logic;
 A_Out, D_Out: out unsigned(31 downto 0));
end Complete_ARM;

architecture model of Complete_ARM is
 component ARM is
 port(CLK, RST: in std_logic;
 CS, WE: out std_logic;
 ADDR: out unsigned(31 downto 0);
 Mem_Bus: inout unsigned(31 downto 0));
 end component;
 component Memory is
 port(CS, WE, Clk: in std_logic;
 ADDR: in unsigned(31 downto 0);
 Mem_Bus: inout unsigned(31 downto 0));
 end component;
 signal CS, WE: std_logic;
 signal ADDR, Mem_Bus: unsigned(31 downto 0);
begin
 CPU: ARM port map (CLK, RST, CS, WE, ADDR, Mem_Bus);
 MEM: Memory port map (CS, WE, CLK, ADDR, Mem_Bus);
 A_Out <= ADDR;
 D_Out <= Mem_Bus;
end model;

FIGURE 9-20: VHDL Code Integrating the Processor and Memory Modules

The above model was synthesized. The Xilinx Vivado tools targeted for a Artix 3 FPGA
yielded 1108 4-input LUTs , 660 slices, 111 �ip-�ops, and 1 Block RAM. The register �le
takes 194 4-input LUTs. Since one LUT can give 16 bits of storage, thirty-two 32-bit registers
would need the storage from 64 LUTs. Since the register �le has 2 read ports, it would need
128 LUTs. Additional LUTs are required for the address decoder and the control signals.
In order to implement the design on a prototyping board, interface to the input and display
modules should be added.

9.9.5 Testing the ARM Processor Model
The overall ARM VHDL model is tested using a test bench as illustrated in Figure 9-21. The
test bench must verify the proper operation of each implemented instruction. The test bench
consists of a ARM program with test instructions and VHDL code to load the program into
memory and verify the program’s output. Use a constant array of instructions that you want
to write into the memory and a constant array of expected outputs to which you will compare
the processor execution result.

Since you implemented a non-pipelined version of the instruction set, you did not con-
sider the behavior that program counter should point to PC18. The program counter is

9.9 VHDL Model of the ARM Subset 503

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

entity ARM_Testbench is
end ARM_Testbench;

architecture test of ARM_Testbench is
 component ARM
 port(CLK, RST: in std_logic;
 CS, WE: out std_logic;
 ADDR: out unsigned (31 downto 0);
 Mem_Bus: inout unsigned(31 downto 0));
 end component;
 component Memory
 port(CS, WE, CLK: in std_logic;
 ADDR: in unsigned(31 downto 0);
 Mem_Bus: inout unsigned(31 downto 0));
 end component;

 constant N: integer := 11;
 constant W: integer := 29;
 type Iarr is array(1 to W) of unsigned(31 downto 0);
 constant Instr_List: Iarr := (
 x"E2000000", -- and R0, R0, #0 => R0 = 0
 x"E2801006", -- add R1, R0, #6 => R1 = 6
 x"E2202012", -- eor R2, R0, #18 => R2 = 18
 x"E0813002", -- add R3, R1, R2 => R3 = R1 + R2 = 24
 x"E2424240", -- sub R4, R2 64 ror 2 => R4 = R2 - (64 ror (2*2)) = 14

(32_bit immediate format)
 x"E0015002", -- and R5, R1, R2 => R5 = R1 and R2 = 2
 x"E2806102", -- add R6, R0 2 ror 1 => R6 = R0 + (2 ror (1*2)) =

x"80000000" = -2147483648
 x"E3A07001", -- mov R7, #1 => R7 = 1
 x"E1A08202", -- mov R8, ,R2 LSL #4 => R8 = R2 * 16 = 288
 x"E04290A1", -- sub R9, R2, R1 LSR #1 => R9 = R2 - (R1 lsr 1) = 15
 x"E0510163", -- subs R0, R1, R3 ROR 2 => R0 = 0 and Z bit = '1'
 x"0490A004", -- ldreq R10, [R0, #4] => R10 = 1st instr = x"E2801006" =

-494923770
 x"EA000001", -- b => must branch to PC+1+1
 x"E2011000", -- and R1, R1, #0 => R1 = 0 (skipped if b works correctly)
 x"A000001", -- bne => should not branch
 x"E691B002", -- ldr R11, [R1, R2] => R11 = 6th instr = x"E2806102" =

-494903038
 x"0A000001", -- beq (11) => must branch to PC+1+1
 x"E2033000", -- and R3, R3, #0 => R3 = 0 (skipped if beq worked

correctly)

FIGURE 9-21: Test Bench for the ARM Processor Model

504 Chapter 9 Design of RISC Microprocessors

 x"E48010A0", -- str R1, 40(R0) => Mem(40) = R1
 x"E48020A4", -- str R2, 41(R0) => Mem(41) = R2
 x"E48030A8", -- str R3, 42(R0) => Mem(42) = R3
 x"E48040AC", -- str R4, 43(R0) => Mem(43) = R4
 x"E48050B0", -- str R5, 44(R0) => Mem(44) = R5
 x"E48060B4", -- str R6, 45(R0) => Mem(45) = R6
 x"E48070B8", -- str R7, 46(R0) => Mem(46) = R7
 x"E48080BC", -- str R8, 47(R0) => Mem(47) = R8
 x"E48090C0", -- str R9, 48(R0) => Mem(48) = R9
 x"E480A0C4", -- str R10, 49(R0) => Mem(49) = R10
 x"E480B0C8" -- str R11, 50(R0) => Mem(50) = R11
);
 -- The last instructions perform a series of sw operations that store
 -- registers 3-10 to memory. During the memory write stage, the testbench
 -- will compare the value of these registers (by looking at the bus value)
 -- with the expected output. No explicit check/assertion for branch
 -- instructions, however if a branch does not execute as expected, an error
 -- will be detected because the assertion for the instruction after the
 -- branch instruction will be incorrect.
 type output_arr is array(1 to N) of integer;
 constant expected: output_arr:= (6, 18, 24, 14, -2147483648, -2147483648, 1, 288,
15, -494923770, -494903038);
 signal CS, WE, CLK: std_logic := '0';
 signal Mem_Bus, Address, AddressTB, Address_Mux: unsigned(31 downto 0);
 signal RST, init, WE_Mux, CS_Mux, WE_TB, CS_TB: std_logic;
begin
 CPU: ARM port map (CLK, RST, CS, WE, Address, Mem_Bus);
 MEM: Memory port map (CS_Mux, WE_Mux, CLK, Address_Mux, Mem_Bus);

 CLK <= not CLK after 10 ns;
 Address_Mux <= AddressTB when init = '1' else Address;
 WE_Mux <= WE_TB when init = '1' else WE;
 CS_Mux <= CS_TB when init = '1' else CS;

 process
 begin
 rst <= '1';
 wait until CLK = '1' and CLK'event;

 --Initialize the instructions from the testbench
 init <= '1';
 CS_TB <= '1'; WE_TB <= '1';
 for i in 1 to W loop
 wait until CLK = '1' and CLK'event;
 AddressTB <= to_unsigned(i-1,32);
 Mem_Bus <= Instr_List(i);
 end loop;
 wait until CLK = '1' and CLK'event;
 Mem_Bus <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ";
 CS_TB <= '0'; WE_TB <= '0';

9.9 VHDL Model of the ARM Subset 505

 init <= '0';
 wait until CLK = '1' and CLK'event;
 rst <= '0';

 for i in 1 to N loop
 wait until WE = '1' and WE'event; -- When a store word is executed
 wait until CLK = '0' and CLK'event;
 assert(to_integer(Mem_Bus) = expected(i))
 report "Output mismatch:" severity error;
 end loop;

 report "Testing Finished:";
 end process;
end test;

assumed to point to the instruction subsequent to the one it is processing (i.e., PC11 because
of word-addressed memories). The branch offsets in our test benches will hence be different
from offsets computed by ARM compilers.

However, note that now the memory is connected to the processor and test bench, and
that means both our test bench and the processor will try to control the two signals at the
same time. One way to resolve this is to put muxes at the input ports of the memory. There
are a few muxes for that purpose: Address_Mux (for choosing the address), CS_Mux for
choosing the CS signal, and WE_Mux (for choosing the WE signal). The select signal for the
muxes is init_instr. When the signal is '1', the three muxes select the address and CS and WE
signals from the test bench. Otherwise, these signals from the processor are chosen. Also
assert the reset of our CPU throughout the initialization process to make sure the CPU does
not run until the test bench �nishes writing the instructions into the memory. When init_instr
is '0', the CPU and memory are connected for normal operation.

As the ARM program executes, each test instruction stores its result in a different reg-
ister. After all of the test instructions have been executed, the program performs a series of
store instructions. Each of these instructions places the contents of a different register onto
the bus as it executes. So if there are 10 instructions that you want to verify, you also have 10
store word instructions. During each store, the value on the bus is compared to the expected
result for that register with an assert statement.

The following command �le was used to test the VHDL model. The full path length of
the signals are mentioned in the add list command so that the simulation happens correctly.
All the signals that you are interested in are not available in the topmost entity, for which
here is the test bench. In such cases, the full path describing the signal (speci�cally pointing
to the component in which the signal is appearing) must be provided for correct simulation.

add list -hex sim:/arm_testbench/cpu/instr
add list -unsigned sim:/arm_testbench/cpu/npc
add list -unsigned sim:/arm_testbench/cpu/pc
add list -unsigned sim:/arm_testbench/cpu/state
add list -unsigned sim:/arm_testbench/cpu/alu_ina
add list -unsigned sim:/arm_testbench/cpu/alu_inb
add list -signed sim:/arm_testbench/cpu/alu_result
add list -signed sim:/arm_testbench/cpu/addr
configure list -delta collapse
run 2330

506 Chapter 9 Design of RISC Microprocessors

The simulation results are illustrated below.

ARM Instruction ns Instr PC State ALU_InA ALU_INB ALU_Result Addr

AND R0, R0, 0 410 00000001 0 0 - - 0 0

650 00000001 1 1 - - 0 0

670 00000001 1 2 - 0 0 0

690 00000001 1 3 - 0 0 0

ADD R1, R0, 6 710 00000002 1 0 0 0 0 1

730 00000002 2 1 0 6 0 0

750 00000002 2 2 0 6 6 0

770 00000002 2 3 0 6 0 6

EOR R2, R0, 18 790 00000003 2 0 0 6 0 2

810 00000003 3 1 0 18 0 6

830 00000003 3 2 0 18 18 6

850 00000003 3 3 0 18 0 18

ADD R3, R1, R2 870 00000004 3 0 0 18 0 3

890 00000004 4 1 6 2 0 18

910 00000004 4 2 6 18 24 18

930 00000004 4 3 6 18 0 24

SUB R4, R2, 64 ROR 2 950 00000005 4 0 6 18 0 4

970 00000005 5 1 18 0 0 24

990 00000005 5 2 18 4 14 24

1010 00000005 5 3 18 4 0 14

AND R5, R1, R2 1030 00000006 5 0 18 4 0 5

1050 00000006 6 1 6 2 0 14

1070 00000006 6 2 6 18 2 14

1090 00000006 6 3 6 18 0 2

ADD R6, R0, 2 ROR 1 1110 00000007 6 0 6 18 0 6

1130 00000007 7 1 0 0 0 2

1150 00000007 7 2 0 22147483648 22147483648 2

1170 00000007 7 3 0 22147483648 0 22147483648

MOV R7, 1 1190 00000008 7 0 0 22147483648 0 7

1210 00000008 8 1 0 1 0 22147483648

1230 00000008 8 2 0 1 1 22147483648

1250 00000008 8 3 0 1 0 1

9.9 VHDL Model of the ARM Subset 507

ARM Instruction ns Instr PC State ALU_InA ALU_INB ALU_Result Addr

MOV R8, R2 LSL 4 1270 00000009 8 0 0 1 0 8

1290 00000009 9 1 0 536870912 0 1

1310 00000009 9 2 0 288 288 1

1330 00000009 9 3 0 288 0 288

SUB R9, R2, R1 LSR 1 1350 0000000A 9 0 0 288 0 9

1370 0000000A 10 1 18 3 0 288

1390 0000000A 10 2 18 3 15 288

1410 0000000A 10 3 18 3 0 15

SUBS R0, R1, R3 ROR 2 1430 0000000B 10 0 18 3 0 10

1450 0000000B 11 1 6 6 0 15

1470 0000000B 11 2 6 6 0 15

1490 0000000B 11 3 6 6 0 0

LDREQ R10, [R0, 4] 1510 0000000C 11 0 6 6 0 11

1530 0000000C 12 1 0 14 0 0

1550 0000000C 12 2 0 4 1 0

1570 0000000C 12 3 0 4 0 1

1590 0000000C 12 4 0 4 0 1

B 1610 0000000D 12 0 0 4 0 1

1630 0000000D 13 1 21 1 0 1

1650 0000000D 13 2 21 1 0 1

1670 0000000E 13 3 21 1 0 0

BNE 1690 0000000F 14 0 21 1 0 14

1710 0000000F 15 1 21 1 0 0

LDR R11, [R1, R2] 1730 00000010 15 0 21 1 0 15

1750 00000010 16 1 6 18 0 0

1770 00000010 16 2 6 18 6 0

1790 00000010 16 3 6 18 0 6

1810 00000010 16 4 6 18 0 6

BEQ 1830 00000011 16 0 6 18 0 16

1850 00000011 17 1 21 1 0 6

1870 00000011 17 2 21 1 0 6

1890 00000012 17 3 21 1 0 0

STR R1, [R0, 160] 1910 00000013 18 0 21 1 0 18

1930 00000013 19 1 0 28384352 0 0

1950 00000013 19 2 0 160 40 0

1970 00000013 19 3 0 160 0 40

508 Chapter 9 Design of RISC Microprocessors

ARM Instruction ns Instr PC State ALU_InA ALU_INB ALU_Result Addr

STR R2, [R0, 164] 1990 00000014 19 0 0 160 0 19

2010 00000014 20 1 0 164 0 40

2030 00000014 20 2 0 164 41 40

2050 00000014 20 3 0 164 0 41

STR R3, [R0, 168] 2070 00000015 20 0 0 164 0 20

2090 00000015 21 1 0 168 0 41

2110 00000015 21 2 0 168 42 41

2130 00000015 21 3 0 168 0 42

STR R4, [R0, 172] 2150 00000016 21 0 0 168 0 21

2170 00000016 22 1 0 172 0 42

2190 00000016 22 2 0 172 43 42

2210 00000016 22 3 0 172 0 43

The initial cycles that are used to load the instructions into the memory module are not
shown. The presented data corresponds to the cycles once the instruction fetch by the proces-
sor begins. Only the �rst store instruction is shown here. But all store instructions are tested
in the test bench. More comprehensive tests can be devised by loading the data from the
stored locations in the memory.

This chapter presented two popular RISC instruction sets: the MIPS and the ARM.
It presented design for a subset of the MIPS and ARM instruction sets, starting from the
instruction set speci�cation. Synthesizable VHDL models were presented. Use of test
benches to test the processor models were illustrated.

It should be noted that the processor models developed in this chapter are for educa-
tional purposes only.

Tensilica Xtensa Chips

Tensilica, a company founded in 1997, and acquired by Cadence in 2013, enables the
creation of customizable processors using their Xtensa cores. Essentially Tensilica
provides functional blocks that are programmable to designer’s custom requirements.
Users can specify the functional behavior of their new custom processor in a RTL-like
language called TIE (Tensilica Instruction Extension). The base instruction set in the
Xtensa cores contains 80 RISC-style instructions and up to 64-general purpose regis-
ters. Using the supplied tools, customers can extend the Xtensa base instruction set by
adding new custom instructions. The custom additions can also be new register �les.

The Tensilica design process then implements the chip in silicon. So essentially an
ASIC can be generated very quickly. The tool generates the processor and outputs it
in synthesizable RTL or post-layout forms. The RTL pre-veri�ed RTL and the tool-
chain necessary for converting it to silicon is also provided. Designers can also specify
timing and technology constraints.

Problems
9.1 What does the term ISA mean? Do the Pentium 4 and Pentium 3 have the same ISA?
9.2 Microprocessor X has 30 instructions in its instruction set and microprocessor Y has 45 instructions in its instruc-

tion set. You are told that Y is a RISC processor. Can you conclusively say that X is a RISC processor? Why or
why not?

9.3 List four important characteristics that make a processor RISC type.
9.4 What is the difference between the MIPS addi instruction and addiu instruction?
9.5 What is the machine language encoding for the following MIPS instructions? Give the answers in hexadecimal

(hex). All offsets are in decimal.
 (i) add $6, $7, $8, (ii) lw $5, 4($6), (iii) addiu $3, $2, −2000, (iv) sll $3, $7, 12, (v) beq

$6, $5, −16, (vi) j 4000
9.6 What is the machine language encoding for the following MIPS instructions? Give the answers in hexadecimal

(hex). All offsets are in decimal.
 (i) addi $5, $4, 4000, (ii) sw $5, 20($3), (iii) addu $4, $5, $3, (iv) bne $2, $3, 32, (v) jr $5,

(vi) jal 8000
9.7 What MIPS instruction do the following hexadecimal (hex) numbers correspond to? If it is not any instruction in

Table 9-7, denote as an illegal opcode.
 (i) 33333300, (ii) 8D8D8D8D, (iii) 1777FF00, (iv) BDBD00BD, (v) 01010101

9.8 What MIPS instruction do the following hexadecimal (hex) numbers correspond to? If it is not any instruction in
Table 9-7, denote as an illegal opcode.

 (i) 20202020, (ii) 00E70018, (iii) 13D300C8, (iv) 0192282A, (v) 0F6812A4
9.9 Write a MIPS assembly language program for the following pseudo code segment. Assume the x and y arrays start

at locations 4000 and 8000 (decimal).

for(i = 0; i < 100; i++)
 x(i) = x(i) * y(i)

9.10 Write a MIPS assembly language program for the following pseudo code segment. Assume the x and y arrays start
at locations 4000 and 8000 (decimal).

for(i = 1; i < 100; i++)
 x(i) = x(i) + x(i-1)

9.11 Write a MIPS assembly language program for the following pseudo code segment. Assume the x and y arrays start
at locations 4000 and 8000 (decimal), and a is at location 12000 (decimal).

for(i = 0; i < 100; i++)
 y(i) = a * x(i) + y(i)

The idea of a universal data path that can be microcoded differently to generate
different instruction set processors existed since the 1960s. Tensilica Xtensa core may
be the closest reality to that in modern times.

The AMD TrueAudio is a chip that was built with Cadence Tensilica DSP. It is an
audio co-processor for advanced audio effects and is used in the PlayStation 4.

Problems 509

510 Chapter 9 Design of RISC Microprocessors

9.12 Figure 9-8 presents a model for a subset of MIPS instructions. Synthesize the model using current Xilinx software
with a state of the art Xilinx FPGA as the target. How many logic blocks, �ip-�ops, and memory blocks are used?
(Note: Substitute a different FPGA company and its software to create variations of this question that suit your
environment.)

9.13 (a) Figure 9-8 presents a model for a subset of MIPS instructions. Enhance the model by adding modules to
interface the model to input switches and LEDs/displays on an FPGA prototyping board. Your interface
must be able to halt operation of the MIPS processor and display the lower 8 bits of $1 on eight LEDs. Your
interface must also divide the prototyping board’s internal clock to provide the model with a slow clock (e.g.,
100-Hz clock). You may display additional information using other LEDs or display devices, depending on
the capabilities of your prototyping board. Synthesize the model and implement it on a prototyping board.

(a) For this question, use the model in part (a). Write a MIPS assembly language program to create a rotating
light (implemented using eight LEDs on the prototyping board). The light rotates from one LED to the next
at a one second interval.

(b) For this question, you’ll use the model in part (a). Write a MIPS assembly language program to create a traf�c
light controller. Implement your traf�c light with the following pattern:

Street A Street B

Red Yellow Green Red Yellow Green

0 0 1 1 0 0 (5 seconds)

0 1 0 1 0 0 (2 seconds)

1 0 0 1 0 0 (1 second)

1 0 0 0 0 1 (5 seconds)

1 0 0 0 1 0 (2 seconds)

1 0 0 1 0 0 (1 second), then repeats

9.14 Many microprocessors perform input-output operations by memory mapping. Assume that memory location
F0002F2F is a parallel port for the processor. Write a MIPS program to generate a square wave with approxi-
mate frequency 8MHz on LSB of the parallel port. Assume that you have a MIPS processor prototype based on
 Figure 9-8, running with a 100-MHz clock.

9.15 (a) Add over�ow detection to the add and addi instructions in the MIPS subset VHDL code (Figure 9-8).
(b) Write a test bench to test your code from part (a).

9.16 (a) Add over�ow detection to all over�ow-capable instructions in the MIPS subset that is implemented in
Figure 9-8.

(b) Write a test bench to test your code from part (a).
9.17 (a) Add the MIPS instruction JAL (jump and link) to the MIPS subset VHDL code (Figure 9-8). JAL is used

for procedure calls. JAL jumpaddr puts the return address 1PC 1 1 2 in register �le $31 and then goes to
jumpaddr for the next instruction. (Note: The original MIPS used 1PC 1 4 2 and jumpaddr*4; however, the
implementation in Chapter 9 uses word addressing instead of byte addressing so the “4” is replaced with “1”.)
The JAL instruction uses the J format; therefore, the �rst 6 bits are the opcode (3), and the remaining 26 bits
are jumpaddr. Make as few changes to the VHDL code as you need.

(b) Create a test bench to test this instruction.
9.18 (a) Add an instruction that multiplies two 16-bit numbers stored in the lower half of two general-purpose regis-

ters and deposits the product into another 32-bit register to the processor model in Figure 9-8. (Note: Such an
instruction does not exist in MIPS.)

(b) Create a test bench to test this instruction.

9.19 (This problem can be used as a term project. More information on pipelining can be obtained from Reference
37.) Modern microprocessors employ pipelining to improve instruction throughput. Consider a �ve-stage pipeline
consisting of fetch, decode and read registers, execute, memory access, and register write-back stages. During the
�rst stage, an instruction is fetched from the instruction memory. During the second stage, the fetched instruction
is decoded. The operand registers are also read during this stage. During the third stage, the arithmetic or logic
operation is performed on the register data read during the second stage. During the fourth stage, in load/store
instructions, data memory is read/written into memory. Arithmetic instructions do not perform any operation dur-
ing this stage. During the �fth stage, arithmetic instructions write the results to the destination register.
(a) Design a pipelined implementation of the MIPS design in Figure 9-8. Draw a block diagram indicating the

general structure of the pipeline. Write VHDL code, synthesize it for an FPGA target, and implement it on
an FPGA prototyping board. Assume that each stage takes one clock cycle. While implementing on the pro-
totyping board, use an 8-Hz clock.

Assume that instruction memory access and data memory access take only one cycle. Instruction and data
memories need to be separated (or must have two ports) in order to allow simultaneous access from the �rst
stage and fourth stage.

An instruction can read the operands in second stage from the register �le, as long as there are no depen-
dencies with an incomplete instruction (ahead of it in the pipeline). If such a dependency exists, the current
instruction in decode stage must wait until the register data is ready. Each instruction should test for depen-
dencies with previous instructions. This can be done by comparing source registers of the current instruction
with destination registers of the incomplete instructions ahead of the current instruction.

The register �le is written into during stage 5 and read from during stage 2. A reasonable assumption to
make is that the write is performed during the �rst half of the cycle, and the read is performed during the
second half of the cycle. Assume that data written into the destination register during the �rst half of a cycle
can be read by another instruction during the second half of the same cycle.

(b) How many cycles does it take to execute N instructions with no dependencies?
(c) How many cycles does it take to execute the following instruction sequence through this pipeline?

add $5,$4,$3
add $6,$5,$4
add $7,$6,$5
add $8,$7,$6

9.20 (This problem can be used as a term project. More information on pipelining and data forwarding can be obtained
from Reference 37.) In Problem 9.19, it is assumed that data should be written into the register �le during the
write-back stage of an instruction before a subsequent instruction can read it. This introduces two idle cycles if
instruction i 1 1 is dependent on instruction i. A technique that many processors use to solve this problem is
called data forwarding. If an instruction needs the result from an instruction ahead of it, the result is forwarded to
the current instruction. This can be done by having multiplexers at the input of the ALU which take the operand
either from the register �le, the forwarding path from the output of the ALU, or the output of the memory access
stage (fourth stage). The dependencies between instructions are clearly identi�ed, and then the multiplexers are
appropriately controlled to forward the correct data.
(a) Design a pipelined implementation of the MIPS design in Figure 9-8 with data forwarding. Draw a block

diagram indicating the forwarding hardware. Write VHDL code, synthesize it for an FPGA target, and imple-
ment it on an FPGA prototyping board. While implementing on the prototyping board, use an 8-Hz clock.

(b) Compare the number of cycles taken by the code in Problems 9.10 and 9.11 for this design, the design in
Problem 9.19, and the design in Figure 9-8.

9.21 Translate the following ARM assembly language instructions into machine code.
(a) ADD R1, R0, #18
(b) ADD R6, R0 2 ror 1

Problems 511

512 Chapter 9 Design of RISC Microprocessors

(c) MOV R8, ,R2 LSL #4
(d) EOR R2, R1, #24
(e) LDR R1, [R2,R3,LSL #2]

9.22 Translate the following ARM assembly language instructions into machine code.
(a) LDR R11, [R1, R2]
(b) STR R8, 4(R0)
(c) SUB R6, R1, R2 LSR #1
(d) LDREQ R10, [R0, #4]
(e) BNE −4

9.23 Translate the following ARM assembly language instructions into machine code.
(a) MOV R4, R1 RSL 1
(b) CMP R2, 200
(c) SUBS R0, R1, R3 ROR 2
(d) LDR R2, [R4], R3,LSL #2
(e) STR R4, [R2, R1]

9.24 Translate the following hexadecimal numbers into ARM assembly language instructions. If it is not a valid instruc-
tion from the subset in Table 9-21, denote as an illegal opcode.
(a) E2202012
(b) E2806102
(c) 1A000001
(d) E691B002
(e) E48030A8

9.25 Translate the following hexadecimal numbers into ARM assembly language instructions. If it is not a valid instruc-
tion from the subset in Table 9-21, denote as an illegal opcode.
(a) E480B0C8
(b) 0A000001
(c) 0490A004
(d) E2806102
(e) E3A07001

9.26 Write an ARM assembly language program for the following pseudo code segment:

for(i = 0; i < 100; i++)
x(i) = x(i) * y(i)

9.27 Write an ARM assembly language program for the following pseudo code segment:

for(i = 1; i < 100; i++)
x(i) = x(i) + x(i-1)

9.28 Write an ARM assembly language program for the following pseudo code segment:

for(i = 0; i < 100; i++)
y(i) = a * x(i) + y(i)

9.29 Figure 9-19 presents a model for a subset of ARM instructions. Synthesize the model using current Xilinx software
with a state-of-the-art Xilinx FPGA as the target. How many logic blocks, �ip-�ops, and memory blocks are used?
(Note: Substitute a different FPGA company and their software to create variations of this question that suit your
environment.)

9.30 (a) Figure 9-19 presents a model for a subset of ARM instructions. Enhance the model by adding modules to
interface the model to input-switches and LEDs/displays on an FPGA prototyping board. Your interface
must be able to halt operation of the MIPS processor, and display the lower 8 bits of $1 on 8 LEDs. You
interface must also divide the prototyping board’s internal clock to provide the model with a slow clock (e.g.,
8 Hz clock). You may display additional information using other LEDs or display devices, depending on the
capabilities of your prototyping board. Synthesize the model and implement it on a prototyping board.

(b) For this question, use the model in part (a). Write an ARM assembly language program to create a rotating
light (implemented using 8 LEDs on the prototyping board). The light rotates from one LED to the next at
a one-second interval. Note that with a 8 Hz clock, the ALU instructions (add, and, etc.) take half a second
to complete, and the J instruction takes a quarter second to complete.

(c) For this question, you’ll use the model in part (a). Write an ARM assembly language program to create a
traf�c light controller. Implement your traf�c light with the following pattern:

Street A Street B

Red Yellow Green Red Yellow Green

0 0 1 1 0 0 (5 seconds)

0 1 0 1 0 0 (2 seconds)

1 0 0 1 0 0 (One second)

1 0 0 0 0 1 (5 seconds)

1 0 0 0 1 0 (2 seconds)

1 0 0 1 0 0 (One second), then repeats

9.31 Many microprocessors perform input-output operations by memory mapping. Assume that memory location
F0002F2F is a parallel port for the processor. Write an ARM assembly program to generate a square wave with
approximate frequency 10MHz on LSB of the parallel port. Assume that you have a MIPS processor prototype
based on Figure 9-19, running with a 100 MHz clock.

9.32 Modern microprocessors employ pipelining to improve instruction throughput. Consider a 5-stage pipeline con-
sisting of fetch, decode and read registers, execute, memory access, and register write-back stages. During the �rst
stage, an instruction is fetched from the instruction memory. During the second stage, the fetched instruction is
decoded. The operand registers are also read during this stage. During the 3rd stage, the arithmetic or logic opera-
tion is performed on the register data read during the 2nd stage. During the 4th stage, in load/store instructions,
data memory is read/written into memory. Arithmetic instructions do not perform any operation during this stage.
During the 5th stage, arithmetic instructions, write the results to the destination register.
(a) Design a pipelined implementation of the ARM design in Figure 9-19. Draw a block diagram indicating the

general structure of the pipeline. Write VHDL code, synthesize it for an FPGA target, and implement it on
an FPGA prototyping board. Assume that each stage takes one clock cycle. While implementing on the pro-
totyping board, use an 8 Hz clock as in Question 9.30.

Assume that instruction memory access and data memory access takes only one cycle. Instruction and
data memories need to be separated (or must have 2 ports) in order to allow simultaneous access from the
1st stage and 4th stage.

An instruction can read the operands in 2nd stage from the register �le, as long as there are no depen-
dencies with an incomplete instruction (ahead of it in the pipeline). If such a dependency exists, the current
instruction in decode stage must wait until the register data is ready. Each instruction should test for depen-
dencies with previous instructions. This can be done by comparing source registers of the current instruction
with destination registers of the incomplete instructions ahead of the current instruction.

Problems 513

514 Chapter 9 Design of RISC Microprocessors

The register �le is written into during stage �ve and read from during stage two. A reasonable assumption
to make is that the write is performed during the �rst half of the cycle, and the read is performed during the
second half of the cycle. Assume that data written into the destination register during the �rst half of a cycle
can be read by another instruction during the second half of the same cycle.

(b) How many cycles does it take to execute N instructions with no dependencies?
(c) How many cycles does it take to execute the following instruction sequence through this pipeline?

add R5, R4, R3
add R6, R5, R4
add R7,R6,R5
add R8,R7,R6

9.33 In Question 9.19, it is assumed that data should be written into the register �le during the write back stage of
an instruction before a subsequent instruction can read it. This introduces two idle cycles if instruction i 1 1 is
dependent on instruction i. A technique that many processors use to solve this problem is data forwarding. If an
instruction needs the result from an instruction ahead of it, the result is forwarded to the current instruction. This
can be done by having multiplexers at the input of the ALU ,which take the operand either from the register
�le, the forwarding path from the output of the ALU, or the output of the memory access stage (4th stage). The
dependencies between instructions are clearly identi�ed, and then the multiplexers are appropriately controlled
to forward the correct data.
(a) Design a pipelined implementation of the ARM design in Figure 9-19 with data forwarding. Draw a block

diagram indicating the forwarding hardware. Write VHDL code, synthesize it for an FPGA target, and imple-
ment it on an FPGA prototyping board. While implementing on the prototyping board, use an 8 Hz clock as
in Question 9.30.

(b) Compare the performance of the following code on this design, the design in Question 9.32, and the design
in Figure 9-8.

add R5, R4, R3
add R6, R5, R4
add R7,R6,R5
add R8,R7,R6

515

VERIFICATION OF DIGITAL
SYSTEMS

C H A P T E R

10

Digital systems have become very complex in recent years. Designing and verifying complex
chips is challenging due to the complex functionalities and large number of components in
modern chips. Veri�cation has gained a prominent place in chip design �ow due to the need
to deliver correctly functioning chips to the customer. In simple designs, veri�cation can be
done in an ad hoc fashion; however, due to the complexity of modern chips and the increased
cost of correcting mistakes that creep into later stages of design �ow, a lot of emphasis has
been placed in recent years into functional veri�cation of designs.

This chapter introduces the concept of veri�cation. First, it presents the importance of
veri�cation and will help familiarize you with the basic terminology in the veri�cation �eld.
Terminology, such as functional veri�cation, timing veri�cation, emulation, validation, and
testing, are introduced. The material is only meant to be an introduction to the undergradu-
ate student. A student interested in veri�cation must take graduate courses in veri�cation
and consult sources such as [55]. Second, the chapter presents the basics of timing veri�ca-
tion. Several examples of checking for timing violations are presented. Clock skew, clock
gating, clock distribution, and so on are also brie�y presented.

While in literal interpretation, veri�cation means the testing of the designs, in the IC
world, testing refers to manufacturing testing. Veri�cation in this context means pre-silicon
functional testing. A detailed treatment of manufacturing testing can be found in Chapter 11.

10.1 Importance of Verification
Consider the major steps in the design �ow of a chip, such as design entry, synthesis, layout,
and fabrication as shown in Figure 10-1. Veri�cation has to be done in all these stages of the
design in order to identify errors in the design. During the design entry of a chip, functional
veri�cation is done. Timing veri�cation is done once synthesis is done. Physical veri�cation
is done after the layout.

Functional veri�cation means checking whether the circuit or system does what it is
expected to do, that is, whether it has the expected functionality. Functional veri�cation
happens early in the design process with the VHDL and Verilog models of the circuit. Once
designers create HDL models, simulation-based models are built for veri�cation.

Timing veri�cation checks whether there are any timing violations, that is, whether setup
and hold times are met on all circuit paths. This happens after the design is synthesized, after
the delays associated with the circuit elements are known.

Physical veri�cation includes checking design rules (DRC), layout versus schematic
(LVS), antenna effects analysis, and signal integrity checking, including IR (current-
resistance) drops and crosstalks.

516 Chapter 10 Verification of Digital Systems

The objective of the veri�cation process is to make sure that overall, the chip meets the
product speci�cation.

The veri�cation process attempts to �nd the bug before the customer �nds the bug. If
the bugs are undiscovered until the customer �nds it, it ends up being very expensive to the
company. In the late ’90s, a bug in the �oating point unit caused a lot of dif�culty for Intel.
See the sidebar, “The Intel Pentium Bug.”

It is best to catch the errors early in the design stage. The cost of a bug typically increases
ten-fold if it is discovered during the wafer stage as opposed to the design stage. Similarly, the
cost of the bug increases ten-fold as it moves to the chip stage, system stage, or application
stage as illustrated in Figure 10-2. The controllability and observability of signals is better in
RTL models compared to FPGA prototypes or custom hardware. Hence, there is a higher
chance of discovering the bug at the RTL stage, provided suf�cient amount of veri�cation
is done. It is important that complex designs be simulated fully before prototypes are built,
as bugs that are detected early save time, money, and frustration later. It is often dif�cult

FIGURE 10-1: Different
Types of Veri�cation in
Different Design Stages

Specif ication

Design Entry
Functional

Verif ication

Timing
Verif ication

Physical
Verif ication

Testing &
Validation

Synthesis

Layout

Fabrication

Masks

Gates (Netlist)

RTL

Documents/Algorithm

FIGURE 10-2: Empirical
Estimate of the Cost of
a Bug at Various Stages
in the Creation of a
Product

Design

Wafer

Application

System

Chip

1

10

10000

1000

100

10.1 Importance of Verification 517

to �nd bugs in silicon due to low controllability and observability of intermediate nodes.
Even if bugs are discovered, it is dif�cult to identify the source of the bug due to the limited
controllability and observability. If bugs are uncovered later in the design cycle, having to go
through additional design stages is costly and time consuming.

Approximately half of the �aws discovered during design are functional �aws. It is impor-
tant to �nd these bugs early during the design process so that the cost of the chip can be kept
low. Table 10-1 shows an approximate distribution of the common sources of �aws in chips.

Source Percentage

Functional/Logical 50

Timing 15

Signal Integrity 15

Power 5

Clocking 5

Other 10

TABLE 10-1: Common
Error Sources:
An Approximate
Distribution

The Intel Pentium Bug

The Intel Pentium bug is also called the FDIV bug.
In 1994, a bug in the �oating-point unit of the 66MHz Pentium P5 chip caused

a lot of agony for Intel. FDIV stands for Floating point DIVide and is the Intel x86
assembly language mnemonic for �oating-point division. The error showed up in the
4th decimal digit in certain division calculations, when most computers at the time
could return 15 digits correctly.

This was a big news story at that time. The New York Times wrote in their Busi-
ness News “Flaw Undermines Accuracy of Pentium Chips—An elusive circuitry error
is causing a chip used in millions of computers to generate inaccurate results in certain
rare cases, heightening anxiety among many scientists and engineers who rely on their
machines for precise calculations.” Researchers at the Jet Propulsion Laboratory
Pasadena, California stopped using Pentium computers due to the uncertainty on the
results.

A signi�cant part of the design effort is in veri�cation. RTL coding may take 20 percent
of the chip design cycle whereas veri�cation may take 50 to 75 percent of the design time.
As illustrated in Figure 10-3, veri�cation often takes more time than what is taken for cod-
ing, synthesis, and place and route combined. In general, many design teams contain more
veri�cation engineers than those who do RTL coding. Veri�cation is also often the �rst job
many students obtain after their undergraduate degree.

FIGURE 10-3:
Distribution of Design
Effort into Various
Design Stages

Coding Verification (50,80%) Synthesis
Place

&
Route

518 Chapter 10 Verification of Digital Systems

A brief chronology of events:

July 1994—A summer intern discovers a bug in the �oating point unit during testing;
however, Intel did not expect it to be major problem for its users. Hence they continued
to produce the �awed chip, while planning to produce the corrected chip starting 1995.

September 1994—A mathematics professor in Virginia, Thomas Nicely discovers the
bug that causes errors in �oating-point divisions with more than 5 signi�cant digits.
He reported it to Intel but got no of�cial response from Intel.

November 1994—The EE times reported the story, but Intel claimed that the error
occurs very infrequently and will not be seen by the average user. The story was picked
up many newspapers including the New York Times, the San Jose Mercury News, and
the San Francisco Chronicle.

December 1994—IBM stops shipping IBM PCs that used the affected Pentium chip
in early December. Following that, on December 21, Intel of�cially apologized and
announced that users could get their Pentium P5 chips exchanged for an updated
processor in which the �aw is corrected.

January 1995—Intel spent $475 million against earnings to replace the �awed processors.

The bug was caused because of incorrect elements returned by the PLA lookup
table used in the �oating-point division in the chip. When discovered in July 1994, the
cost to �x the bug was estimated to be several hundred thousand dollars, but it would
take a few months to make the change, verify the chip, and produce the corrected chips.

The �eld of “Veri�cation” got a lot of attention following this event, since compa-
nies are interested in avoiding this kind of economic damage and embarrassment. In
the years following this event, PhD graduates with dissertations in veri�cation were
heavily sought after by chip design companies.

The Intel Pentium P5 chips with the FDIV bug looked like this.

C
ou

rt
es

y
of

 I
nt

el
 C

or
po

ra
ti

on
 a

nd
 C

P
U

 C
ol

le
ct

io
n

K
on

st
an

ti
n

L
an

ze
t

10.2 Verification Terminology 519

10.2 Verification Terminology
Although literal interpretation of the term veri�cation simply means testing to detect bugs,
in the chip design world, several terms like veri�cation, validation, and testing are used to
denote the testing/debugging process at speci�c stages in the chip life cycle. The most com-
mon interpretations of these terms are as follows:

Veri�cation speci�cally refers to the uncovering of functional bugs during the RTL cod-
ing stages. It is also called functional veri�cation.

Validation refers to the testing done on a full-system with operating-system and real-
system software using the �rst “alive” silicon on development boards.

Testing refers to manufacturing test. It is performed on manufactured parts to uncover
errors that creep in during manufacturing/fabrication.

Emulation is the creation of specialized hardware prototypes that are then used for pre-
silicon validation. The availability of a near-complete system allows to run software and
helps to uncover bugs that could not be found in RTL veri�cation stages.

Different companies may employ slightly different de�nitions of these terms as illustrated
in Table 10-2. For instance, one company may not use the term emulation but may refer to
it as pre-silicon validation. Another company may call veri�cation as pre-silicon validation
and emulation as emulation. However, universally, veri�cation precedes validation. This is
consistent with the de�nition in the software engineering world, as well. In general, valida-
tion is after veri�cation. Veri�cation uncovers design errors, and validation is system-level
testing often done to check whether customer requirements are met.

Company Veri�cation Emulation Testing Validation

Company 1 Veri�cation Pre-silicon Validation Testing Validation

Company 2 Pre-silicon Validation Emulation Testing Post-silicon Validation

TABLE 10-2: Verification and Validation Terminology Variations

Figure 10-4 illustrates the order in which the various types of testing/veri�cation are
done. This �gure does not show feedback; however, it is to be understood that if errors are
found, the designer goes back to earlier stages and iteratively re�nes the design.

FIGURE 10-4: Time
Sequencing of Various
Types of Testing/
Veri�cation during
Product Development

CustomerValidationTest

Time

Verif ication
&

Emulation

Design
Conception

520 Chapter 10 Verification of Digital Systems

A contrast of the four terms is in Table 10-3.

Veri�cation Testing Validation Emulation

Done pre-silicon Done post-silicon Done on �rst “alive”
silicon

Done pre-silicon

Also called functional
veri�cation

Also called manufactur-
ing test

Also called post silicon
validation

Also called pre-silicon
validation

Targets design bugs
 (functional bugs)

Targets manufacturing
defects

Targets bugs that might
have escaped in pre-
silicon veri�cation. Also
tests power and electri-
cal signals.

Targets design bugs
 (functional bugs)

Goal is to check that the
system implements the
functional speci�cation

Goal is to check that
each manufactured part
correctly implements
design

Goal is to check that
the system meets the
user requirements

Goal is to check that the
system implements the
functional speci�cation; an
alternate goal is to prepare
for validation

Done when the chip is
being designed

Done after the chip is
manufactured

Performed after
the chip has passed
“testing”

Performed during design,
before �rst silicon

Performed once prior to
manufacturing

Performed on each part
after manufacturing

Performed on “�rst sili-
con” but before product
release

Performed once after
veri�cation but before
validation

Tests quality of design Tests quality of shipped
parts

Tests quality of design Tests quality of design.
Helps to bring up “alive”
silicon quicker

Can control and observe
all/many nodes

Can control and observe
only limited nodes, i.e.,
only input-output pins

Can control and
observe only limited
nodes,
i.e., only input-output
pins

Can control and observe
more nodes than actual
product but generally less
than a simulator model

Slow At speed At speed Faster than simulation;
possibly slower than �nal
product

TABLE 10-3: Verification and Validation Terminology

10.3 Functional Verification 521

10.3 Functional Verification
Veri�cation a.k.a functional veri�cation essentially consists of providing input test stimulus
to test various aspects of functionality of the circuit or system under veri�cation. Chapters 2,
4, 6, 7, and 9 showed how VHDL models are tested, using ModelSim simulator commands or
VHDL test benches. What the designer performed using test benches is basically functional
veri�cation. It is inconvenient to test complex systems by using RTL simulator commands
such as force and run. Hence, self-checking test benches or veri�cation benches that facilitate
automatic functional testing are created.

10.3.1 Self-Checking Test Benches
A test bench is a piece of code that can provide input combinations to test a circuit model
for the system under test. A self-checking test bench not only provides stimuli to the system/
circuit under test but also automatically monitors the circuit outputs and compares them
against the expected outputs. The system under veri�cation is often called design under
veri�cation or DUV. Figure 10-5 illustrates the overview of a self-checking test/veri�cation
bench that includes modules for providing stimulus (inputs) to the DUV and for checking
the responses from the DUV.

Placing the information on the DUV’s function or the expected (reference) outputs
into the test bench is extremely advantageous as it automates the tedious checking process
and the need to scrutinize every test output. There are different types of self-checking test
benches:

Test Benches with Golden Vectors: Test benches can store information on the correct
outputs inside the test bench itself. A golden vector is a correct or expected output for
a certain input stimuli. The adder and multiplier test benches shown in Chapter 2 and

Veri�cation Testing Validation Emulation

Performed on models built
using VHDL, Verilog,
 System Verilog, etc.

Performed on silicon Performed on �rst “alive”
silicon, using validation
boards. Operating system
is booted, and real tests
are done. Power and elec-
trical measurements are
done in addition to func-
tional checks

Performed on specialized
hardware built using FPGAs
or other prototyping tech-
nologies, e.g., Palladium
from Cadence, Veloce from
Mentor Graphics

Limitation: Slow. Not
 at-speed; hence timing veri-
�cation cannot be done;
analog blocks missing; real
clocking missing; software
cannot be booted

Limitation: Very lim-
ited controllability and
observability

Limitation: Limited
controllability and
observability

Limitation: Still not
 at-speed; hence timing
 veri�cation cannot be done;
analog blocks missing; real
clocking missing

522 Chapter 10 Verification of Digital Systems

 Chapter 4 are golden vector–based. Expected outputs are computed a-priori either manually
or with the aid of other computer programs and stored in the test bench.

Test Benches with Golden Models or Reference Models: Test benches can contain a golden
model that calculates the expected outputs based on the input stimulus. The reference model
implements the functionality of the DUV, usually in a high-level programming language (non-
synthesizeable), such as C. The development of such a model is done at a high level of abstrac-
tion and can be completed faster than building RTL models. The veri�cation process checks
whether the synthesizeable RTL model would give the same outputs as the golden model.

10.3.2 Verification Flow
The �ow of the veri�cation process is illustrated in Figure 10-6. After reading speci�cations, a
veri�cation plan is charted and test benches are built. Bugs are detected and �xed continually
during the veri�cation process.

Directed testing is a method for selecting a feature, writing a test to verify that feature,
and repeating until all features are tested. It is based on a cause-and-effect type of analysis
of the design. It is a very natural way to test designs and provides a simple measure of how
much of the design has been veri�ed. For instance, say that 20 out of the 65 instructions in
a microprocessor have been tested. However, in very complex designs, the increase in state
space and complexity leads to an exponential increase in the number of directed tests that
are necessary to verify the entire set of features. Writing and maintaining large directed test
suites that verify features of complex designs is tedious. Hence, alternative approaches have
become popular in recent years.

FIGURE 10-5: Self-
Checking Veri�cation
Bench Overview

Reference
Output

Test Case
Response
Verif ier

(Checker) Output
Match

Output
(Response)

Design
Under

Verif ication
(DUV)

Stimuli
(Input

Pattern)

FIGURE 10-6:
Veri�cation Flow Read

specif ications

Run
regressions

Analyze
coverage

Chart out a
verif ication

plan

Write
constrained
random tests

Coverage
goals
met

Build a
test bench

Write
directed tests

Tape-out

1 2 3

6 5 4

7 8 9

10.3 Functional Verification 523

Constrained random testing is an alternative to directed testing. It consists of generating
random stimuli that are statistically derived to verify random parts of the design. Years ago,
it was used to mostly top off the directed testing that was done; however, with increasingly
complex designs, in recent years, writing directed tests that cover all features is dif�cult. This
has led to the popularity of constrained random tests. One disadvantage of random testing
is that it is dif�cult to quantify what percentage of the design has been veri�ed. One cannot
any more say that X out of the Y modes of operation have been tested.

Regression testing refers to the process of rerunning previously passed tests to ensure
that modi�cations to the design remain consistent with previously veri�ed functionality. A
challenge during the bug-�xing stage is that previously veri�ed functionality can be inad-
vertently corrupted while �xing a newly discovered bug. Hence, tests that were successfully
run earlier have to be repeated after modi�cations are made to the design to correct newly
discovered bugs. Many companies often run their regression test suites every night to ensure
that bug-�xes during the day did not cause new bugs in the design. In most companies, the
practice is to run a subset of the regression suite before a code change can be checked into
the master design codebase, and the entire regression suite is then run periodically.

Functional Coverage denotes how much of the functionality has been veri�ed. Once
adequate testing is done, the design moves to the fabrication stage. Coverage metrics help
to decide whether adequate testing has been done. With RTL models, there is access to the
internal nodes of the design, such that controllability and observability are very high. For a
simple state machine, perhaps all state transitions and outputs for all input combinations can
be tested, and 100 percent coverage can be achieved. However, for complex systems, it is not
easy to exhaustively verify all aspects of the functionality for all possible input combinations.
Coverage metrics denote the extent of veri�cation that has been accomplished. Often cover-
age goals are set, and the design moves to fabrication when those goals are met.

Functional coverage and code coverage are two types of coverage. Code coverage quan-
ti�es coverage of the veri�cation process considering the RTL code. Modern design and
simulation tools report code coverage metrics. There are a number of code coverage metrics
in use. Examples are:

Line coverage Percentage of lines of the RTL code that got executed during simulation

Toggle coverage Percentage of signals/bits that toggled from 0 to 1 and 1 to 0 at least once

FSM coverage Percentage of �nite state machine states reached and state transitions traversed dur-
ing simulation

Condition/branch coverage Percentage of conditions hit for each conditional statement in RTL code. Line cov-
erage just tells that the particular line was executed. It does not tell whether it was
executed in the multiple conditions it could possibly execute. For instance, going
through a loop once did not test the other condition of the loop exit.

Line, toggle, branch/condition, and FSM coverage are collectively called code coverage.
Design tools help to get reports on these types of coverage when regression tests are run.
Code coverage statistics are collected when the regression suites are run, and then analyzed.
Full coverage is expected on many of these metrics.

Tape-out is the point at which the photomask (or simply mask) of an integrated circuit
is sent for fabrication/manufacture. Once the mask is sent out, designers cannot alter the
design. Hence, it is important to identify and rectify bugs before tape-out. Veri�cation and
emulation are done before tape-out. Validation is done on the fabricated chip when the �rst

524 Chapter 10 Verification of Digital Systems

silicon arrives after tape-out. If the veri�cation process missed some bugs, the fabricated chip
will fail functionality tests when post-silicon validation tests are done, and the chip has to go
through design, veri�cation, and tape-out again. Tape-out can be considered to be the �nish-
ing point of the design process.

10.3.3 Verification Approaches
Veri�cation test benches can be created with a black box, white box, or gray box approach:

Black Box Approach—In the black box approach, the veri�cation engineers use only
the external interfaces as de�ned by the speci�cation to create the test bench. The internal
signals and constructs are not exposed. The key to black box veri�cation is the ability to pre-
cisely predict the outputs based on the inputs. To enable this, the speci�cation must clearly
explain the function of the DUV, and the external interfaces must be well de�ned. The black
box approach typically cannot identify the cause of the errors. The adder/multiplier test
benches in Chapters 2 and 4 are black box approaches.

White Box Approach—In the white box approach, a complete understanding of the
internal structures of the DUV is assumed. The veri�cation engineer can observe the inter-
nal nodes of the design and can examine the behavior of internal structures, such as state
machines, pipelines, and queues. In the white box approach, an error is �agged at its source;
whereas, in the black box approach, the symptoms of the errors as manifested on the DUV
outputs are captured. The white box approach helps to identify the cause of the errors. The
test bench in Figure 9-10 is white box because we are accessing the nodes inside the design.

Gray Box Approach—The gray box approach is a combination of both black box and
white box approaches. Some internal signals are available while the internals of the rest of
the DUV cannot be observed. The available internal signals can help to identify the cause
of some of the errors.

10.3.4 Verification Languages
Test benches in earlier chapters, using VHDL, checked essential functionality of the designs
that were presented; however, veri�cation of industry-grade designs needs more software
support. Software world features like object-oriented programming, classes, native support
for assertions, randomizations, coverage metrics, messaging and reporting, test bench reuse,
and interfacing with other languages can help veri�cation. Hence several languages speci�-
cally for veri�cation have been in use. The following are examples of languages that are par-
ticularly targeted for veri�cation:

System Verilog
Vera
Specman e

System Verilog is extremely popular in the veri�cation world for designs done in Verilog.
In fact, Verilog is a part of the System Verilog standard now. The IEEE Verilog and System
Verilog standards were merged in 2009 to create a uni�ed standard that encompasses both
Verilog and System Verilog.

HDLs like VHDL and Verilog can also be used for veri�cation. VHDL has several con-
structs suitable for generating test benches and analyzing test outputs. Hence veri�cation on
RTL models built in VHDL can be accomplished by VHDL itself. VHDL provides special
statements, such as ASSERT, REPORT, and SEVERITY, to aid in the testing and valida-
tion process. The image construct of VHDL is often used in conjunction with REPORT
for identifying the test sequences that failed. The loop and wait statements described in

10.3 Functional Verification 525

Chapter 2 and �le I/O that is described in Chapter 8 are extremely useful for building test
benches. The code for the DUV is embedded into the test bench. When using VHDL for the
veri�cation process, the portmap statement allows facilitates this.

The VHDL assert statement enables what is generally known as assertion-based testing
in the �eld of veri�cation. Assertions are statements that capture speci�cations or design
intents in an executable form. They can be included as part of the design so that they act as
monitors during simulation. If errors exist in the manner the design intent was implemented,
they produce error reports enabling the identi�cation of bugs early in the design process.

Section 2.19 illustrates how Boolean expressions are created to capture correctly working
scenarios and how they are coded in VHDL to �ag errors if bugs exist in the design. Refer to
the following sections for examples of VHDL test benches that use assertions.

Adder test bench—Section 2.19
Multiplier test bench—Section 4.10
Keypad lock—Section 4.11
Dice game test bench—Section 5.2
Microprocessor test bench—Section 9.10

Similar test benches in Verilog can be found in Digital Systems Design Using Verilog, C.
Roth, L. John and B. Lee, Cengage Publishers, 2014 [47]. While the DUV code is synthesize-
able, the rest of the test bench is not meant for synthesis.

Modern veri�cation languages provide more sophisticated constructs for assertion-based
veri�cation �ow.

Scripting Languages, such as Perl and Python, are also used to create test inputs into �les,
or to analyze circuit outputs that are collected into �les. VHDL allows interfacing to �les, and
hence, Perl/Python scripts can be used in conjunction with VHDL to effectively generate test
inputs, process outputs, and generate error messages. Chapter 8 describes VHDL constructs
for interfacing with �les. The richness of VHDL and the variety of powerful constructs in
VHDL has allowed VHDL designers to perform veri�cation with VHDL itself or with inte-
gration with other scripting or modeling languages. Verilog designers typically use System
Verilog for functional veri�cation.

Transaction Level Modeling (TLM) is a type of modeling at a higher level of abstrac-
tion than RTL level modeling. Performing veri�cation at RTL level is dif�cult for large and
complex systems. TLMs contain less detail compared to RTL models and are easier to create
and simulate. System C is a popular language for building TLMs.

A signi�cant part of veri�cation in the modern chip design industry is accomplished with
the Open Veri�cation Methodology (OVM). Open Veri�cation Methodology (OVM) is a stan-
dard veri�cation methodology that provides veri�cation support in the form of building-blocks
(libraries) which can be used by veri�cation engineers. OVM essentially is a library of objects
and procedures for stimulus generation, data collection, and control of veri�cation process.
Available in SystemVerilog and SystemC, OVM allows easy creation of directed or random
tests utilizing transaction-level communication and functional coverage. The main objective of
such methodologies is to improve test bench reuse, to make veri�cation code more portable,
and to create a new market for universal, high-quality Veri�cation IP (Intellectual Property).

There is also a branch of veri�cation called formal veri�cation, where mathematics is
applied to solve the veri�cation problem. The basic idea is to represent the design in the
form of mathematical formulae or equations and establish that they are correct (meaning
that they hold under all possible conditions) by using theorems and proofs. A treatment of
formal veri�cation is outside the scope of this book. Graduate courses in formal veri�cation
exist in many universities.

526 Chapter 10 Verification of Digital Systems

10.4 Timing Verification
Once basic functionality of the design is checked using RTL models, the RTL model is
synthesized for custom ASICs or FPGAs. Timing veri�cation has to be done at this stage in
order to check that the circuit meets the timing requirements especially for ASICs. Timing
veri�cation refers to the process of checking whether the circuit will function correctly when
clocked at the expected frequencies of operation, making sure that setup time and hold time
are met for the various �ip-�ops in the circuit. In the initial stages of timing veri�cation,
several timing violations are often found. Timing closure is the process by which a design is
modi�ed to meet its timing requirements. In modern chip design, EDA tools are capable of
making these changes based on directives given by a designer. Timing veri�cation is done
before tape-out.

In early 2000s, chips were in the micrometer feature sizes. In those days only the synthe-
sis tool had to be timing-aware. In 2016, chips are designed at 14 nanometers. At such small
feature sizes, in addition to logic synthesis, placement, routing, and clock-tree synthesis have
to be timing-aware.

10.4.1 Sequential Circuit Timing Basics
Chapter 1 presented the basics of �ip-�op timing. Propagation delays, setup times, and hold
times of �ip-�ops were explained in Section 1.10. In summary, the major timing parameters
of a �ip-�op can be summarized as follows:

Propagation delay
(Clock-to-Q delay)

The time that elapses between the active edge of the clock to the
time the �ip-�op output changes

Setup time The time duration for which the �ip-�ip input must be stable before
the active edge of the clock

Hold time The time interval for which the �ip-�op input must be stable after
the active edge of the clock

Refer to Figure 1-34 for a timing diagram illustrating these parameters.

10.4.2 Static Timing Analysis
The maximum frequency at which a circuit can operate is an important aspect of a design.
As you know, buyers often desire to buy a computer that has a high-frequency microproces-
sor. Faster circuits allow the inputs to be quickly processed by the gates and �ip-�ops in the
circuit. The maximum clock frequency of a circuit is determined by the worst-case delay
of the longest path in the circuit, also called the critical path. Circuit simulation can help
designers to determine the delays of each path and thus validate timing estimates. However,
this approach of obtaining timing estimates is very slow and practically not very useful. An
alternative technique has emerged to help designers: static timing analysis.

Static timing analysis (STA) is a method of estimating the maximum frequency of opera-
tion and other timing properties of a design under worst-case assumptions. All circuit paths are
considered in STA; however, no speci�c input values are assumed. In fact, the word static in
static timing analysis comes from the fact that this type of timing analysis is done without apply-
ing input values dynamically. This type of analysis checks whether there are timing violations in
the circuit if each gate/�ip-�op in the circuit worked at its lowest or highest speed or anything in
between. It should be noted that the logical operation of the circuit is not tested in STA. It should
also be noted that STA is relevant only for synchronous circuits, that is, circuits with a clock.

10.4 Timing Verification 527

In synchronous sequential circuits, state changes occur immediately following the active
edge of the clock. Data moves through the circuit in a lockstep fashion, advancing one stage
with each tick of the clock. The �ip-�ops in the circuit copy their inputs to the outputs when
the relevant clock edge arrives. There are two possible types of timing errors in such a system:

 ● A setup time violation, when the data arrives too late without providing enough setup
time for the �ip-�op, and fails to correctly advance to the next stage.

 ● A hold time violation, when the input data changes too soon after the clock’s active
transition without providing enough hold time for the �ip-�op.

The maximum clock frequency for a sequential circuit should still allow all paths in the
circuit to operate without setup time or hold time violations. The clock period must be long
enough so that all �ip-�op and register inputs will have time to stabilize before the next active
edge of the clock. The main goal of static timing analysis is to verify that all signals will arrive
neither too late nor too early, and hence proper circuit operation can be assured.
A timing requirement needs to be translated into a static timing constraint for an EDA tool
to be able to handle it.

A static analysis path starts at a source �ip-�op (or at a primary input) and terminates at a
destination �ip-�op (or primary output). A static timing path between two �ip-�ops starts at the
input to the source �ip-�op and terminates at the input of the destination �ip-�op. It does not
go through the destination �ip-�op. The path terminates when it encounters a clocked device. If
a signal goes from register (�ip-�op) A to register B and then to register C, the signal contains
two paths. The timing paths in a synchronous digital system can be classi�ed into 4 types:

1. Register to register paths (i.e., �ip-�op to �ip-�op)
2. Primary input to register paths (i.e., input to �ip-�op)
3. Register to primary output paths (i.e., �ip-�op to output)
4. Input to output paths (i.e., no �ip-�op)

FIGURE 10-7: A
Sequential Circuit with
Many Timing Paths

A
Z

Clock

D1 Q1 + D2 Q2

E X A M PLE

Question: Identify the static timing paths in the following circuit:

Answer:

There are six static timing paths in this circuit:

1. From A to D1 (primary input to �ip-�op)
2. From D1 to D2 including the XOR (�ip-�op to �ip-�op)
3. From D2 via XOR to D2 (�ip-�op to �ip-�op)
4. From D2 to D1 via AND (�ip-�op to �ip-�op)
5. From D2 to Z via the OR gate (�ip-�op to output)
6. From A to Z via the OR gate (input to output)

528 Chapter 10 Verification of Digital Systems

The most complicated paths are the �ip-�op to �ip-�op paths; the other paths can be
treated as special cases of this type of path. Static timing analysis checks how the data arrives
with respect to the clock. It detects setup and hold-time violations in the design so that they
can be corrected. A setup time violation occurs if the data changes just before the clock
without providing enough setup time for the �ip-�op. A hold-time violation occurs if the data
changes just after the clock without providing enough hold time for the �ip-�op.

Slack is the amount of time still left before a signal will violate a setup or hold-time
constraint. Paths must have a positive or zero slack in order to have no violations. Paths that
have a zero or very small slack are the speed-limiting paths in the design because any small
changes in clock or gate delays will lead to violations in such circuits. Paths that have a nega-
tive slack time have already violated a setup or hold constraint.

All setup and hold time violations must be corrected before a chip is fabricated. These
corrections occur during the timing closure phase. Static timing analysis considers the worst
possible timing scenarios, but not the logical operation of the circuit. In comparison with cir-
cuit simulation, static timing analysis is faster because it does not need to simulate multiple
test vectors.

10.5 Static Timing Analysis for Circuits with No Skew
10.5.1 Timing Rules for Flip-Flop to Flip-Flop Paths
For a circuit of the general form of Figure 10-8, assume that the maximum propagation delay
through the combinational circuit is tcmax and the maximum clock-to-Q delay or propagation
delay from the time the clock changes to the time the �ip-�op output changes is tpmax, where
tpmax is the maximum of the delay of the transition from low to high 1 tplh 2 and the delay of
the transition from high to low 1 tphl 2 . Also assume that the minimum propagation delay
through the combinational circuit is tcmin and the minimum clock-to-Q delay or propagation
delay from the time the clock changes to the time the �ip-�op output changes is tpmin. Data
is launched from �ip-�op 1’s D (i.e., D1) to FF1’s Q (i.e., Q1) at the positive edge of clock at
FF1 (i.e., CK1). Data is captured at FF2’s D (i.e., D2) at the positive clock edge at FF2 (i.e.,
CLK2). FF1 is called the launching �ip-�op, and FF2 is called the capturing �ip-�op. There
are two rules this circuit has to meet in order to ensure proper operation.

Rule No. 1: Setup time rule for �ip-�op to �ip-�op path: Clock period should be long enough
to satisfy �ip-�op setup time.

For proper synchronous operation, the data launched by FF1 at edge E1 of clock CK1
should be captured by FF2 at edge E2 of clock CK2. The clock period should be long enough
to allow the �rst �ip-�op’s outputs to change and the combinational circuitry to change while
still leaving enough time to satisfy the setup time. Once the clock CK1 arrives, it could take
a delay of up to tpmax before FF1’s output changes. Then it could take a delay of up to tcmax
before the output of the combinational circuitry changes. Thus the maximum time from
the active edge E1 of the clock CK1 to the time the change in Q1 propagates to the second
�ip-�op’s input (i.e., D2) is tpmax 1 tcmax. In order to ensure proper �ip-�op operation, the
combinational circuit output must be stable at least tsu before the end of the clock E2 reaches
FF2. If the clock period is tck,

 tck $ tpmax 1 tcmax 1 tsu (10-1a)

10.5 Static Timing Analysis for Circuits with No Skew 529

Equation (10-1a) relates the clock frequency of operation of the circuit with setup time of
the �ip-�ops. Therefore, setup time violations can be solved by changing the clock frequency.
The difference between tck and 1 tpmax 1 tcmax 1 tsu 2 is referred to as the setup time margin.
The setup margin has to be zero or positive in order to have a circuit pass timing check.
 Figure 10-8 (b) illustrates a situation in which setup time constraint is met, and Figure 10-8
(c) illustrates a situation when setup time constraint is violated. One can check for setup time
violations by checking whether

 tck 2 tpmax 2 tcmax 2 tsu $ 0 (10-1b)

When a designer creates a design, typically the �ip-�ops and gates are selected from
a vendor’s design library. Hence parameters such as tpmax and tsu are generally �xed for a
designer. Of course the designer can check whether a different design library with more
desirable tpmax and tsu is available for use, but in general, the strategy during timing analysis

FIGURE 10-8: Flip-Flop
to Flip-Flop Path via
Combinational Logic
(a) Circuit (b) Timing
Diagram When Setup
Time Is Met (c) Timing
Diagram When Setup
Time Is Violated

D1 Q1 D2

FF2FF1

CLK1

CLK

CLK2

Q2
Comb
logic

CLK1

E1 E2

FF1

FF1CLK2

E1 E2

CLK1 FF1

FF1CLK2

tcmax

tck

tck

tsu

tsu

tck – tsu

tpmax

tcmaxtpmax

(a)

(b)

(c)

530 Chapter 10 Verification of Digital Systems

is to adjust the clock frequency of the circuit or the overall combinational delay of the logic.
Often, the clock frequency speci�cation comes from the customer’s requirements or the
architecture teams; therefore, the designers often have to “meet” timing by ensuring correct
combinational delays.

Rule No. 2 Hold-time rule for �ip-�op to �ip-�op path: Minimum circuit delays should be
long enough to satisfy �ip-�op hold time.

For proper synchronous operation, the data launched by �ip-�op 1 on edge E1 of clock
CK1 should not be captured by �ip-�op 2 on edge E1 of clock CK1. This can be understood
by thinking about Rule No. 1. According to Rule No. 1, in Figure 10-9 at edge E2, FF2 should
capture the data launched by FF1 on the previous edge (i.e., edge E1). For this to happen
successfully, the old data should remain stable at edge E2 until FF2’s hold time elapses.
When FF2 is capturing this old data at edge E2, FF1 has started to launch new data on edge
E2, which should be captured by FF2 only at edge E3. A hold-time violation could occur if
the data launched by FF1 at E2 is fed through the combinational circuit and causes D2 to
change too soon after the clock edge E2. The new data being launched by FF1 takes at least
tpmin time to pass through FF1 and at least tcmin to pass through the combinational circuitry.
Hence, the hold time is satis�ed if

 tpmin 1 tcmin $ th (10-2)

FIGURE 10-9: Timing
Diagrams Illustrating
Hold Time in Flip-Flop
Path

th

tpmin + tcmin

FF1

FF1

E1 E2 E3

CLK1

CLK2

Figure 10-9 illustrates a situation with a hold-time violation. When checking for hold-
time violations, the worst case occurs when the timing parameters have their minimum
values. Since tpmin . th for normal �ip-�ops, a hold-time violation due to Q changing does
not usually occur.

One should note that Equation (10-2) does not have the clock frequency in it. Therefore,
if a circuit has a hold-time violation, it cannot be corrected by changing the clock frequency
of the circuit. To correct a hold-time violation, the circuit must be redesigned. In general, to
avoid hold-time violations, one needs more combinational delays. Note that this is the oppo-
site of what is desired to meet setup time constraints.

Designing shift registers and counters by chaining together �ip-�ops is very easy from
a functional perspective; however, it is very dif�cult to meet hold-time constraints because
combinational circuit delay is zero. One way to correct such designs is by inserting buffers
between the �ip-�ops as in Figure 10-10.

10.5 Static Timing Analysis for Circuits with No Skew 531

FIGURE 10-10: Shift
Register with Buffers
for Meeting Hold-Time
Constraints

D1 Q1

CLK

CLK1 CLK2 CLK3

FF3FF2FF1

D2 Q2 D2 Q2

10.5.2 Timing Rules for Input to Flip-Flop Paths
Now let us consider a timing path from primary input to �ip-�op as in Figure 10-11. The
changes in primary input X should happen such that the value propagates to the �ip-�op
input satisfying both setup and hold-time constraints. In other words, �ip-�op setup time and
hold time dictate when primary inputs are allowed to change.

FIGURE 10-11: Input to
Flip-Flop Path Timing D

FF

CLK

X Q
Comb
logic

Rule No. 3 Setup time rule for input to �ip-�op path: External input changes to the circuit
should satisfy �ip-�op setup time

A setup time violation could occur if the X input to the circuit changes too close to the
active edge of the clock. When the X input to a sequential circuit changes, one must make
sure that the input change propagates to the �ip-�op inputs such that the setup time is satis-
�ed before the active edge of the clock. If X changes at time tx before the active edge of the
clock (see Figure 10-12), then it could take up to the maximum propagation delay of the
combinational circuit before the change in X propagates to the �ip-�op input. There should
still be a margin of tsu left before the edge of the clock. Hence, the setup time is satis�ed if

 tx $ tcxmax 1 tsu (10-3)

where tcxmax is the maximum propagation delay from X to the �ip-�op input.

FIGURE 10-12: Setup
and Hold Timing for
Changes in X

CLK

X

D

tcxmax

tcxmintx
tsu

ty

th

Rule No. 4 Hold-time rule for input to �ip-�op path: External input changes to the circuit
should satisfy �ip-�op hold times.

In order to satisfy the hold time, X must not change too soon after the clock. If a change
in X propagates to the �ip-�op input in zero time, X should not change for a duration of th

532 Chapter 10 Verification of Digital Systems

after the clock edge. Fortunately, it takes some positive propagation delay for the change in
X to reach the �ip-�op. If tcxmin is the minimum propagation delay from X to the �ip-�op
input, changes in X will not reach the �ip-�op input until at least a time of tcxmin has elapsed
after the clock edge. So, if X changes at time ty after the active edge of the clock, then the
hold time is satis�ed if

 ty $ th 2 tcxmin (10-4)

If ty is negative, X can change before the active clock edge and still satisfy the hold time.
Given a circuit, one can determine the safe frequency of operation and safe regions for

input changes using the aforementioned timing rules.

Maximum Frequency of Operation

Question: Consider a simple circuit of the form of Figure 10-13(a). The output of a D �ip-�op is fed back to its input
through an inverter. What is the maximum frequency of operation of this circuit?

Answer:

From a timing perspective, this circuit is equivalent to the circuit in Figure 10-8(a). Assume a clock as indicated by the
waveform CLK in Figure 10-13(b). If the current output of the �ip-�op is 1, a value of 0 will appear at the �ip-�op’s D
input after the propagation delay of the inverter. Assuming that the next active edge of the clock arrives after the setup
time has elapsed, the output of the �ip-�op will change to 0. This process will continue yielding the output Q of the �ip-
�op to be a waveform with twice the period of the clock. Essentially the circuit behaves as a frequency divider.

E X A M PLE

FIGURE 10-13: Simple
Frequency Divider

D

DFF

CLK

Q

Q

(a)

Clock

Q
tp tp

tctc

D

(b)

(b) Frequency divider timing diagram

(a) A frequency divider

If we increase the frequency of the clock slightly, the circuit will still work, yielding half
of the increased frequency at the output. However, if we increase the frequency to be very
high, the output of the inverter may not have enough time to stabilize and meet the setup

10.5 Static Timing Analysis for Circuits with No Skew 533

time requirements. Similarly, if the inverter was very fast and fed the inverted output to the
D input extremely quickly, timing problems will occur because the hold time of the �ip-�op
may not be met. So one can easily see a variety of ways in which timing problems could arise
from propagation delays and setup- and hold-time requirements.

Timing Rules Nos. 1 and 2 can be applied to this circuit, and it can be seen that the
maximum clock frequency of this circuit for proper operation can be derived from Equation
(10-1). If the minimum clock period is denoted by tckmin,

tckmin 5 tpmax 1 tcmax 1 tsu

Hence maximum clock frequency fmax is given by:

 fmax 5 1/ 1 tpmax 1 tcmax 1 tsu 2 (10-5)

If the minimum and maximum delays of the inverter are 1 ns and 3 ns, and if tpmin and
tpmax are 5ns and 8 ns, the maximum frequency at which it can be clocked can be derived
using Equation 10-5. Assume that the setup and hold times of the �ip-�op are 4 ns and 2 ns.
For proper operation, tck $ tpmax 1 tcmax 1 tsu. In this example, tpmax for the �ip-�ops is 8 ns,
tcmax is 3 ns, and tsu is 4 ns. Hence,

tck $ 8 1 3 1 4 5 15 ns

The maximum clock frequency is then 1/tck 5 66.67 MHz. One should also make sure that
the hold-time requirement is satis�ed. Hold-time requirement means that the D input should
not change before 2 ns after the clock edge. This will be satis�ed if tpmin 1 tcmin $ 2 ns. In this
circuit, tpmin is 5 ns and tcmin is 1 ns. Thus the Q output is guaranteed not to change until 5 ns
after the clock edge and at least 1 ns more should elapse before the change can propagate
through the inverter. Hence the D input will not change until 6 ns after the clock edge, which
automatically satis�es the hold-time requirements. Since there are no external inputs, these
are the only timing constraints that we need to satisfy.

Safe Regions for Input Changes

Question: Consider a circuit as shown in Figure 10-14(a). What are the safe regions where input X can be changed?
Assume that the delay of the combinational circuit is in the range 2 to 4 ns, the �ip-�op propagation delays are in the
range 5 to10 ns, the setup time is 8 ns, and hold time is 3 ns.

Answer:

In order to satisfy the setup time, the clock period has to be greater than tpmax 1 tcmax 1 tsu. So

tck $ 10 1 4 1 8 5 22 ns

The hold-time requirement is satis�ed if the output does not change until 3 ns after the clock. Here, the output is
not expected to change until tpmin 1 tcmin. Since tpmin is 5 ns and tcmin is 2 ns, the output is not expected to change until
7 ns, which automatically satis�es the hold-time requirement. This circuit has external inputs that allow us to identify
safe regions where the input X can change using requirements (iii) and (iv) in the foregoing list. The X input should be
stable for a duration of tcxmax 1 tsu (i.e., 4 ns 1 8 ns) before the clock edge. Similarly, it should be stable for a duration
of th 2 tcxmin (i.e., 3 ns 2 .2 ns) after the clock edge. Thus, the X input should not change 12 ns before the clock edge and

E X A M PLE

534 Chapter 10 Verification of Digital Systems

FIGURE 10-14: Safe
Regions for Input
Changes D

CLK

CLK

Z

Combinational
Circuit

X

X

Q

Q
Q+ Z

0

0 1

10
0

0

0
10

1

1
0

0 40 80 120 160

1

(a) A sequential circuit (b) Safe regions for changes in X

FIGURE 10-15: Circuit
with Three Flip-Flops Da Qa

Db

FFc

FFb

FFa

Qb

Dc Qc
Comb
logic

Compute the delays for all timing paths in this circuit and determine the maximum clock frequency allowed in this
circuit.

Answer:

Remember that a timing path starts at either a primary input or at the input of a �ip-�op. A path terminates at the input
of a �ip-�op or at a primary output.

Delay for path from flip-flop A to B 5 tclk-to-Q1A2 1 tsu 1B 2 5 9 ns 1 2 ns 5 11 ns.
Delay for path from flip-flop A to C 5 tclk-to-Q1A2 1 tcombo 1 tsu 1C 2 5 9 ns 1 4 ns 1 2 ns 5 15 ns.

1 ns after the clock edge. Although the hold time is 3 ns, we see that the input X can change 1 ns after the clock edge,
because it takes at least another 2 ns (minimum delay of combinational circuit) before the input change can propagate
to the D input of the �ip-�op. The shaded regions in the waveform for X indicate safe regions where the input signal X
may change without causing erroneous operation in the circuit.

In a typical sequential circuit, there are often millions of timing paths that need to be considered in deriving the
maximum clock frequency. The maximum frequency must be determined by locating the longest path among all the
timing paths in the circuit.

Question: Consider the circuit in Figure 10-15 with the following minimum/maximum delays:

CLK-to-Q for �ip-�op A: 7 ns/9 ns
CLK-to-Q for �ip-�op B: 8 ns/10 ns
CLK-to-Q for �ip-�op C: 9 ns/11 ns
Combinational logic: 3 ns/4 ns
Setup time for �ip-�ops: 2 ns
Hold time for �ip-�ops: 1 ns

10.6 Static Timing Analysis for Circuits with Clock Skew 535

10.6 Static Timing Analysis for Circuits with Clock Skew
In a synchronous digital system, one desires to see all changes happen immediately at
the active edge of the clock, but that might not happen in a practical circuit. Figure 10-16
 illustrates a synchronous digital system. Assume that the system is built from several mod-
ules or devices. The devices could be �ip-�ops, registers, counters, adders, multipliers, and
so forth. All of the sequential devices are synchronized with respect to the same clock in
a synchronous system. Modern microprocessors are clocked at several gigahertz, and they

Delay for path from flip-flop B to C 5 tclk-to-Q1B2 1 tcombo 1 tsu 1C 2 5 10 ns 1 4 ns 1 2 ns 5 16 ns.
Delay for path from input to flip-flop A 5 tsu 1A 2 5 2 ns 5 2 ns.
Delay for path from flip-flop C to output 5 tclk-to-Q1C2 5 11 ns.

Since the delay for path from B to C is the largest of the path delays, the maximum clock frequency is determined by this
delay of 16 ns. The frequency is 1/tmin 5 1/16 ns 5 62.5 MHz.

Question: Consider the circuit in Figure 10-7 with the following minimum/maximum delays:

CLK-to-Q for �ip-�op 1: 5 ns/8 ns.
CLK-to-Q for �ip-�op 2: 7 ns/9 ns.
XOR Gate: 4 ns/6 ns.
AND Gate: 1 ns/3 ns.
Setup time for �ip-�ops: 5 ns.
Hold time for �ip-�ops: 2 ns.

a. What is the minimum clock period that this circuit can be safely clocked at?

Answer:

Since XOR gate delay is higher than the AND gate delay, and the second �ip-�op’s delay is greater than that of the �rst
�ip-�op, the path from the second �ip-�op to input of the second �ip-�op via the XOR is the longest path. This path
determines the maximum clock frequency. The maximum frequency is dictated by

fmax 5 1/ 1 tflip-flop-max 1 tXORmax 1 tsu 2 5 1/ 191615 2 5 1/20 ns 5 50 MHz

b. What is the earliest time after the rising clock edge that input A can safely change?

Answer:

The earliest time after the rising clock edge that A can safely change can be obtained from equation (10-4)

ty 5 th 2 tANDmin 5 2 ns 2 1 ns 5 1 ns

c. What is the latest time before the rising clock edge that input A can safely change?

Answer:

The latest time before the rising clock edge that A can safely change can be obtained from Equation (10-3)

tx 5 tANDmax 1 tsu 5 3 ns 1 5 ns 5 8 ns

536 Chapter 10 Verification of Digital Systems

are fabricated at feature sizes such as 14 nm. In these chips, wire delays are signi�cant as
compared with the clock period. Even if two �ip-�ops are connected to the same clock, the
clock edge might arrive at the two �ip-�ops at different times due to unequal wire delays. If
unequal amounts of combinational circuitry (e.g., buffers or inverters) are used in the clock
path to different devices, that also could result in unequal delays, making the clock reach
different devices at slightly different times. This problem is called clock skew. Clock skew
refers to the absolute time difference in clock signal arrival between two points in the clock
network. Clock skew is often caused by delays in the interconnect within the clock distribu-
tion network. It can also be caused by the combinational logic used to selectively gate the
clock of certain devices.

10.6.1 Timing Rules for Circuits with Skew
When clock skew is present in a circuit, the timing rules Nos. 1 and 2 get appropriately modi-
�ed. A positive skew means the capturing �ip-�op gets the clock delayed with reference to
the launching �ip-�op. For a circuit with a positive skew as shown in Figure 10-17(a), the
timing rules are as follows:

Rule No. 5:

 tck $ tpmax 1 tcmax 2 tskew 1 tsu (10-6)

Rule No. 6:

 tpmin 1 tcmin $ th 1 tskew (10-7)

Positive skew makes it easy to meet setup time but makes it dif�cult to meet hold time.

Negative skew means that the launching �ip-�op gets the clock delayed with reference to
the capturing �ip-�op. Negative skew is illustrated in Figure 10-18.

For a circuit that has a negative skew, the timing rules are given by the following
equations:

Rule No. 7:

 tck $ tpmax 1 tcmax 1 tskew 1 tsu (10-8)

Rule No. 8:

 tpmin 1 tcmin $ th 2 tskew (10-9)

Negative skew reduces the effective hold time but increases the effective setup time.

FIGURE 10-16:
A Synchronous Digital
System

Control Signals

CLOCK

Device
1

Device
2

Device
nControl

Unit

10.6 Static Timing Analysis for Circuits with Clock Skew 537

Question: Consider the circuit shown in Figure 10-17(a) with the following delays:

CLK-to-Q for Flip-�ops: 7 ns/9 ns

Combinational Delay: 4 ns/6 ns

Setup Time for Flip-Flops: 5 ns

Hold Time for Flip-Flops: 2 ns

FIGURE 10-17:
Illustration of Skew
and Timing Violations
(a) Positive Skew (b)
Setup-Time Violation
(c) Hold-Time
Violation

D1 Q1

FF2FF1

CLK1 CLK2

CLK

D2 Q2

tskew

tcomb

(a)

tcmax

tskew

tck

tsu

tck – tsu

tck – tsu + tskew

Condition tpmax 1 tcmax ,5 tck 2 tsu 1 tskew not satisf ied

tpmax

FF1CLK1

CLK2 FF2

E2E1

E1 E2

(b)

Tpmin+ Tcmin

E2

E2

CLK1

CLK2

tskew

th

Condition tpmin 1 tcmin .5 tskew 1 thold not satis�ed

(c)

FIGURE 10-18: Negative
Skew—CLK1 Is
Delayed with Respect
to CLK2

FF1 FF2

D1 tcomb

tskew

Q1

CLK1 CLK2

CLK

D2 Q2

538 Chapter 10 Verification of Digital Systems

a. If skew for the second flip-flop is 3 ns, what is the maximum clock frequency? Compare
it with the clock frequency if no skew is present.

Answer:

This is a case of positive skew.

 tck 5 tpmax 1 tcmax 2 tskew 1 tsu

 5 9 ns 1 6 ns 2 3 ns 1 5 ns

 5 17 ns

The maximum clock frequency when skew is present is 1/17 ns (i.e., 58.82 MHz), whereas
without skew, the circuit could handle only a maximum frequency of 1/20 ns (i.e., 50 MHz).

b. What is the biggest skew that the circuit in Figure 10-17(a) can take while meeting the
hold-time constraint for this circuit?

Answer:

tpmin 1 tcmin $ th 1 tskew

7 ns 1 4 ns $ 2 ns 1 tskew

9 ns $ tskew

Skew must be less than 9 ns.

c. If skew for the first flip-flop in Figure 10-18 is 3 ns, what is the maximum clock frequency?
Compare it with the clock frequency if no skew is present.

Answer:

 tck 5 tpmax 1 tcmax 1 tskew 1 tsu

 5 9 ns 1 6 ns 1 3 ns 1 5 ns

 5 23 ns

The maximum clock frequency when skew is present is 1/23 ns (i.e., 43.47 MHz), whereas
without skew the circuit could handle a maximum frequency of 1/20 ns (i.e., 50 MHz).

d. What is the biggest skew that the circuit in Figure 10-18 can take while meeting the hold-
time constraint for this circuit?

Answer:
tpmin 1 tcmin $ th 2 tskew

7 ns 1 4 ns 1 tskew $ 2 ns

Since the �rst �ip-�op’s clock is delayed by tskew, and it takes an additional 11 ns to reach
the second �ip-�op, there is no possibility this signal change can cause a hold-time violation.

tskew $ 29 ns

If the skew at �ip-�op 1 increases, there will be no hold-time violation, but of course the
maximum allowable clock frequency will reduce.

10.7 Glitches in Sequential Circuits 539

10.7 Glitches in Sequential Circuits
Sequential circuits often have external inputs that are asynchronous. Temporary false values
called glitches can appear at the outputs and next states. For example, if the state table of
Figure 1-23(b) is implemented in the form of Figure 1-17, the timing waveforms are as shown
in Figure 10-19. Propagation delays in the �ip-�op have been neglected; hence state changes
are shown to coincide with clock edges. In this example, the input sequence is 00101001,
and X is assumed to change in the middle of the clock pulse. At any given time, the next
state and Z output can be read from the next state table. For example, at time ta, State 5 S5
and X 5 0, so Next State 5 S0 and Z 5 0. At time tb following the rising edge of the clock,
State 5 S0 and X is still 0, so Next State 5 S1 and Z 5 1. Then X changes to 1, and at time
tc, Next State 5 S2 and Z 5 0. Note that there is a glitch (sometimes called a false output)
at tb. The Z output momentarily has an incorrect value at tb, because the change in X is not
exactly synchronized with the active edge of the clock. The correct output sequence, as indi-
cated on the waveform, is 1 1 1 0 0 0 1 1. Several glitches appear between the correct outputs;
however, these are of no consequence if Z is read at the right time. The glitch in the next
state at tb 1S1 2 also does not cause a problem, because the next state has the correct value at
the active edge of the clock.

FIGURE 10-19: Timing
Diagram for Code
Converter

Clock

X 0 0 0 0 01 1 1

1 1 0

ta tb tc * = S1

0 11 0 1

State

Nest
state

Z

S0 S1 S3 S5 S0 S2 S4 S5 S0

S1 S3 S5 S0 * S2 S4 S5 S0 S2

The timing waveforms derived from the circuit of Figure 1-26 are shown in Figure 10-20.
They are similar to the general timing waveforms given in Figure 10-19 except that State has
been replaced with the states of the three �ip-�ops, and a propagation delay of 10 ns has been
assumed for each gate and �ip-�op.

FIGURE 10-20: Timing
Diagram for Figure 1-26

Clock

X 0 0 0 0 01 1 1

1 1 0 0 11 0 1

Q3

Q2

Q1

Z

540 Chapter 10 Verification of Digital Systems

10.8 Clock Gating
Clock gating is a technique that limits the clock from being given to every register or �ip-�op
in the processor. Clock gating is used for reducing dynamic power consumption by control-
ling switching activities on the clock path. The dynamic power (Pd) consumed by a circuit is
given by

Pd 5 CV2fa

where C is the capacitance of the circuit, V is the voltage of the circuit, f is the frequency
of operation and a is the switching factor. Hence, the dynamic power can be reduced by
reducing the clock frequency. Clock gating consists of controlling the clock with an enable
signal as in Figure 10-21. When clock is gated, the clock signal is inhibited from reaching the
circuitry during certain clock cycles. Hence the effective clock rate seen by the circuitry is
reduced, thereby reducing the power. In Figure 10-21, 50 percent power savings is achieved
since 50 percent of clock pulses are disabled from reaching the circuitry. However, the circuit
block does have power supply connected to it and will consume static/leakage power even
during the inhibited clock cycles.

FIGURE 10-21: Clock
Gating (a) Circuitry
(b) Gated Clock
Waveform

VDD

Inputs Outputs

VSS

Circuit block

CLK

(a)

(b)

CLK

EN

Gated CLK

EN

Control Signal Gating
Gating of control signals with clocks is also used to reduce problems that occur due to
glitches in control signals. While conceptually simple, correct clock gating for positive-edge

10.8 Clock Gating 541

triggered devices is tricky. In this section, clock gating of control signals for negative-edge
and positive-edge triggered devices is described.

Control Signal Gating for Falling-Edge Triggered Devices
Clock gating for a falling-edge triggered device is straight-forward. Consider Figure 10-22,
which illustrates the operation of a digital system that uses devices that change state on the
falling edge of the clock. Several �ip-�ops may change state in response to this falling edge.
The time at which each �ip-�op changes state is determined by the propagation delay for
that �ip-�op. The changes in �ip-�op states in the control circuitry will propagate through
the combinational circuit that generates the control signals, and some of the control signals
may change as a result. The exact times at which the control signals change depend on the
propagation delays in the gate circuits that generate the signals as well as the �ip-�op delays.
Thus, after the falling edge of the clock, there is a period of uncertainty during which control
signals may change. Glitches and spikes may occur in the control signals due to hazards.
Furthermore, when signals are changing in one part of the circuit, noise may be induced in
another part of the circuit. As indicated by the cross-hatching in Figure 10-22, there is a time
interval after each falling edge of the clock in which there may be noise in a control signal
(CS), and the exact time at which the control signal changes is not known.

FIGURE 10-22: Timing
Chart for System with
Falling-Edge Devices

State change initiated here

Clock

Switching
transients

Control
signal

Clock · CS

Uncertain

If you want a device in the data path to change state on the falling edge of the clock only
if the control signal CS 5 1, you can AND the clock with CS, as shown in Figure 10-23(a).
The transitions will occur in synchronization with the clock CLK except for a small delay in
the AND gate. The gated CLK signal is clean because the clock is 0 during the time interval
in which the switching transients occur in CS.

Gating the clock with the control signal, as illustrated in Figure 10-23(a), can solve some
synchronization problems. However, clock gating can also lead to clock skew and additional
timing problems in high-speed circuits. Instead of gating the clock with the control signal, it
is more desirable to use devices with clock enable (CE) pins and feed the control signal to
the enable pin, as illustrated in Figure 10-23(b). Many registers, counters, and other devices
used in synchronous systems have an enable input. When enable 5 1, the device changes
state in response to the clock, and when enable 5 0, no state change occurs. Synthesis tools
can use �ip-�ops with enables to eliminate the need for a gate on the clock input, and associ-
ated timing problems.

542 Chapter 10 Verification of Digital Systems

If devices do not have enables and synchronous operation cannot be obtained without
clock gating, one should pay attention to gating the clocks correctly. A device with negative
edge triggering can be made to function correctly by ANDing the clock signal with the con-
trol signal as shown in Figure 10-23(a). The following paragraphs describe issues associated
with control signal gating for positive-edge triggered devices.

Control Signal Gating for Rising-Edge Triggered Devices
Figure 10-24 illustrates the operation of a digital system that uses devices that change state
on the rising edge of the clock. In this case, the switching transients that result in noise and
uncertainty will occur following the rising edge of the clock. The cross-hatching indicates the
time interval in which the control signal CS may be noisy. If you want a device to change
state on the rising edge of the clock when CS 5 1, transition is expected at (a) and (c), but
no change is expected at (b) since CS 5 0 when the clock edge arrives. In order to create a
gated control signal, it is tempting to AND the clock with CS, as shown in Figure 10-25(a).
The resulting signal, which goes to the CK input of the device, may be noisy and timed
incorrectly. In particular, the CLK1 pulse at (a) will be short and noisy. It may be too short
to trigger the device, or it may be noisy and trigger the device more than once. In general,
it will be out of synchronization with the clock because the control signal does not change
until after some of the �ip-�ops in the control circuit have changed state. The rising edge of
the pulse at (b) again will be out of synchronization with the clock, and it may be noisy. But
even worse, the device will trigger near point (b) when it should not trigger there at all. Since
CS 5 0 at the time of the rising edge of the clock, triggering should not occur until the next
rising edge, when CS 5 1.

FIGURE 10-23:
Techniques Used to
Synchronize Control
Signals

Clock
CS

CK
CLK

CS

Clock CK

Enable

(a) (b)

(a) Control signal gating (b) Use of a clock enable (CE)
input to synchronize

FIGURE 10-24: Timing
Chart for System with
Rising-Edge Devices

State change initiated here

Clock

(a) (b) (c)
Switching
transients

Control
signal (CS)

CLK1 =
Clock · CS

CLK2 =
Clock + CS

CS

10.8 Clock Gating 543

For a rising-edge device, if one changed the AND gate in Figure 10-25(a) to NAND gate
as in Figure 10-25(b), it would be incorrect because the synchronization will happen at the
wrong edge. The correct way to gate the control signal is as in Figure 10-26, which will result
in the CK input to the device having a positive edge only when the control signal is positive
and the clock is going to have a positive edge. The CK input is then

CLK2 5 1CS clock r 2 r 5 CS r 1 clock

The last waveform in Figure 10-24 illustrates this gated control signal.

FIGURE 10-25: Incorrect
Clock Gating for
Rising-Edge Devices

Clock
CS

CK
Clock

CLK1CS
CK

“Rising edge”
device

(a) With AND gate (b) With NAND gate

FIGURE 10-26: Correct
Control Signal Gating
for Rising-Edge Device

Clock

CLK2CS
CK

Power Gating
Power gating is a technique used for reducing leakage power by switching off the power
supply to the non-operational power domain of the chip during certain modes of operation.
In many chips, certain areas of the chip will be idle and will be activated only for certain
operations. But these areas are still generally provided with power for biasing. Power gating
is a technique to limit this unnecessary power being wasted by shutting down power for that
area and resuming whenever needed. In clock gating, the gated circuit elements will still be
provided with bias power. Hence the circuit still consumes static/leakage power. Only the
dynamic power related to switching is reduced in clock gating

Power gating is accomplished with switches put either in the power supply (Vdd) path
or in the ground (Vss) path, as illustrated in Figure 10-27. Basically, the circuit block is con-
nected to the power supply through a switch controlled by using the power gating control
signal. If a switch is inserted in the Vdd path, it is called a header switch; and if a switch is
inserted in the ground path, it is called a footer switch. A circuit block that is idle for some
duration can be switched off in this manner, using either header switches or footer switches.
If complementary metal-oxide semiconductor (CMOS) technology is used, a PMOS transis-
tor (P-switch) is used as the header switch, and an NMOS transistor (N-switch) is used as the
footer switch. The downside of power gating is that the information in the gated circuit block
is typically lost. Power gating can be done with data retention by inserting state retention
�ip-�ops; however, the state retention �ip-�ops will add cost to the design. Power gating also
needs isolation cells to isolate the gated circuit block from feeding erroneous data into the
subsequent circuit blocks.

544 Chapter 10 Verification of Digital Systems

Clock gating can be done at �ne timing granularity; whereas, power gating has higher
overheads and is often done at coarse timing granularity. Header and footer switches, isola-
tion cells, and state retention �ip �ips used for implementing power gating add to the cost of
the design. If retention �ip-�ops are used, the overhead associated with saving and restoring
of data makes frequent switching ineffective. Power gating can be done at transistor level or
at the level of large circuit blocks. If done at transistor level or smaller circuit blocks, it is said
to have �ne granularity (spatially); whereas, if large blocks are gated with a single control
switch, it is said to be at coarse granularity (spatially). The overhead associated with gating
is less when gating at coarse granularity is used.

10.9 Clock Distribution Circuitry
When chips were running at speeds around 1 MHz in the 1980s, the “clock distribution
 circuitry” was just a wire, and wire delays were negligible. In the past decades, circuit speeds
increased signi�cantly; however, wire delays did not scale with transistor delays. In modern
high-speed circuits, the propagation delay in the wiring is signi�cant, and the clock signal must
be carefully routed so that it reaches all the clock inputs at essentially the same time (i.e., to
minimize clock skew). The clock generation circuitry is typically placed in the center of the
chip, and clocks are distributed using interconnects such as the X-tree, star, or the H-tree.
Examples of clock distribution networks are illustrated in Figure 10-28. The X-tree network
is illustrated in Figure 10-28 (a), and the star network is illustrated in Figure 10-28 (b).

A very popular clock distribution network is the H-tree. The principle behind the
H-tree is to make equal-length interconnections to subunits using a basic H-shape. Consider
 Figure 10-28(c), which is an H-tree for 16 points. The clock source is at the center of the struc-
ture. First one H-shape is created from the clock source which can distribute the clock with
equal delays to 4 subunits. If an H is added to each of the four terminals of the �rst H, there
are 16 terminals now, all equidistant from the clock source. This process can be repeated
depending on the number of subunits. Figure 10-28(d) shows an H-tree for 64 subunits.

Practically, the sub-modules in a design are not evenly distributed, and hence pure
H-trees are rarely used. However, H-trees are still popular in top-level clock network design.

Initially, an ideal clock is assumed and timing is veri�ed. Once the clock tree is synthe-
sized, the real skew values are available, and timing is checked with the practical clocks.

FIGURE 10-27: Power
Gating (a) Using
Header-Switch
(b) Using Footer-Switch Control

signal

Control
signal

VDD VDD

VSS VSS

P-switch

N-switch
Circuit block

Circuit block

(a) (b)

10.9 Clock Distribution Circuitry 545

EDA tool vendors provide tools for timing-aware place and route and physical timing
closure. IC compiler by Synopsys, SoC Encounter by Cadence Design Systems, and Blast
Fusion by Magma Design Automation are examples of such tools.

10.9.1 Asynchronous Design
The clock distribution circuitry in synchronous chips often consumes a signi�cant fraction of the
chip’s power. For example, roughly a third of a modern microprocessor’s power is consumed in
the clock distribution circuitry. Instead of having a global clock, circuits can be designed in an
asynchronous fashion. Such designs are called asynchronous or self-timed circuits. The main
distinctions between synchronous and asynchronous circuits are summarized in Table 10-4.

Although asynchronous designs can reduce power consumption, it is very dif�cult to get
timing issues under control in asynchronous designs. Asynchronous design requires special
techniques to eliminate problems with races and hazards. The lack of EDA tools for timing
closure makes it dif�cult to ensure proper timing and operation of asynchronous designs.
Due to these reasons, despite their high power consumption, most designers favor synchro-
nous designs. A compromise is to have a globally asynchronous locally synchronous (GALS)
design philosophy. While example asynchronous designs have been demonstrated three
decades back, asynchronous design is still a research topic.

FIGURE 10-28:
Examples of Clock
Distribution Networks
(a) X-Tree (b) Star
(c) H-Tree for 16 Points
(d) H-Tree for 64 Points

Clock

Source

Clock

Source

(a)

(c) (d)

(b)

546 Chapter 10 Verification of Digital Systems

Synchronous Design Asynchronous design

All clock inputs to �ip-�ops, registers, counters, and the
like are driven directly from the system clock.

Not governed by a global clock.

All state changes occur immediately following the active
edge of the clock signal.

State changes occur as soon as inputs change and gate
delays have elapsed.

Clock edges indicate when to read outputs. The availability of outputs is indicated by completion of
instruction or operations and signaled by data transfer
protocols or handshaking.

All switching transients, switching noise, and the like
occur between clock pulses and have no effect on system
performance. Race conditions are avoided easily.

Glitches and race conditions are possible. Since there is
no clock to synchronize the state changes, problems may
arise when several state variables must change at the
same time. A race occurs if the �nal state depends on the
order in which the variables change.

More reliable than asynchronous circuits. Less reliable than synchronous circuits.

Design and debugging easier as compared with asynchro-
nous techniques.

Design and debugging dif�cult compared to synchronous
designs.

Consume more power than asynchronous designs due to
power of clock distribution circuitry.

Lower power consumption.

EDA tools are available for timing closure. No EDA tools are available for ensuring correct opera-
tion of asynchronous circuits.

Likely to be slower than asynchronous designs. Has potential for faster operation.

May need additional hardware for clock repeaters, etc. May need additional transistors for completion detection
hardware.

TABLE 10-4: Distinctions between Synchronous and Asynchronous Designs

This chapter gave an introduction to functional and timing veri�cation. Terminology used in
veri�cation and validation is explained. The �rst job that many students will have will be in
veri�cation, and hence this introduction must be helpful. Several examples for static timing
analysis were presented. Timing rules for circuits with and without clock skew were illus-
trated. While physical veri�cation and veri�cation of power consumption and signal integrity
need to be checked, those are outside the scope of this book. One may refer to [38] [55] for
advanced topics in veri�cation.

Problems
10.1 Which of the following is(are) true about veri�cation?

(a) It is done on every chip that is manufactured.
(b) It is done on RTL models.
(c) The operating system is booted before veri�cation is done.
(d) It reduces risk of �nding bugs after chip is manufactured.
(e) None of the above

10.2 Which of the following is(are) true about emulation?
(a) It is done on every chip that is manufactured.
(b) It is done on RTL models.
(c) The operating system is booted before emulation is done.
(d) It reduces risk of �nding bugs after chip is manufactured.
(e) None of the above

10.3 Which of the following is(are) true about validation?
(a) It is done on every chip that is manufactured.
(b) It is done on RTL models.
(c) The operating system is booted before validation is done.
(d) It reduces risk of �nding bugs after chip is manufactured.
(e) None of the above

10.4 Which of the following is(are) performed pre-silicon?
(a) Functional veri�cation
(b) Validation
(c) Testing
(d) None of the above

10.5 Which of the following is(are) performed post-silicon?
(a) Functional veri�cation
(b) Validation
(c) Testing
(d) None of the above

10.6 Which of the following is(are) performed during design process (as opposed to after manufacturing)?
(a) Functional veri�cation
(b) Validation
(c) Testing
(d) None of the above

10.7 Which of the following must be performed on each manufactured chip?
(a) Functional veri�cation
(b) Pre-silicon Validation
(c) Post-silicon Validation
(d) Testing
(e) None of the above

10.8 Which of the following provides the highest level of observability and controllability?
(a) Functional veri�cation
(b) Pre-silicon validation
(c) Post-silicon validation
(d) Testing

10.9 Which of the following provides the least level of observability and controllability?
(a) Functional veri�cation
(b) Pre-silicon validation
(c) Post-silicon validation
(d) Testing

10.10 Which of the following is(are) performed before tape-out?
(a) Functional veri�cation
(b) Pre-silicon validation
(c) Post-silicon validation
(d) Testing

Problems 547

548 Chapter 10 Verification of Digital Systems

10.11 Which of the following can be performed at real chip operating speed?
(a) Functional veri�cation
(b) Pre-silicon validation
(c) Post-silicon validation
(d) Testing
(e) None of the above

10.12 Which of the following is the slowest?
(a) Functional veri�cation
(b) Pre-silicon validation
(c) Post-silicon validation
(d) Testing

10.13 Which of the following is not correct with respect to formal veri�cation?
(a) Formal veri�cation on FSM based models to prove FSM state transitions and behavior is known as model

checking.
(b) Formal veri�cation uses mathematical models and algorithms to exhaustively verify design intent.
(c) Formal veri�cation needs effort in creating stimulus generator for verifying design.
(d) Formal veri�cation is done before functional veri�cation.
(e) Formal veri�cation uses VHDL assertion statements to verify features of the design are correctly implemented.

10.14 Which of the following is(are) true about self-checking test benches?
(a) They synthesize test bench hardware into the design.
(b) They contain golden vectors or golden models.
(c) They use a white box approach for testing.
(d) They are faster than other types of test benches.

10.15 De�ne the following terms in the context of design veri�cation.
(a) Functional coverage
(b) Directed testing
(c) Constrained random testing
(d) Regression testing

10.16 De�ne the following terms in the context of design veri�cation.
(a) Functional coverage
(b) Toggle Coverage
(c) Line coverage
(d) FSM coverage

10.17 Where are header and footer switches used?
(a) In clock gating
(b) In power gating
(c) In H-tree
(d) In Star networks

10.18 Which of the following are advantages of asynchronous design?
(a) Faster circuits
(b) Low power consumption
(c) High reliability
(d) Easy to debug
(e) Availability of mature design tools to support designs

10.19 A Mealy sequential circuit is implemented using the circuit shown in the Figure below: Assume that if the input
X changes, it changes at the same time as the falling edge of the clock.

(a) Complete the timing diagram below. Indicate the proper times to read the output (Z). Assume that “delay”
is 0 ns and that the propagation delay for the �ip-�op and XOR gate has a nominal value of 10 ns. The clock
period is 100 ns.

Clock

X

Q1

Q2

Z

D1 Q1

Clk
FF1

Delay

D2 Q2

FF2

Problems 549

Clock

Z

delay

D1 Q1

CK

D2 Q2
CK

X +
+

(b) Assume the following delays: XOR gate—10 to 20 ns, �ip-�op propagation delay—5 to 10 ns, setup time—5
ns, and hold time—2 ns. Also assume that the “delay” is 0 ns. Determine the maximum clock rate for proper
synchronous operation. Consider both the feedback path that includes the �ip-�op propagation delay and the
path starting when X changes.

(c) Assume a clock period of 100 ns. Also assume the same timing parameters as in (b). What is the maximum
value that “delay” can have and still achieve proper synchronous operation? That is, the state sequence must
be the same as for no delay.

10.20 Two �ip-�ops are connected as shown below. The delay represents wiring delay between the two clock inputs,
which results in clock skew. This can cause possible loss of synchronization. The �ip-�op propagation delay from
clock to Q is 10 ns , tp , 15 ns; the setup and hold times are 4 ns and 2 ns, respectively.
(a) What is the maximum value that the delay can have and still achieve proper synchronous operation? Draw a

timing diagram to justify your answer.

(b) Assuming that the delay is , 3 ns, what is the minimum allowable clock period?

550 Chapter 10 Verification of Digital Systems

10.21 A D �ip-�op has a propagation delay from clock to Q of 7 ns. The setup time of the �ip-�op is 10 ns, and the hold
time is 5 ns. A clock with a period of 50 ns (low until 25 ns, high from 25 to 50 ns, and so on) is fed to the clock
input of the �ip-�op. Assume a two-level AND-OR circuitry between the external input signals and the �ip-�op
inputs. Assume gate delays are between 2 and 4 ns. The �ip-�op is positive edge triggered.
(a) Assume the D input equals 0 from t 5 0 until t 5 10 ns, 1 from 10 until 35, 0 from 35 to 70, and 1 thereafter.

Draw timing diagrams illustrating the clock, D, and Q until 100 ns. If outputs cannot be determined (because
of not satisfying setup and hold times), indicate this by XX in the region.

(b) The D input of the �ip-�op should not change between__ns before the clock edge and__ns after the clock edge.
(c) External inputs should not change between__ns before the clock edge and___ns after the clock edge.

10.22 A sequential circuit consists of a PLA and a D �ip-�op, as shown.

X

PLA
D

Q

Z

Clk

 0 1 0 1
0 0 1 0 1
1 0 0 1 0

Q+ Z

Q

X

Clk

Q

Z

20 40 60 80 120
ns

(a) Complete the timing diagram, assuming that the propagation delay for the PLA is in the range 5 to 10 ns, and
the propagation delay from clock to output of the D �ip-�op is 5 to 10 ns. Use cross-hatching on your timing dia-
gram to indicate the intervals in which Q and Z can change, taking the range of propagation delays into account.

(b) Assuming that X always changes at the same time as the falling edge of the clock, what is the maximum setup
and hold time speci�cation that the �ip-�op can have and still maintain proper operation of the circuit?

10.23 A D �ip-�op has a propagation delay from clock to Q of 15 ns. The setup time of the �ip-�op is 10 ns, and the hold
time is 2 ns. A clock with a period of 50 ns (low until 25 ns, high from 25 to 50 ns, and so on) is fed to the clock
input of the �ip-�op. The �ip-�op is positive edge triggered. D goes up at 20, down at 40, up at 60, down at 80,
and so on. Draw timing diagrams illustrating the clock, D, and Q until 100 ns. If outputs cannot be determined
(because of not satisfying setup and hold times), indicate it by placing XX in that region.

10.24 A D �ip-�op has a setup time of 5 ns, a hold time of 3 ns, and a propagation delay from the rising edge of the
clock to the change in �ip-�op output in the range of 6 to 12 ns. An OR gate delay is in the range of 1 to 4 ns.
(a) What is the minimum clock period for proper operation of the following circuit?

D Q

Clk

X

(b) What is the earliest time after the rising clock edge that X is allowed to change?
(c) Show how you can construct a T �ip-�op using a J-K �ip-�op using a block diagram. Circuits inside the

�ip-�ops are NOT to be shown.
10.25 In the following circuit, the XOR gate has a delay in the range of 2 to 16 ns. The D �ip-�op has a propagation

delay from clock to Q in the range 12 to 24 ns. The setup time is 8 ns, and the hold time is 4 ns.

D Q

Clk

X

(a) What is the minimum clock period for proper operation of the circuit?
(b) What are the earliest and latest times after the rising clock edge that X is allowed to change and still have

proper synchronous operation? (Assume minimum clock period from (a).)

10.26 In the following circuit, the XOR gate has a delay in the range of 2 to 16 ns. The D �ip-�op has a propagation
delay from clock to Q in the range 12 to 24 ns. The set-up time is 8 ns, and the hold time is 4 ns.

Clock

Z

delay

D1 Q1

CK

D2 Q2
CK

X +
+

(a) Assume delay 5 0 ns and compute the maximum frequency this circuit can be safely clocked at.
(b) Assume delay 5 5 ns and compute the maximum frequency this circuit can be safely clocked at.
(c) Assume delay 5 25 ns (i.e., the �rst �ip gets the clock delayed 5 ns compared to the second �ip-�op) and

compute the maximum frequency this circuit can be safely clocked at.
(d) Assume delay 5 0 ns and compute the earliest time and latest times after/before the rising clock edge that X

is allowed to change and still have proper synchronous operation?
(e) Assume delay 5 5 ns and compute the earliest time and latest times after/before the rising clock edge that X

is allowed to change and still have proper synchronous operation?
(f) Assume delay 5 25 ns and compute the earliest time and latest times after/before the rising clock edge that

X is allowed to change and still have proper synchronous operation?

10.27 Consider the following circuit where the combinational circuit is represented by COMB and clock skew is
represented by tskew.

Clock

D1 Q1

CK

D2 Q2

CKtskew1

D2 Q2

CK

comb1 comb2

tskew2

Problems 551

552 Chapter 10 Verification of Digital Systems

Given the following parameters
FF setup time 5 20 ns
FF Hold time 5 10 ns
FF propagation delay 5 5 to 10 ns
Tcomb 1 5 5ns to 7ns
Tcomb 2 5 6ns to 11ns
(a) What is the minimum clock period with tskew1 5 tskew2 5 0.
(b) Now set Tcomb1 5 1 to 4 ns. Is there a setup-time violation for the middle �ip-�op? If no, what is the setup-

time margin?
(c) Now set Tcomb1 5 1 to 4 ns. Is there a hold-time violation for the middle �ip-�op? If no, what is the hold-

time margin?
(d) What are the minimum values of tskew1 and tskew2 that will �x the violations?
(e) What is the minimum clock period after violations are �xed?

10.28 Consider the following circuit where the combinational circuit is represented by COMB, and clock skew is
represented by tskew.

Clock

D1 Q1

CK

D2 Q2

CKtskew1

D2 Q2

CK

comb1 comb2

tskew2

Given the following parameters
FF setup time 5 10 ns
FF Hold time 5 2 ns
FF propagation delay 5 12 to 20 ns
Tcomb 1 5 5ns to 7ns
Tcomb 2 5 6ns to 11ns
(a) What is the minimum clock period with tskew1 5 0; tskew2 5 3?
(b) Now set Tcomb1 5 1 to 4 ns. Is there a setup-time violation for the middle �ip-�op? If no, what is the setup-

time margin?
(c) Now set Tcomb1 5 1 to 4 ns. Is there a hold-time violation for the middle �ip-�op? If no, what is the hold-

time margin?
(d) What are the minimum values of tskew1 and tskew2 that will �x the violations?
(e) What is the minimum clock period after violations are �xed?

10.29 A Mealy sequential machine has the following state table:

NS Z

PS X 5 0 X 5 1 X 5 0 X 5 1

1 2 3 0 1

2 3 1 1 0

3 2 2 1 0

Complete the following timing diagram. Clearly mark on the diagram the times at which you should read the
values of Z. All state changes occur after the rising edge of the clock.

CLK

X

PS

NS

Z

1

10.30 (a) Do the following two circuits have essentially the same timing?
(b) Draw the timing for Qa and Qb given the timing diagram.
(c) If your answer to (a) is no, show what change(s) should be made in the second circuit so that the two circuits

have essentially the same timing (do not change the �ip-�op).

D

EN

Qa

CLK CLK

EN

D Qb D

CLK

EN

D

EN

D

10.31 A simple binary counter has only a clock input (CK1). The counter increments on the rising edge of CK1.
(a) Show the proper connections for a signal En and the system clock (CLK), so that when En 5 1, the counter

increments on the rising edge of CLK and when En 5 0, the counter does not change state.
(b) Complete the following timing diagram. Explain, in terms of your diagram, why the switching transients that

occur on En after the rising edge of CLK do not affect the proper operation of the counter.

CLK

En

Ck1

Counter
state

Problems 553

554

This chapter introduces digital system testing and design methods that make the systems
easier to test. Already discussed is the use of testing during the design process. You have
written VHDL test benches to verify that the overall design and algorithms used are correct.
You have used simulation at the logic level to verify that a design is logically correct and that
it meets speci�cations. After the logic level design of an IC is completed, additional testing
can be done by simulating it at the circuit level to verify that the design has been correctly
implemented and that the timing is correct.

When a digital system is manufactured, further testing is required to verify that the
manufactured chip functions correctly. The manufacturing process can introduce defects
into a chip. For instance, there may be dust particles on the mask. There may be opens in
metal vias (vias are the electrical connections between layers in a semiconductor chip that
go through the plane of one or more layers). There may be voids or holes in oxide during
fabrication. When multiple copies of an IC are manufactured, each copy must be tested to
verify that it is free from manufacturing defects. This testing has to be done before the chip
reaches the hands of the customer.

A challenge during testing is the limited controllability and observability of a manufac-
tured chip. Since testing focuses on manufactured chips (as opposed to an RTL design or
another type of pre-silicon model), the internal nodes in the design are not available to the
test engineer. The testing has to be done using only the external pins of the chip. Hence the
test sequences have to be devised with the limited observability and controllability in mind.
If an internal node has to be observed, it has to be propagated to the output pin. Similarly,
if an internal node needs to be controlled and set to a speci�c value, it has to be done using
the external input pins. In the chip design world, this post-silicon testing is what is referred to
as testing in contrast to the pre-silicon veri�cation. Veri�cation was described in Chapter 10.
This chapter is about manufacturing test, or simply testing. The testing process can become
very expensive and time consuming. With today’s complex ICs, the cost of testing is a major
component of the manufacturing cost. Therefore, it is very important to develop ef�cient
methods of testing digital systems and to design the systems so that they are easy to test.
Design for testability (DFT) is thus an important issue in modern IC design.

This chapter �rst discusses methods of testing combinational logic for the basic types of
faults that can occur. Then it describes methods for determining test sequences for sequen-
tial logic. Automatic test pattern generators (ATPGs) are employed in order to generate
test sequences required for testing circuits and systems. One of the problems encountered
is that normally you have access only to the inputs and outputs of the circuit being tested
and not to the internal state. To remedy this problem, internal test points may be brought
out to additional pins on the IC. To reduce the number of test pins required, the concept of
scan design, in which the state of the system can be stored in a shift register and shifted out

HARDWARE TESTING AND
DESIGN FOR TESTABILITY

C H A P T E R

11

11.1 Faults and Fault Models 555

serially is introduced. Memory chip testing is described next. Finally, the concept of built-in
self-test (BIST) is discussed. By adding more components to the IC, you can generate test
sequences and verify the response to these sequences internally without the need for expen-
sive external testing.

11.1 Faults and Fault Models
A fault is a defect within a system. An error is the manifestation of the fault at the system
outputs or states. A failure is the deviation of a circuit from its speci�ed behavior. Faults lead
to errors, and errors lead to failures. A fault may or may not cause a failure. For instance,
a fault may not manifest as an error for certain input combinations. Similarly, some errors
may be inconsequential. For instance, a 0 in a certain location becomes a 1 and is an error.
However, the error did not affect the behavior of the system because the location with the
error was not used. As another example, consider the branch predictor in a microproces-
sor. A fault may lead to an error in the branch predictor, resulting in the branch predictor
predicting incorrectly. However, the microprocessor still works correctly because incorrect
predictions are identi�ed and corrected. While the processor may take a few more cycles to
�nish executing the program, the results of the program are still correct.

Faults can be classi�ed into two types:

 ● Permanent faults
 ● Nonpermanent faults

Permanent faults affect the logic values in the system permanently. For example, a node in
a circuit may be permanently shorted to the ground. Nonpermanent faults occur at random
moments and affect the behavior of a system for an unspeci�ed period of time.

There are two types of nonpermanent faults:

 ● Transient faults (soft errors)
 ● Intermittent faults

Transient faults are caused by cosmic rays, alpha particles, high temperature, pressure, vibration,
humidity, power supply �uctuations, and so on. These types of faults are also called soft errors.
Intermittent faults come and go and are caused by conditions, such as loose connections. Such
loose connections were a common problem in board-level designs where discrete ICs were con-
nected to each other on a printed circuit board (PCB). Nonpermanent faults are hard to detect.

Several fault models are used for testing. The fault model identi�es target faults and also
limits the scope of test generation. The major types of fault models are the following:

Fault Description

Stuck-at fault A line permanently stuck to 0 or 1.

Bridging fault Two or more distinct lines are shorted together.

Transistor Stuck-On fault A transistor is stuck ON in a CMOS circuit pair. When the other transistor is on, this
transistor was supposed to be off but stays on, causing higher current.

Transistor Stuck-Open fault A stuck-open transistor in a CMOS transistor pair may cause output to be �oating.

Delay Fault Two types of delay faults. Gate delay fault—gate slow to rise, slow to fall; Path delay
fault—delay of path exceeds clock interval.

556 Chapter 11 Hardware Testing and Design for Testability

The most common fault model is the stuck-at-fault model. Each wire in the circuit and
every gate inputs and outputs could potentially be stuck at 0 or stuck at 1. Stuck-at-fault
models are very commonly used because they are simple. Many physical defects can be tested
by the same logical fault. This type of fault modeling is technology independent (i.e., they are
applicable for CMOS, TTL, and other technologies). It is also design-style independent (i.e.,
it is applicable to standard cell, gate array, and custom VLSI chips).

At-speed tests are required to identify delay faults. The focus in this chapter is on stuck-
at faults, state transition faults, and memory faults.

In critical applications such as biomedical and military applications, every chip has to be
tested, whereas in less critical applications, sampled testing may be done to reduce testing
costs. The military standard for testing MIL-STD 883, includes testing under adverse envi-
ronmental conditions (increased vibrations, temperature, humidity, etc.); whereas, normal
commercial chips have to be tested only under ordinary operating conditions. The military-
grade chips are very expensive compared to commercial chips due to the extra costs of test-
ing, rugged packaging, and so forth.

11.2 Testing Combinational Logic
Two common types of faults are short circuits and open circuits. If the input to a gate is
shorted to ground, the input acts as if it is stuck at a logic 0. If the input to a gate is shorted
to a positive power supply voltage, the gate input acts as if it is stuck at a logic 1. If the input
to a gate is an open circuit, the input may act as if it is stuck at 0 or stuck at 1, depending on
the type of logic being used. Thus, it is common practice to model faults in logic circuits as
stuck-at-1 (s-a-1) or stuck-at-0 (s-a-0) faults. To test a gate input for s-a-0, the gate input must
be 1, so a change to 0 can be detected. Similarly, to test a gate input for s-a-1, the normal gate
input must be 0, so a change to 1 can be detected.

You can test an AND gate for s-a-0 faults by applying 1’s to all inputs, as shown in
Figure 11-1(a). The normal gate output is then 1, but if any input is s-a-0, the output becomes 0.
The notation 1 S 0 on the gate input a means that the normal value of a is 1, but the value
has changed to 0 because of the s-a-0 fault. The notation 1 S 0 at the gate output indicates
that this change has propagated to the gate output. You can test an AND gate input for s-a-1
by applying 0 to the input being tested and 1’s to the other inputs, as shown in Figure 11-1(b).
The normal gate output then is 0, but if the input being tested is s-a-1, the output becomes 1.
To test OR gate inputs for s-a-1, apply 0’s to all inputs, and if any input is s-a-1, the output
will change to 1 (Figure 11-1(c)). To test an OR gate input for s-a-0, apply a 1 to the input
under test and 0’s to the other inputs. If the input under test is s-a-0, the output will change
to 0 (Figure 11-1(d)). In the process of testing the inputs to a gate for s-a-0 and s-a-1, you also
can detect s-a-0 and s-a-1 faults at the gate output.

Fault Description

State transition fault Fault causes a transition to a wrong destination state in a �nite state machine.

Memory Faults Memory cell Stuck-At faults; Stuck-At faults in address register, data register, or
decoder in memory; Adjacent cell coupling fault; Pattern sensitive faults.

Coupling fault Type of memory fault in which the cell value is coupled to values in adjacent cells,
e.g., Transition in one cell causes unwanted change in another cell.

11.2 Testing Combinational Logic 557

The two-level AND-OR circuit of Figure 11-2 has nine inputs and one output. Assume that
the OR gate inputs (p, q, and r) are not accessible, so the gates cannot be tested individually.
One approach to testing the circuit would be to apply all 29 5 512 different input combina-
tions and observe the output. A more ef�cient approach is based on testing for all s-a-0 and
s-a-1 faults, as shown in Table 11-1. To test the abc AND gate inputs for s-a-0, you must apply
1’s to a, b, and c, as shown in Figure 11-2(a). Then, if any gate input is s-a-0, the gate output
(p) will become 0. In order to transmit the change to the OR gate output, the other OR gate
inputs must be 0. To achieve this, you can set d 5 0 and g 5 0 (e, f, h, and i are then don’t
cares). This test vector will detect p0 (p stuck-at-0) as well as a0, b0, and c0. In a similar man-
ner, you can test for d0, e0, f0, and q0 by setting d 5 e 5 f 5 1 and a 5 g 5 0. A third test with
g 5 h 5 i 5 1 and a 5 d 5 0 will test the remaining s-a-0 faults. To test a for s-a-1 (a1), set
a 5 0 and b 5 c 5 1, as shown in Figure 11-2(b). Then, if a is s-a-1, p will become 1. In order
to transmit this change to the output, you must have q 5 r 5 0, as before. However, if you set
d 5 g 5 0 and e 5 f 5 h 5 i 5 1, you can test for d1 and g1 at the same time as a1. This same
test vector also tests for p1, q1, and r1. As shown in the table, you can test for b1, e1, and h1
with a single test vector and test similarly for c1, f1, and i1. Thus, you can test all s-a-0 and

FIGURE 11-2: Testing an
AND-OR Circuit b

a

c

d
e
f

g
h
i

p
q
r

0

1

X

1
1

X

0

X
X

0

1
0

0
0

1
0

s

(a) stuck-at-0 test

b
a

c

d
e
f

g
h
i

p
q
r

0

0

1

1
1

1

0

1
1

1

0
1

0
0

0
1

s

(b) stuck-at-1 test

FIGURE 11-1: Testing
AND and OR Gates for
Stuck-At Faults 1

0b
a

c

1

1
1

0
0

1

1
1 0

1b
a

c

0
1

0
0

0
1b

a

c

(a) (b)

(c) (d)

1
0

0
0

1
0b

a

c

558 Chapter 11 Hardware Testing and Design for Testability

a b c d e f g h i Faults Tested

1 1 1 0 X X 0 X X a0, b0, c0, p0

0 X X 1 1 1 0 X X d0, e0, f0, q0

0 X X 0 X X 1 1 1 g0, h0, i0, r0

0 1 1 0 1 1 0 1 1 a1, d1, g1, p1, q1, r1

1 0 1 1 0 1 1 0 1 b1, e1, h1, p1, q1, r1

1 1 0 1 1 0 1 1 0 c1, f1, i1, p1, q1, r1

TABLE 11-1: Test
Vectors for Figure 11-2

FIGURE 11-3: Fault
Detection Using Path
Sensitization

a

b
m

c
n

d
p

e F

0 1

1

0 1
0 1 0 1

0 1

0
1

0

a

b
m

c
n

d
p

e F

1 0

1

0
1

0

1 0
1 0

1 0
1 0

(a) s-a-1 tests

(b) s-a-0 tests

if you make c 5 0, a 5 0, and b 5 1, as shown. In order to propagate the fault n s-a-1 to the
output F, make d 5 1 and e 5 0. With this set of inputs, if a, m, n, or p is s-a-1, the output F
will have the incorrect value and the fault can be detected. Furthermore, if you change a to
1 and gate input a, m, n, or p is s-a-0, the output F will change from 1 to 0. The path through
a, m, n, and p has been sensitized, since any fault along that path can be detected. A line
whose value in the test changes in the presence of the fault is said to be sensitized to the fault
by the test. A path composed of sensitized lines is called a sensitized path. The method of
path sensitization allows you to test for a number of different stuck-at faults using one set of
circuit inputs.

Next, try to determine a minimum set of test vectors to test the circuit of Figure 11-4 for
all single stuck-at-1 and stuck-at-0 faults. Assume that you can apply inputs to A, B, C, and

s-a-1 faults with only six tests, whereas the brute-force approach would require 512 tests. When
you apply the six tests, you can determine whether or not a fault is present, but you cannot
determine the exact location of the fault. In the preceding analysis, you have assumed that only
one fault occurs at a time. In many cases the presence of multiple faults will also be detected.

Testing multilevel circuits is considerably more complex than testing two-level circuits. In
order to test for an internal fault in a circuit, choose a set of inputs that will excite that fault
and then propagate the effect of that fault to the circuit output. In Figure 11-3, a, b, c, d, and e
are circuit inputs. If you want to test for gate input n s-a-1, n must be 0. This can be achieved

11.2 Testing Combinational Logic 559

D and observe the output F and that the internal gate inputs and outputs cannot be accessed.
The general procedure to determine the test vectors is the following:

1. Select an untested fault.
2. Determine the required ABCD inputs.
3. Determine the additional faults that are tested.
4. Repeat this procedure until tests are found for all of the faults.

Let us start by testing input p for s-a-1. In order to do this, choose inputs A, B, C, and D such
that p 5 0, and if p is s-a-1, propagate this fault to the output F so it can be observed. In
order to propagate the fault, make c 5 0 and w 5 1. You can make w 5 1 by making t 5 1
or u 5 1. To make u 5 1, both D and r must equal 1. Fortunately, the choice of C 5 0 makes
r 5 1. To make p 5 0, you choose A 5 0. By choosing B 5 1, you can sensitize the path
A-a-p-v-f-F so that the set of inputs ABCD 5 0101 will test for faults a1, p1, v1, and f1. This
set of inputs also tests for c s-a-1. You assume that c s-a-1 is a fault internal to the gate, so it
is still possible to have q 5 0 and r 5 1 if c s-a-1 occurs.

FIGURE 11-4: Example
Circuit for Stuck-At
Fault Testing (p stuck
at 1)

a

b
A

B

C

D d

q r
u

ts

p

c
v

w

1

0

1

1

1

0

0

0 1

0 1

0 1

F0 1

0

1

1

f
0 1 1 0

Test
Vectors Normal Gate Inputs

A B C D a b p c q r d s t u v w F Faults Tested

0 1 0 1 0 1 0 0 0 1 1 0 1 1 0 1 0 a1 p1 c1 v1 f 1

1 1 0 1 1 1 1 0 0 1 1 1 0 1 1 1 1 a0 b0 p0 q1 r 0 d0 u0 v0 w0 f 0

1 0 1 1 1 0 0 1 1 0 1 0 1 0 1 1 1 b1 c0 s1 t0 v0 w0 f0

1 1 0 0 1 1 1 0 0 1 0 1 0 0 1 0 0 a0 b0 d1 s0 t1 u1 w1 f 1

1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 0 0 a0 b0 q0 r1 s0 t1 u1 w1 f 1

TABLE 11-2: Tests
for Stuck-At Faults in
Figure 11-4

To test for s-a-0 inputs along the path A-a-p-v-f-F, use the inputs ABCD 5 1101. In addi-
tion to testing for faults a0, p0, v0, and f0, this input vector also tests the following faults: b0,
w0, u0, r0, q1, and d0. To determine tests for the remaining stuck-at faults, select an untested
fault, determine the required ABCD inputs, and then determine the additional faults that are
tested. Then repeat this procedure until tests are found for all of the faults. Table 11-2 lists a
set �ve test vectors that will test for all single stuck-at faults in Figure 11-4.

In addition to stuck-at faults, other types of faults, such as bridging faults, may occur.
A bridging fault occurs when two unconnected signal lines are shorted together. For a large

560 Chapter 11 Hardware Testing and Design for Testability

combinational circuit, �nding a minimum set of test vectors that will test for all possible
faults is very dif�cult and time consuming. For circuits that contain redundant gates, testing
for some of the faults may be impossible. Even if a comprehensive set of test vectors can
be found, applying all of the vectors may take too much time and cost too much. For these
reasons, it is common practice to use a relatively small set of test vectors that will test most
of the faults. In general, determining such a set of vectors is a dif�cult and computationally
intensive problem. Many algorithms and corresponding computer programs have been devel-
oped to generate such sets of test vectors. Computer programs have also been developed to
simulate faulty circuits. Such programs allow the user to determine what percentage of pos-
sible faults are tested by a given set of input vectors. The percentage of possible faults that
can be tested by a set of input vectors is called the coverage of the test vectors.

A G1

G4
F

G2

G3

B

C

If gate G1 output is s-a-0, in order to detect the fault the output of gate G1 must be made
equal to 1. This necessitates A and B to be 1. The other inputs of the OR gate G4 should be
set to 0 value in order to propagate the fault to F; however, there is no way to set the outputs
of gates G2 and G3 to 0, since C appears in true and complementary forms in the two terms.
Since A and B are already 1, any value of C will make one of the outputs from G2 or G3 to
be a 1. Hence G1 output stuck-at-0 is an undetectable fault.

It may be noted that gate G1 is not required in the logic function. Even if gate G1 is
removed, the function remains the same. A designer might have added G1 to avoid static
hazards. The application of consensus theorem would have shown that

AB1BC r1AC 5 BC r 1 AC

11.3 Testing Sequential Logic
Testing sequential logic is generally much more dif�cult than testing combinational logic,
because you must use sequences of inputs for testing. If you can observe only the input and
output sequences and not the state of the �ip-�ops in a sequential circuit, a very large number
of test sequences may be required. Basically, the problem is to determine if the circuit under
test is equivalent to a correctly functioning circuit. Assume that the sequential circuit being
tested has a reset input to reset it to a known initial state. If you attempted to test the circuit
using the brute-force approach, reset the circuit to the initial state, apply a test sequence,

Question: The following circuit contains an undetectable stuck-at fault. Which one is it?

11.3 Testing Sequential Logic 561

and observe the output sequence. If the output sequence was correct, then repeat the test for
another sequence. This process has to be repeated for all possible input sequences. A large
number of tests are required to test exhaustively all states and all state transitions in the
machine. Since the brute-force approach is totally impractical, the question arises: Can you
derive a relatively small set of test sequences that will adequately test the circuit?

One way to derive test sequences for a sequential circuit is to convert it to an iterative
circuit. The iterative circuit means that the combinational part of the sequential circuit is
repeated several times to indicate the condition of the combinational part of the circuit at
each time. Since the iterative circuit is a combinational circuit, test vectors for the iterative
circuit using one of the standard methods for combinational circuits can be derived.

As an example, Figure 11-5 shows a standard Mealy sequential circuit and the cor-
responding iterative circuit. In these �gures, X, Z, and Q can either be single variables or
vectors. The iterative circuit has k 1 1 identical copies of the combinational network used in
the sequential circuit, where k 1 1 is the length of the sequence used to test the sequential
circuit. For the sequential circuit, X(t) represents a sequence of inputs in time. In the iterative

FIGURE 11-5:
Sequential and Iterative
Circuits

Clk

D �ip-
�ops

X(t)

Q(t + 1) Q(t)

Z(t)

X(0)

Z(0)

Q(1)
Q(0)

X(1)

Z(1)

Q(2) Comb.
logic

Comb.
logic

Comb.
logic

Comb.
logic

X(k)

Z(k)

Q(k)

circuit, X(0) X(1) … X(k) represents the same sequence in space. Each cell of the iterative
circuit computes Z(t) and Q 1 t 1 1 2 in terms of Q(t) and X(t). The leftmost cell computes the
values for t 5 0, the next cell for t 5 1, and so on. After the test vectors have been derived
for the iterative circuit, these vectors become the input sequences used to test the original
sequential circuit. The number of cells in the iterative circuit depends on the length of the
sequences required to test the sequential circuit.

Derivation of a small set of test sequences that will adequately test a sequential circuit is
generally dif�cult to do. Consider the state graph shown in Figure 11-6 and the corresponding
state table (Table 11-3). Assume that you can reset the circuit to state S0. It is necessary that
the test sequence cause the circuit to go through all possible state transitions, but this is not
an adequate test. For example, the input sequence

X 5 0 1 0 1 1 0 0 1 1

562 Chapter 11 Hardware Testing and Design for Testability

traverses all the arcs connecting the states and produces the output sequence

Z 5 0 0 1 0 1 1 1 1 0

If you replace the arc from S3 to S0 with a self-loop, as shown by the dashed line, the output
sequence will be the same, but the new sequential machine is not equivalent to the old one.

FIGURE 11-6: State
Graph for Test
Example S0

S3S1

S2

0/1

0/1

1/11/1

1/0

0/1

1/0

0/0

1/0

Next State Output
Q1Q2 State X 5 0 1 X 5 0 1

00 S0 S0 S1 0 0

10 S1 S0 S2 1 1

01 S2 S3 S3 1 1

11 S3 S2 S0 1 0

TABLE 11-3: State Table
for Figure 11-6

A state graph in which every state can be reached from every other state is referred to as
strongly connected. A general test strategy for a sequential circuit with a strongly connected
state graph and no equivalent states is �rst to �nd an input sequence that will distinguish each
state from the other states. Such an input sequence is referred to as a distinguishing sequence.
Two states of a state machine M are distinguishable if and only if there exists at least one
�nite input sequence, which, when applied to M, causes different output sequences. If the
output sequence is identical for every possible input sequence, then obviously the states are
equivalent. It has been proved that if two states of machine M are distinguishable, they can
be distinguished by a sequence of length n 2 1 or less, where n is the number of states in M
[31]. Given a distinguishing sequence, each entry in the state table can be veri�ed.

For the example of Figure 11-6, one distinguishing sequence is 11. This distinguishing
sequence can be obtained as follows. Divide the states S0, S1, S2, and S3 into two groups,
where the states in each group are equivalent if the test sequence is only one-bit long. For
instance, Table 11-3 shows that by applying a one bit test sequence, you can distinguish
between groups 5S0, S36 and 5S1, S26. If the input is 1, output is 0 for 5S0, S36 and 1 for
5S1, S26. States inside each partition are equivalent if the test sequence is only a 1. Now, from
Table 11-3, you can see that if you applied a test input of 1 again, states in group 5S0, S36 can
be distinguished. The states in group 5S1, S26 can also be distinguished by the test input 1.
Hence, the sequence 11 is suf�cient to distinguish among the four states. In the worst

11.3 Testing Sequential Logic 563

case, a sequence of three bits would have been suf�cient since there are only four states in
the machine. If you start in S0, the input sequence 11 gives the output sequence 01; for S1 the
output is 11; for S2, 10; and for S3, 00. Thus, you can distinguish the four states by using
the input sequence 11. You can then verify every entry in the state table using the following
sequences, where R means reset to state S0 :

Input Output Transition Veri�ed

R 0 1 1 0 0 1 (S0 to S0)

R 1 1 1 0 1 1 (S0 to S1)

R 1 0 1 1 0 1 0 1 (S1 to S0)

R 1 1 1 1 0 1 1 0 (S1 to S2)

R 1 1 0 1 1 0 1 1 0 0 (S2 to S3)

R 1 1 1 1 1 0 1 1 0 0 (S2 to S3)

R 1 1 0 0 1 1 0 1 1 1 1 0 (S3 to S2)

R 1 1 0 1 1 1 0 1 1 0 0 1 (S3 to S0)

FIGURE 11-7:
Realization of
Figure 11-6

D Q

D

Z

Q1

Q2

FF1

FF2

Q19
X

Q2

X

Q1

Q2 9
X 9

Q19
Q2

Q1
X 9

Q2 9

Q19

Q2

Q9

Q

Q9

Q19

Q29

CLK

a

b

Another approach to deriving test sequences is based on testing for stuck-at faults.
 Figure 11-7 shows the realization of Figure 11-6 using the following state assignment: S0,
00; S1, 10; S2, 01; S3, 11. If you want to test for a s-a-1, �rst excite the fault by going to state
S1, in which Q1Q2 5 10 and then set X 5 0. In normal operation, the next state will be S0.
However, if a is s-a-1, then next state is Q1Q2 5 01, which is S2. This test sequence can then
be constructed as follows:

 ● To go to S1 : reset followed by X 5 1.
 ● To test a s-a-1: X 5 0.
 ● To distinguish the state that is reached: X 5 11.

The �nal sequence is R1011. The normal output is 0101, and the faulty output is 0110.

564 Chapter 11 Hardware Testing and Design for Testability

Some simple examples that illustrate some of the methods used to derive test sequences
for sequential circuits were presented. As the number of inputs and states in the circuit
increases, the number and length of the required test sequence increases rapidly, and the deri-
vation of these test sequences becomes much more dif�cult. This, in turn, means that the time
and expense required to test the circuits increases rapidly with the number of inputs and states.

11.4 Scan Testing
The problem of testing a sequential circuit is greatly simpli�ed if you can observe the state of
all the �ip-�ops instead of just observing the circuit outputs. For each state of the �ip-�ops
and for each input combination, verify that the circuit outputs are correct and that the circuit
goes to the correct next state. One approach would be to connect the output of each �ip-�op
within the IC being tested to one of the IC pins. Since the number of pins on the IC is very
limited, this approach is not very practical. So the question arises: How can you observe the
state of all the �ip-�ops without using up a large number of pins on the IC? If the �ip-�ops
were arranged to form a shift register, then you could shift out the state of the �ip-�ops bit
by bit using a single serial output pin on the IC. This leads to the concept of scan path testing.

Figure 11-8 shows a method of scan path testing based on two-port �ip-�ops. In the usual
way, the sequential circuit is separated into a combinational logic part and a state register
composed of �ip-�ops. Each of the �ip-�ops has two D inputs and two clock inputs. When
C1 is pulsed, the D1 input is stored in the �ip-�op. When C2 is pulsed, D2 is stored in the
�ip-�op. The Q output of each �ip-�op is connected to the D2 input of the next �ip-�op to
form a shift register. The next state 1Q1

 1Q2
 1 cQk

 1 2 generated by the combinational logic is
loaded into the �ip-�ops when C1 is pulsed, and the new state 1Q1 Q2 cQk 2 feeds back into
the combinational logic. When the circuit is not being tested, the system clock 1SCK 5 C1 2
is used. A set of inputs 1X1X2 cXn 2 is applied, the outputs 1Z1Z2 cZm 2 are generated,
SCK is pulsed, and the circuit goes to the next state.

FIGURE 11-8: Scan Path
Test Circuit Using
Two-Port Flip-Flops

Z1

Z2

Zm

...

Combinational logic

D1

D2

C1

C2

Q

D1

D2

C1

C2

Q

D1

D2

C1

C2

Q

X1

X2

FF1 FF2 FFk

SCK
TCK

SDI

Q1
+ + +Q1 Q2 Q2 Qk Qk

SDO

SDI is scan data input
SCK is system clock

SDO is scan data output
TCK is test clock

Xn

...

...

...

...

When the circuit is being tested, the �ip-�ops are set to a speci�ed state by shifting the
state code into the register using the scan data input (SDI) and the test clock (TCK). A test

11.4 Scan Testing 565

In general, a digital system implemented by an IC consists of �ip-�op registers separated
by blocks of combinational logic, as shown in Figure 11-10(a). In order to apply scan test to
the IC, you need to replace the �ip-�ops with two-port �ip-�ops (or other types of scannable

input vector 1X1X2 cXn 2 is applied, the outputs 1Z1Z2 cZm 2 are veri�ed, and SCK is
pulsed to take the circuit to the next state. The next state is then veri�ed by pulsing TCK to
shift the state code out of the scan data register via the scan data output (SDO). This method
reduces the problem of testing a sequential circuit to that of testing a combinational circuit.
Any of the standard methods can be used to generate a set of test vectors for the combina-
tional logic. Each test vector contains 1n 1 k 2 bits, since there are n X inputs and k state
inputs to the combinational logic. The X part of the test vector is applied directly, and the Q
part is shifted in via the SDI. In summary, the test procedure is as follows:

1. Scan in the test vector Qi values via SDI using the test clock TCK.
2. Apply the corresponding test values to the Xi inputs.
3. After suf�cient time for the signals to propagate through the combinational circuit, verify

the output Zi values.
4. Apply one clock pulse to the system clock SCK to store the new values of Qi

 1 into the
corresponding �ip-�ops.

5. Scan out and verify the Qi values by pulsing the test clock TCK.
6. Repeat steps 1 through 5 for each test vector.

Steps 5 and 1 can overlap, since it is possible to scan in one test vector while scanning out
the previous test result.

Apply this method to test a sequential circuit with two inputs, three �ip-�ops, and two
outputs. The circuit is con�gured as in Figure 11-8 with inputs X1X2, �ip-�ops Q1Q2Q3, and
outputs Z1Z2. One row of the state transition table is as follows:

Q1
 1Q2

 1Q3
 1 Z1Z2

Q1Q2Q3 X1X2 5 00 01 11 10 00 01 11 10

101 010 110 011 111 10 11 00 01

FIGURE 11-9: Timing
Chart for Scan Test TCK

SCK
X1
X2

SDI
SDO

Z1

Z2

1 0 1 X 1 0 1 X 1 0 1 X

1

11

0

0

0

X X 1 0 1 0 (1) 0 1 1 (1) 1 1 0

0

0

1

1

1

0

* Q3
+ Q2

+ Q1
+ * Q3

+ Q2
+ Q1

+ * Q3
+ Q2

+ Q1
+

*Read output (output at other times not shown)

Figure 11-9 shows the timing diagram for testing this row of the transition table. First, 101
is shifted in using TCK, least signi�cant bit 1Q3 2 �rst. The input X1X2 5 00 is applied, and
Z1Z2 5 10 is then read. SCK is pulsed and the circuit goes to state 010. As 010 is shifted out
using TCK, 101 is shifted in for the next test. This process continues until the test is completed.

566 Chapter 11 Hardware Testing and Design for Testability

FIGURE 11-10: System with Flip-Flop Registers and Combinational Logic Blocks

Comb.
logic

1

X(1)

Z(1)

FF

FF

Comb.
logic

2

X(2)

Z(2)

FF

FF

FF

FF

Comb.
logic

1

X(1)

Z(1)

FF

FF

SDI

Comb.
logic

2

X(2)

Z(2)

FF

FF

FF

FF

SDO

(a) Without scan chain (b) With scan chain added

�ip-�ops) and link all the �ip-�ops into a scan chain, as shown in Figure 11-10(b). Then scan
test data into all the registers, apply the test clock, and scan out the results.

When multiple ICs are mounted on a PC board, it is possible to chain together the scan
registers in each IC so that the entire board can be tested using a single serial access port
(Figure 11-11).

FIGURE 11-11: Scan
Test Con�guration with
Multiple ICs

Scan register
SDI

Scan register
SDO SDI SDO

Scan register
SDI SDO

IC 1 IC 2 IC n

Test controller
TCK
SCK
SDI

11.5 Boundary Scan
As ICs have become more complex, with more and more pins, printed circuit boards have
become denser, with multiple layers and very �ne traces. Testing these PC boards after they
have been loaded with complex ICs has become very dif�cult. Testing a board by means of its
edge connector does not provide adequate testing and may require very long test sequences.
When PC boards were less dense with wider traces, testing was often done using a bed-of-
nails test �xture. This method used sharp probes to contact the traces on the board so test
data could be applied to and read from various ICs on the board. Bed-of-nails testing is not
practical for high-density PC boards with �ne traces and complex ICs.

Boundary scan test methodology was introduced to facilitate the testing of complex PC
boards. It is an integrated method for testing circuit boards with many ICs. A standard for
boundary scan testing was developed by the Joint Test Action Group (JTAG), and this
standard has been adopted as ANSI/IEEE Standard 1149.1, “Standard Test Access Port
and Boundary-Scan Architecture.” Many IC manufacturers make ICs that conform to this

11.5 Boundary Scan 567

standard. Such ICs can be linked together on a PC board so that they can be tested using only
a few pins on the PC board edge connector.

Figure 11-12 shows an IC with added boundary scan logic according to the IEEE standard.
One cell of the boundary scan register (BSR) is placed between each input or output pin and
the internal core logic. Four or �ve pins of the IC are devoted to the test-access port, or TAP.

FIGURE 11-12: IC with
Boundary Scan Register
and Test-Access Port

Core
logic

Test logic and
TAP controller

T
D

I

T
C

K

T
M

S

T
R

ST

T
D

O

Test-access port

Boundary
scan cells

FIGURE 11-13: PC
Board with Boundary
Scan ICs

TDI
TCK
TMS

TRST
TDO

IC1
Core
logic

IC2
Core
logic

ICn
Core
logic

The TAP controller and additional test logic are also added to the core logic on the IC. The
functions of the TAP pins (according to the standard) are as follows:

TDI Test data input (this data is shifted serially into the BSR)

TCK Test clock

TMS Test mode select

TDO Test data output (serial output from the BSR)

TRST Test reset (resets the TAP controller and test logic; optional pin)

A PC board with several boundary scan ICs is shown in Figure 11-13. The boundary scan
registers in the ICs are linked serially in a single chain with input TDI and output TDO. TCK,
TMS, and TRST (if used) are connected in parallel to all of the ICs. Using these signals, test
instructions and test data can be clocked into every IC on the board.

568 Chapter 11 Hardware Testing and Design for Testability

Figure 11-12 illustrated the boundary scan cells on the periphery of each IC that con-
forms to the boundary scan standard. The structure of a typical boundary scan cell is shown
in Figure 11-14. A boundary scan cell has two inputs, TDI serial input and the parallel input
pin. Similarly, it has two outputs, the serial out and the parallel data out. When in the normal
mode, data from the parallel input pin is routed to the internal core logic in the IC, or data

FIGURE 11-14: Typical
Boundary Scan Cell

(a)

Parallel in
(from core logic

or input pin)

Serial out
(to next cell

or TDO)

Parallel out
(to core logic
or output pin)

Serial in
(from TDI

or previous cell’s TDO)

Boundary
scan
cell

D Q1 D Q2

Parallel in
(from core logic
or input pin)

Load/shift

TDI
serial in

TDO serial out

TCK TCK
Normal/test

Parallel out
(to core logic
or output pin)

M
U

X

0

1
M

U
X

0

1

Capture reg. Update reg.

(b)

Capture
or shift

Update

CE CE

from the core logic is routed to the output pin. When in the shift mode, serial data from the
previous cell is clocked into �ip-�op Q1 at the same time as the data stored in Q1 is clocked
into the next boundary scan cell. After Q2 is updated, test data can be supplied to the internal
logic or to the output pin.

Figure 11-15 shows the basic boundary scan architecture that is implemented on each
boundary scan IC. The boundary scan register is divided into two parts. BSR1 represents the
shift register, which consists of the Q1 �ip-�ops in the boundary scan cells. BSR2 represents
the Q2 �ip-�ops, which can be parallel-loaded from BSR1 when an update signal is received.
The serial input data (TDI) can be shifted into the boundary scan register (BSR1), through
a bypass register, or into the instruction register. The TAP controller on each IC contains a
state machine (Figure 11-16). The input to the state machine is TMS, and the sequence of
0’s and 1’s applied to TMS determines whether the TDI data is shifted into the instruction
register or through the boundary scan cells. The TAP controller and the instruction register
control the operation of the boundary scan cells.

The TAP controller state machine has 16 states. States 9 through 15 are used for load-
ing and updating the instruction register, and states 2 through 8 are used for loading and

11.5 Boundary Scan 569

updating the data register (BSR1). The TRST signal, if used, resets the state to Test-Logic-
Reset. The state graph has the interesting property that, regardless of the initial state, a
sequence of �ve 1’s on the TMS input will always reset the machine to state 0.

FIGURE 11-15: Basic
Boundary Scan
Architecture

BSR1

Instruction decode reg.

Instruction shift reg.

BSR2

Bypass

From TDI

TAP controller
state machine

TMS TCLK

From pins or
core logic

To pins or
core logic

M
U

X

M
U

X

to TDO

FIGURE 11-16: State
Machine for TAP
Controller

(0)
Test-Logic-Reset

1

(1)
Run-Test/Idle

(2)
Select DR-Scan

(3)
Capture-DR

(4)
Shift-DR

(5)
Exit1-DR

(6)
Pause-DR

(7)
Exit2-DR

(8)
Update-DR

0
1

0

1

0

1

0

0

1

0

1

0

0

0

1

0

1 1

(9)
Select IR-Scan

(10)
Capture-IR

(11)
Shift-IR

(12)
Exit1-IR

(13)
Pause-IR

(14)
Exit2-IR

(15)
Update-IR

1

0

0

1

0

1

1

1

1 0 1 0

0

Input =
TMS

570 Chapter 11 Hardware Testing and Design for Testability

The following instructions are de�ned in the IEEE standard:

 ● BYPASS: This instruction allows the TDI serial data to go through a 1-bit bypass register
on the IC instead of through the boundary scan register. In this way, one or more ICs on
the PC board may be bypassed while other ICs are being tested.

 ● SAMPLE/PRELOAD: This instruction is used to scan the boundary scan register with-
out interfering with the normal operation of the core logic. Data is transferred to or from
the core logic from or to the IC pins without interference. Samples of this data can be
taken and scanned out through the boundary scan register. Test data can be shifted into
the BSR.

 ● EXTEST: This instruction allows board-level interconnect testing, and it also allows test-
ing of clusters of components that do not incorporate the boundary scan test features.
Test data is shifted into the BSR and then it goes to the output pins. Data from the input
pins is captured by the BSR.

 ● INTEST (optional): This instruction allows testing of the core logic by shifting test data
into the boundary scan register. Data shifted into the BSR takes the place of data from
the input pins, and output data from the core logic is loaded into the BSR.

 ● RUNBIST (optional): This instruction causes special built-in self-test (BIST) logic within
the IC to execute. (Section 11.5 explains how BIST logic can be used to generate test
sequences and check the test results.)

Several other optional and user-de�ned instructions may also be included.
The data paths between the IC pins, the boundary scan registers, and the core logic

depend on the instruction being executed as well as the state of the TAP controller. Figures
11-17, 11-18, and 11-19 highlight the data paths for the Sample/Preload, Extest, and Intest
instructions. In each case, the boundary scan registers BSR1 and BSR2 have been split into
two sections—one associated with the input pins and one associated with the output pins.
Test data can be shifted into BSR1 from TDI and shifted out to TDO.

For the Sample/Preload instruction (Figure 11-17) the core logic operates in the normal
mode with inputs from the input pins of the IC and outputs going to the output pins. When
the controller is in the CaptureDR state, BSR1 is parallel-loaded from the input pins and
from the outputs of the core logic. In the UpdateDR state, BSR2 is loaded from BSR1.

FIGURE 11-17: Signal
Paths for Sample/
Preload Instruction
(highlighted)

B
SR

1

B
SR

2

MUX

Core
logic

MUX

Input
pins

Output
pins

TD1
TD0Data paths for CaptureDR

Data paths for UpdateDR

B
SR

1

B
SR

2

For the Extest instruction (Figure 11-18) the core logic is not used. In the UpdateDR
state, BSR1 is loaded into BSR2 and the data is routed to the output pins of the IC. In the
CaptureDR state, data from the input pins is loaded into BSR1.

11.5 Boundary Scan 571

For the Intest instruction (Figure 11-19) the IC pins are not used. In the UpdateDR state,
test data that has previously been shifted into BSR1 is loaded into BSR2 and routed to the
core logic inputs. In the CaptureDR state, data from the core logic is loaded into BSR1.

FIGURE 11-18:
Signal Paths for
Extest Instruction
(highlighted) MUX

Core
logic MUX

Input
pins

Output
pins

TD1
TD0

Data path
for CaptureDR

Data paths
for UpdateDR

B
SR

1

B
SR

2

B
SR

2

B
SR

1

FIGURE 11-19:
Signal Paths for
Intest Instruction
(highlighted)

Core
logic

TD1
TD0

Data path
for CaptureDR

Data paths
for UpdateDR

B
SR

1

B
SR

2

B
SR

1

B
SR

2

MUX

MUX

Input
pins

Output
pins

The following simpli�ed example illustrates how the connections between two ICs can
be tested using the SAMPLE/PRELOAD and EXTEST instructions. The test is intended
to check for shorts and opens in the PC board traces. Both ICs have two input pins and two
output pins, as shown in Figure 11-20. Test data is shifted into the BSRs via TDI. Then data
from the input pins is parallel-loaded into the BSRs and shifted out via TDO. The instruc-
tion register on each IC is assumed to be three bits long with EXTEST coded as 000 and
SAMPLE/PRELOAD as 001. The core logic in IC1 is an inverter connected as a clock oscil-
lator and two �ip-�ops. The core logic in IC2 is an inverter and XOR gate. The two ICs are
interconnected to form a 2-bit counter.

FIGURE 11-20:
Interconnection Testing
Using Boundary Scan D0 Q0

D1 Q1

TDI TDO

IC1 IC2

4

4

3

2

1

1

2

3

572 Chapter 11 Hardware Testing and Design for Testability

The steps required to test the connections between the ICs are as follows:

1. Reset the TAP state machine to the Test-Logic-Reset state by inputting a sequence of
�ve 1’s on TMS.

2. Scan in the SAMPLE/PRELOAD instruction to both ICs using the sequences for TMS
and TDI given here. The state numbers refer to Figure 11-16.

State: 0 1 2 9 10 11 11 11 11 11 11 12 15 2
TMS: 0 1 1 0 0 0 0 0 0 0 1 1 1
TDI: – – – – – 1 0 0 1 0 0 – –

 The TMS sequence 01100 takes the TAP controller to the Shift-IR state. In this state,
copies of the SAMPLE/PRELOAD instruction (code 001) are shifted into the instruction
registers on both ICs. In the Update-IR state, the instructions are loaded into the instruc-
tion decode registers. Then the TAP controller goes back to the Select DR-scan state.

3. Preload the �rst set of test data into the ICs using the following sequences for TMS and
TDI:

State: 2 3 4 4 4 4 4 4 4 4 5 8 2
TMS: 0 0 0 0 0 0 0 0 0 1 1 1
TDI: – – 0 1 0 0 0 1 0 0 – –

 Data is shifted into BSR1 in the Shift-DR state, and it is transferred to BSR2 in the
Update-DR state. The result is as follows:

1 0

0 0 0

0 0

1

1 0

0 0 0

0 0

1 TDO
0 10 1

TDI

BSR1

BSR2

4. Scan in the EXTEST instruction to both ICs using the following sequences:

State: 2 9 10 11 11 11 11 11 11 12 15 2
TMS: 1 0 0 0 0 0 0 0 1 1 1
TDI: – – – 0 0 0 0 0 0 – –

 The EXTEST instruction (000) is scanned into the instruction register in state Shift-IR
and loaded into the instruction decode register in state Update-IR. At this point, the
preloaded test data goes to the output pins, and it is transmitted to the adjacent IC input
pins via the printed circuit board traces.

5. Capture the test results from the IC inputs. Scan this data out to TDO and scan the sec-
ond set of test data in using the following sequences:

State: 2 3 4 4 4 4 4 4 4 4 5 8 2
TMS: 0 0 0 0 0 0 0 0 0 1 1 1
TDI: – – 1 0 0 0 1 0 0 0 – –
TDO: – – x x 1 0 x x 1 0 – –

 The data from the input pins is loaded into BSR1 in state Capture-DR. At this time, if no
faults have been detected, the BSRs should be con�gured as shown below, where the X’s
indicate captured data that is not relevant to the test.

11.5 Boundary Scan 573

 The test results are then shifted out of BSR1 in state Shift-DR as the new test data is
shifted in. The new data is loaded into BSR2 in the Update-IR state.

6. Capture the test results from the IC inputs. Scan this data out to TDO and scan all 0’s in
using the following sequences:

State: 2 3 4 4 4 4 4 4 4 4 5 8 2 9 0
TMS: 0 0 0 0 0 0 0 0 0 1 1 1 1 1
TDI: – – 0 0 0 0 0 0 0 0 – – – –
TDO: – – x x 0 1 x x 0 1 – – – –

 The data from the input pins is loaded into BSR1 in state Capture-DR. Then it is
shifted out in state Shift-DR as all 0’s are shifted in. The 0’s are loaded into BSR2 in the
Update-DR state. The controller then returns to the Test-Logic-Reset state, and normal
operation of the ICs can then occur. The interconnection test passes if the observed TDO
sequences match the ones given above.

VHDL code for the basic boundary scan architecture of Figure 11-15 is given in
 Figure 11-21. Only the three mandatory instructions (EXTEST, SAMPLE/-PRELOAD, and
BYPASS) are implemented using a 3-bit instruction register. These instructions are coded
as 000, 001, and 111, respectively. The number of cells in the BSR is a generic parameter.
A second generic parameter, CellType, is a bit_vector that speci�es whether each cell is an
input cell or output cell. The case statement implements the TAP controller state machine.
The instruction code is scanned in and loaded into IDR in states Capture-IR, Shift-IR, and
Update-IR. The instructions are executed in states Capture-DR, Shift-DR, and Update-DR.
The actions taken in these states depend on the instruction being executed. The register
updates and state changes all occur on the rising edge of TCK. The VHDL code implements
most of the functions required by the IEEE boundary scan standard, but it does not fully
comply with the standard.

1 0

0 1 X

0 0

X

1 0

0 1 X

0 0

X TDOTDI

BSR1

BSR2

0 10 1

FIGURE 11-21: VHDL Code for Basic Boundary Scan Architecture

-- VHDL for Boundary Scan Architecture of Figure 11-15

entity BS_arch is
 generic(NCELLS: natural range 2 to 120 := 2);
 -- number of boundary scan cells
 port(TCK, TMS, TDI: in bit;
 TDO: out bit;
 BSRin: in bit_vector(1 to NCELLS);
 BSRout: inout bit_vector(1 to NCELLS);
 CellType: bit_vector(1 to NCELLS));
 -- '0' for input cell, '1' for output cell
end BS_arch;

574 Chapter 11 Hardware Testing and Design for Testability

architecture behavior of BS_arch is
 signal IR, IDR: bit_vector(1 to 3); -- instruction registers
 signal BSR1, BSR2: bit_vector(1 to NCELLS); -- boundary scan cells
 signal BYPASS: bit; -- bypass bit
 type TAPstate is (TestLogicReset, RunTest_Idle,
 SelectDRScan, CaptureDR, ShiftDR, Exit1DR, PauseDR, Exit2DR, UpdateDR,
 SelectIRScan, CaptureIR, ShiftIR, Exit1IR, PauseIR, Exit2IR, UpdateIR);
 signal St: TAPstate; -- TAP Controller State
begin
 process (TCK)
 begin
 if TCK'event and TCK='1' then
 -- TAP Controller State Machine
 case St is
 when TestLogicReset =>
 if TMS='0' then St <= RunTest_Idle; else St<= TestLogicReset; end if;
 when RunTest_Idle =>
 if TMS='0' then St <= RunTest_Idle; else St <= SelectDRScan; end if;
 when SelectDRScan =>
 if TMS='0' then St <= CaptureDR; else St <= SelectIRScan; end if;
 when CaptureDR =>
 if IDR = "111" then BYPASS <= '0';
 elsif IDR = "000" then -- EXTEST (input cells capture pin data)
 BSR1 <= (not CellType and BSRin) or (CellType and BSR1);
 elsif IDR = "001" then -- SAMPLE/PRELOAD
 BSR1 <= BSRin;
 end if; -- all cells capture cell input data
 if TMS='0' then St <= ShiftDR; else St <= Exit1DR; end if;
 when ShiftDR =>
 if IDR = "111" then BYPASS <= TDI; -- shift data through bypass reg.
 else BSR1 <= TDI & BSR1(1 to NCELLS-1); end if;
 -- shift data into BSR
 if TMS='0' then St <= ShiftDR; else St <= Exit1DR; end if;
 when Exit1DR =>
 if TMS='0' then St <= PauseDR; else St <= UpdateDR; end if;
 when PauseDR =>
 if TMS='0' then St <= PauseDR; else St <= Exit2DR; end if;
 when Exit2DR =>
 if TMS='0' then St <= ShiftDR; else St <= UpdateDR; end if;
 when UpdateDR =>
 if IDR = "000" then -- EXTEST (update output reg. for output cells)
 BSR2 <= (CellType and BSR1) or (not CellType and BSR2);
 elsif IDR = "001" then -- SAMPLE/PRELOAD
 BSR2 <= BSR1; -- update output reg. in all cells
 end if;
 if TMS='0' then St <= RunTest_Idle; else St <= SelectDRScan; end if;
 when SelectIRScan =>
 if TMS='0' then St <= CaptureIR; else St <= TestLogicReset; end if;
 when CaptureIR =>

11.5 Boundary Scan 575

VHDL code that implements the interconnection test example of Figure 11-20 is given in
Figure 11-22. The TMS and TDI test patterns are the concatenation of the test patterns used
in steps 2 through 6. A copy of the basic boundary scan architecture is instantiated for IC1
and for IC2. The external connections and internal logic for each IC are then speci�ed. The
internal clock frequency was arbitrarily chosen to be different than the test clock frequency.
The test process runs the internal logic, then runs the scan test, and then runs the internal
logic again. The test results verify that the IC logic runs correctly and that the scan test pro-
duces the expected results.

 IR <= "001"; -- load 2 LSBs of IR with 01 as required by the standard
 if TMS='0' then St <= ShiftIR; else St <= Exit1IR; end if;
 when ShiftIR =>
 IR <= TDI & IR(1 to 2); -- shift in instruction code
 if TMS='0' then St <= ShiftIR; else St <= Exit1IR; end if;
 when Exit1IR =>
 if TMS='0' then St <= PauseIR; else St <= UpdateIR; end if;
 when PauseIR =>
 if TMS='0' then St <= PauseIR; else St <= Exit2IR; end if;
 when Exit2IR =>
 if TMS='0' then St <= ShiftIR; else St <= UpdateIR; end if;
 when UpdateIR =>
 IDR <= IR; -- update instruction decode register
 if TMS='0' then St <= RunTest_Idle; else St <= SelectDRScan; end if;
 end case;
 end if;
 end process;

 TDO <= BYPASS when St = ShiftDR and IDR = "111" -- BYPASS
 else BSR1(NCELLS) when St = ShiftDR -- EXTEST or SAMPLE/PRELOAD
 else IR(3) when St = ShiftIR;

 BSRout <= BSRin when (St = TestLogicReset or not (IDR = "000"))
 else BSR2; -- define cell outputs
end behavior;

FIGURE 11-22: VHDL Code for Interconnection Test Example

 -- Boundary Scan Tester

entity system is
end system;

architecture IC_test of system is
 component BS_arch is
 generic(NCELLS:natural range 2 to 120 := 4);
 port(TCK, TMS, TDI: in bit;
 TDO: out bit;
 BSRin: in bit_vector(1 to NCELLS);
 BSRout: inout bit_vector(1 to NCELLS);
 CellType: in bit_vector(1 to NCELLS));

576 Chapter 11 Hardware Testing and Design for Testability

 -- '0' for input cell, '1' for output cell
 end component;

 signal TCK, TMS, TDI, TDO, TDO1: bit;
 signal Q0, Q1, CLK1: bit;
 signal BSR1in, BSR1out, BSR2in, BSR2out: bit_vector(1 to 4);
 signal count: integer := 0;

 constant TMSpattern: bit_vector(0 to 62) :=
 "011000000011100000000011110000000111000000000111000000000111111";
 constant TDIpattern: bit_vector(0 to 62) :=
 "000001001000000010001000000000000000001000100000000000000000000";
begin
 BS1: BS_arch port map(TCK, TMS, TDI, TDO1, BSR1in, BSR1out, "0011");
 BS2: BS_arch port map(TCK, TMS, TDO1, TDO, BSR2in, BSR2out, "0011");
 -- each BSR has two input cells and two output cells
 BSR1in(1) <= BSR2out(4); -- IC1 external connections
 SR1in(2) <= BSR2out(3);
 BSR1in(3) <= Q1; -- IC1 internal logic
 BSR1in(4) <= Q0;
 CLK1 <= not CLK1 after 7 ns; -- internal clock
 process(CLK1)
 begin
 if CLK1 = '1' then -- D flip-flops
 Q0 <= BSR1out(1);
 Q1 <= BSR1out(2);
 end if;
 end process;

 BSR2in(1) <= BSR1out(4); -- IC2 external connections
 BSR2in(2) <= BSR1out(3);
 BSR2in(3) <= BSR2out(1) xor BSR2out(2); -- IC2 internal logic
 BSR2in(4) <= not BSR2out(1);

 TCK <= not TCK after 5 ns; --test clock

 process
 begin
 TMS <= '1';
 wait for 70 ns; -- run internal logic
 wait until TCK = '1';
 for i in TMSpattern'range loop -- run scan test
 TMS <= TMSpattern(i);
 TDI <= TDIpattern(i);
 wait for 0 ns;
 count <= i + 1; -- count triggers listing output
 wait until TCK = '1';
 end loop;
 wait for 70 ns; -- run internal logic
 wait; -- stop
 end process;
end IC_test;

11.6 Memory Testing 577

11.6 Memory Testing
Memory chips can contain several types of faults:

Fault Description

Stuck-at fault Memory cell stuck; Driver stuck; Read/write line stuck;
Chip-select line stuck; Data line stuck; Open circuit in data line.

Address fault Address line stuck; Shorts between address lines; Open circuit
in address lines; Open circuit in decoder; Wrong address access;
Simultaneous multiple address access.

Transition fault Can be set to value x but not its complement x' (x can be 0 or 1).

Neighborhood Pattern
Sensitive fault

Pattern sensitive faults, e.g., Base cell changes when one of the
4 nearest-neighbors changes in some pattern; Base cell changes
when diagonal neighbors change in some pattern.

Coupling fault Transition in one cell causes unwanted change in an adjacent
cell due to short-circuit between data lines or cross-talk
between data lines.

Some of these faults are permanent, e.g., cell or line stuck-at-faults. Some of the faults are
nonpermanent, that is they only occur if certain patterns in neighboring cells.

Soft errors are also a serious problem in modern memory chips. The smaller the semiconduc-
tor geometry goes, the more errors are induced by cosmic events. Cosmic rays, alpha particles,
pollution, static discharge, and environmental conditions can cause unpredictable failures, too.

11.6.1 Standard Memory Test Patterns
The regular structure of a memory chip makes it easy to generate test patterns. Several stan-
dard test patterns are used for memory testing. Some examples are given below:

Walking 1 test
The walking 1's test uses a pattern as follows:

00000001
00000010
00000100
00001000
00010000
00100000
01000000
10000000

This simple test can detect shorts and opens in address lines and data lines. In order to test
the data bus wiring, the number of data values required is the number of data bus lines. To
perform the walking 1’s test on the data bus, �rst write the �rst data value, perform a read

578 Chapter 11 Hardware Testing and Design for Testability

back, walk the 1 to the next data line and perform a write and read. Repeat until all bus lines
are covered. If the data bus is n-bits wide, n writes and n reads are necessary to do this. The
patterns for an 8-bit bus are shown above.

In order to test address bus wiring, change the addresses using a walking 1’s pattern, that
is, each address line becomes a 1 successively. Hence the addresses are changing as in the
sequence 0001hex, 0002hex, 0004hex, 0008hex, 0010hex, 0020hex, and so on.

Checkerboard Test
Another test is the checkerboard test as shown below:

10101010
01010101
10101010
01010101
10101010
01010101
10101010
01010101

This test can detect shorts between adjacent cells. The pattern shown uses AA (hex) in even
locations and 55 (hex) in odd locations. After writing and reading the given pattern, the odd
and even address patterns are swapped to complete the test.

MATS and March Tests
There are several tests that involve marching through the memory addresses and writing or
reading 0’s or 1’s successively. The following are examples of steps used in these tests:

Step 1: for cells from 0 to n-1 (or opposite order) do write a 0 to cell;
Step 2: for cells from 0 to n-1 do read cell (expected value=0); write 1 to cell;
Step 3: for cells from n-1 to 0 do read cell (expected value=1); write 0 to cell;

Several such tests have been devised in the past. A few of these tests are summarized in
Table 11-4.

Algorithm Description Complexity

MATS 5 D 1w0 2 ; D 1r0, w1 2 ; D 1r1 2 6 4N

MATS1 5 D 1w0 2 ; c 1r0, w1 2 ; T 1r1, w0 2 6 5N

MATS11 5 D 1w0 2 ; c 1r0, w1 2 ; T 1r1, w0, r0 2 6 6N

MARCH X 5 D 1w0 2 ; c 1r0, w1 2 ; T 1r1, w0 2 ; D 1r0 2 6 6N

MARCH C- 5 D 1w0 2 ; c 1r0, w1 2 ; c 1r1, w0 2 ;
 T 1r0, w1 2 ; T 1r1, w0 2 ; D 1r0 2 6

10N

MARCH A 5 D 1w0 2 ; c 1r0, w1, w0, w1 2 ; c 1r1, w0, w1 2 ;
T 1r1, w0, w1, w0 2 ; T 1r0, w1, w0 2 6

15N

MARCH Y 5 D 1w0 2 ; c 1r0, w1, r1 2 ; T 1r1, w0, r0 2 ; D 1r0 2 6 8N

TABLE 11-4: Examples
of Memory Tests and
their Complexity

11.7 Built-In Self-Test 579

These tests can detect address faults, cell stuck at faults and many coupling faults. Some of
these tests involve 4 or 5 operations for every memory cell, whereas some involve 17 opera-
tions. The complexity of the various tests is indicated in the last column in Table 11-4. The
March A test has a complexity of 15N, meaning that it performs 15 operations per memory cell.

11.7 Built-In Self-Test
As digital systems become more and more complex, they become much harder and more
expensive to test. One solution to this problem is to add logic to the IC so that it can test
itself. This is referred to as built-in self-test, or BIST. Figure 11-23 illustrates the general
method for using BIST. An on-chip test generator applies test patterns to the circuit under
test. The resulting output is observed by the response monitor, which produces an error sig-
nal if an incorrect output pattern is detected.

BIST is often used for testing memory. The various patterns discussed in section 10.6 can
be used in the self-test mode as well. Figure 11-24 shows a block diagram of a self-test circuit
for a RAM. The BIST controller enables the write-data generator and address counter so
that data is written to each location in the RAM. Then the address counter and read-data
generator are enabled, and the data read from each RAM location is compared with the

Algorithm Description Complexity

MARCH B 5 D 1w0 2 ; c 1r0, w1, r1, w0, r0, w1 2 ;
c 1r1, w0, w1 2 ; T 1r1, w0, w1, w0 2 ;

T 1r0, w1, w0 2 6

17N

MARCH 14 5 c w 10101 2 , r 10101 2 , w 11010 2 , r 11010 2
c r 11010 2 ,w 10101 2 , r 10101 2

T r 10101 2 , w 11010 2 , r 11010 2 , r 11010 2
T w 10101 2 , r 10101 2 , r 10101 2 6

14N

r0 — Read a 0 from a memory location
r1 — Read a 1 from a memory location
w0 — Write a 0 to a memory location
w1 — Write a 1 to a memory location

 c — Increasing memory addressing
 T — Decreasing memory addressing
 D — Either increasing or decreasing

FIGURE 11-23: Generic
BIST Scheme

Test pattern generator (TPG)

Circuit
under test

(CUT)

Test response monitor (TRM)

BIST
control

580 Chapter 11 Hardware Testing and Design for Testability

output of the read-data generator to verify that it is correct. The checkerboard pattern tests
or March tests are applied by the test pattern generator until the entire memory array has
been traversed.

FIGURE 11-24: Self-Test
Circuit for RAM

RAM

Compare

Write-data
generator

Address
counter

AddressData in

Data out

BIST
controller

Read-data
generator

FIGURE 11-25: Self-Test
Circuit for RAM with
Signature Register

RAM

MISR

Write-data
generator

Address
counter

AddressData in

Data out

BIST
controller

The test circuit can be simpli�ed by using a signature register. The signature register
compresses the output data into a short string of bits called a signature, and this signature
is compared with the signature for a correctly functioning component. A multiple-input
signature register (MISR) combines and compresses several output streams into a single
signature. Figure 11-25 shows a simpli�ed version of the RAM self-test circuit. The read-
data generator and comparator have been eliminated and replaced with a MISR. One type
of MISR simply forms a check sum by adding up all the data bytes stored in the RAM.
When testing a ROM, Figure 11-25 can be simpli�ed further, since no write-data generator
is needed.

Linear feedback shift registers (LFSRs) are often used to generate test patterns and to
compress test outputs into signatures. An LFSR is a shift register whose serial input bit is a
linear function of some bits of the current shift register content. The bit positions that affect
the serial input are called taps. The general form of a LFSR is a shift register with two or more
�ip-�op outputs XOR’ed together and fed back into the �rst �ip-�op. The name linear comes
from the fact that exclusive OR is equivalent to modulo-2 addition, and addition is a linear
operation. Figure 11-26 shows an example of a LFSR. The outputs from the �rst and fourth
�ip-�ops are XOR’ed together and fed back into the D input of the �rst �ip-�op; the taps are
positions 1 and 4.

11.7 Built-In Self-Test 581

By proper choice of the outputs that are fed back through the exclusive OR gate, it is pos-
sible to generate 2n 2 1 different bit patterns using an n-bit shift register. All possible patterns
can be generated except for all 0’s. The patterns generated by the LFSR of Figure 11-26 are

1000, 1100, 1110, 1111, 0111, 1011, 0101, 1010, 1101, 0110, 0011,
1001, 0100, 0010, 0001, 1000, …

These patterns have no obvious order, and they have certain randomness properties. Such
an LFSR is often referred to as a pseudo-random pattern generator, or PRPG. PRPGs are
obviously very useful for BIST, since they can generate a large number of test patterns with
a small amount of logic circuitry. Table 11-5 gives a feedback combination that will generate
all 2n 2 1 bit patterns for some LFSRs with lengths in the range n 5 4 to 32.

FIGURE 11-26: Four-Bit
Linear Feedback Shift
Register (LFSR)

D Q2

Q29

D Q1

Q19

D Q3

Q39

D Q4

Q49

CLK

FIGURE 11-27: Modi�ed
LFSR with 0000 State

D Q2

Q29

D Q1

Q19

D Q3

Q39

D Q4

Q49

CLK

n Feedback

4, 6, 7 Q1 ! Qn

5 Q2 ! Q5

8 Q2 ! Q3 ! Q4 ! Q8

12 Q1 ! Q4 ! Q6 ! Q12

14, 16 Q3 ! Q4 ! Q5 ! Qn

24 Q1 ! Q2 ! Q7 ! Q24

32 Q1 ! Q2 ! Q22 ! Q32

TABLE 11-5: Feedback
for Maximum-Length
LFSR Sequence

If the all-0s test pattern is required, an n-bit LFSR can be modi�ed by adding an AND gate
with n 2 1 inputs, as shown in Figure 11-27 for n 5 4. When in state 0001, the next state is 0000;
when in state 0000, the next state is 1000; otherwise, the sequence is the same as for Figure 11-26.

An MISR can be constructed by modifying a LFSR by adding XOR gates, as shown in
Figure 11-28. The test data 1Z1Z2Z3Z4 2 is XOR’ed into the register with each clock, and

582 Chapter 11 Hardware Testing and Design for Testability

the �nal result represents a signature that can be compared with the signature for a known
correctly functioning component. This type of signature analysis will catch many, but not
all, possible errors. An n-bit signature register maps all possible input streams into one of
the 2n possible signatures. One of these is the correct signature, and the others indicate that
errors have occurred. The probability that an incorrect input sequence will map to the correct
 signature is of the order of 1/2n.

FIGURE 11-28:
Multiple-Input
Signature Register
(MISR) D Q2

Q29

D
Q1

Q19

D
Q3

Q39

D Q4

Q49

CLK

Z1 Z 2 Z 3 Z 4

For the MISR of Figure 11-28, assume that the correct input sequence is 1010, 0001, 1110,
1111, 0100, 1011, 1001, 1000, 0101, 0110, 0011, 1101, 0111, 0010, 1100. This sequence maps to
the signature 0010, assuming the initial contents of the MISR to be 0000. Any input sequence
that differs in one bit will map to a different signature. For example, if 0001 in the sequence is
changed to 1001, the resulting sequence maps to 0000. Most sequences with two errors will be
detected, but if you change 0001 to 1001 and 0010 to 0110 in the original sequence, the result
maps to 0010, which is the correct signature, so the errors would not be detected.

Several types of architectures have been proposed for BIST. Two popular examples are
the STUMPS architecture and the BILBO architecture.

STUMPS stands for Self-Testing Using an MISR and Parallel SRSG. SRSG, in turn,
stands for Shift Register Sequence Generator. STUMPS is a BIST architecture that uses scan
chains. An overview of the STUMPS architecture is shown in Figure 11-29. A pseudo-random
pattern generator feeds a test stimuli to the scan chains, and after a capture cycle, the test
response analyzer receives the test responses. The test procedure in STUMPS is the following:

1. Scan in patterns from the test pattern generator (LFSR) into all scan chains.
2. Switch to normal function mode and clock once with system clock.
3. Shift out scan chain into test response analyzer (MISR) where test signature is generated.

FIGURE 11-29: The
STUMPS Architecture

BIST
control

Test pattern generator

Test response analyzer

Scan
chain

1

Scan
chain

2

Scan
chain
n

If the scan chain contains 100 scan cells, steps 1 and 3 will take 100 clocks. All scan chains
should �rst be �lled by the pseudo-random generator; hence, long scan chains necessitate
long testing times. Since one test is done per scan, the STUMPS architecture is called a

11.7 Built-In Self-Test 583

test-per-scan scheme. In order to reduce the testing time, a large number of parallel scan
chains can be used, which reduces the time for �lling the scan chains with the test since all
scan chains can be loaded in parallel.

The STUMPS architecture was originally developed for self-testing of multi-chip modules
[8]. The scan chain on each logic chip (module) is loaded in parallel from the pseudo-random
pattern source. The number of clock cycles required is equal to the number of �ip-�ops in the
longest scan chain. If there are m scan cells in the longest scan chain, it will take 2m 1 1 cycles to
perform one test (m cycles for scan-in, one for capture, and m cycles for scan-out). The shorter
scan chains will over�ow into the MISR, but that will not affect the �nal correct signature.

In order to reduce test-times, steps 1 and 3 can be overlapped. When the scan chain is
unloaded into the MISR after one test, simultaneously the next pseudo-random pattern set
from the SRSG can be loaded into the scan chain (i.e., when test response from test I is being
shifted out, test pattern for test I 1 1 can be shifted in). Assuming overlap between scan-out of
a test and scan-in of the following test, each test vector will take m 1 1 cycles, and it will take
n 1m 1 1 2 1 m cycles to apply n test vectors, including the m cycles taken for the last scan-out.

As opposed to the test-per-scan scheme just discussed, a test-per-clock scheme can
be used for faster testing. One such scheme is called the BILBO (Built-In Logic Block
Observer) technique. In BILBO schemes, the scan register is modi�ed so that parts of the
scan register can serve as a state register, pattern generator, signature register, or shift reg-
ister. When used as a shift register, the test data can be scanned in and out in the usual way.
During testing, part of the scan register can be used as a pattern generator (PRPG) and part
as a signature register (MISR) to test one of the combinational blocks. The roles can then be
changed to test another combinational block. When the testing is �nished, the scan register
is placed in the state register mode for normal operation. After the BILBO registers are
initialized, since there is no loading of test patterns as in the case of scan chains, a test can
be applied in each clock cycle. Hence, this is categorized as a test-per-clock BIST scheme.
BILBO involves shorter test lengths, but more test hardware.

Figure 11-30 shows the placement of BILBO registers for testing a circuit with two com-
binational blocks. Combinational circuit 1 is tested when the �rst BILBO is used as a PRPG
and the second as an MISR. The roles of the registers are reversed to test combinational
 circuit 2. In the normal operating mode, both BILBOs serve as registers for the associated
combinational logic. To scan data in and out, both BILBOs operate in the shift register mode.

FIGURE 11-30: BIST
Using BILBO Registers

B
IL

B
O

B
IL

B
OComb.

circuit
1

Comb.
circuit

2

PRPG MISR

(a) Testing combinational circuit 1

B
IL

B
O

B
IL

B
OComb.

circuit
1

Comb.
circuit

2

MISR PRPG

(b) Testing combinational circuit 2

584 Chapter 11 Hardware Testing and Design for Testability

Figure 11-31 shows the structure of one version of a 4-bit BILBO register. The control
inputs B1 and B2 determine the operating mode. Si and So are the serial input and output for
the shift register mode. The Z’s are inputs from the combinational logic. The equations for
this BILBO register are

D1 5 Z1 B1 ! 1Si B2r 1 FB B2 2 1B1r 1 B2 2
Di 5 Zi B1 ! Qi21 1B1r 1 B2 2 1 i . 1 2

When B1 5 B2 5 0, these equations reduce to

D1 5 Si and Di 5 Qi21 1 i . 1 2
which corresponds to the shift register mode. When B1 5 0 and B2 5 1, the equations
reduce to

D1 5 FB, Di 5 Qi21

which corresponds to the PRPG mode, and the BILBO register is equivalent to Figure 11-26.
When B1 5 1 and B2 5 0, the equations reduce to

D1 5 Z1, Di 5 Zi

which corresponds to the normal operating mode. When B1 5 B2 5 1, the equations
reduce to

D1 5 Z1 ! FB, Di 5 Zi ! Qi21

FIGURE 11-31: Four-Bit
BILBO Register

D1 Q1

X
U

M

B2

Si

D2 Q2

Z2

0

1

Z1

D3 Q3

Z3

D4 Q4

Z4

So

B1

B1 B2

FB

11.7 Built-In Self-Test 585

which corresponds to the MISR mode, and the BILBO register is equivalent to Figure 11-28.
In summary, the BILBO operating modes are as follows:

B1B2 Operating Mode

00 Shift register

01 PRPG

10 Normal

11 MISR

Figure 11-32 shows the VHDL description of an n-bit BILBO register. NBITS, which
equals the number of bits, is a generic parameter in the range 4 through 8. The register is
functionally equivalent to Figure 11-31, except that you have added a clock enable (CE). The
feedback (FB) for the LFSR depends on the number of bits.

FIGURE 11-32: VHDL Code for BILBO Register of Figure 11-31

entity BILBO is -- BILBO Register
 generic (NBITS: natural range 4 to 8 := 4);
 port (Clk, CE, B1, B2, Si: in bit;
 So: out bit;
 Z: in bit_vector(1 to NBITS);
 Q: inout bit_vector(1 to NBITS));
end BILBO;

architecture behavior of BILBO is
 signal FB: bit;
begin
 Gen8: if NBITS = 8 generate
 FB <= Q(2) xor Q(3) xor Q(NBITS); end generate;
 Gen5: if NBITS = 5 generate
 FB <= Q(2) xor Q(NBITS); end generate;
 GenX: if not(NBITS = 5 or NBITS = 8) generate
 FB <= Q(1) xor Q(NBITS); end generate;
 process(Clk)
 variable mode: bit_vector(1 downto 0);
 begin
 if (Clk = '1' and CE = '1') then
 mode := B1 & B2;
 case mode is
 when "00" => -- Shift register mode
 Q <= Si & Q(1 to NBITS-1);
 when "01" => -- Pseudo Random Pattern Generator mode
 Q <= FB & Q(1 to NBITS-1);

586 Chapter 11 Hardware Testing and Design for Testability

The system shown in Figure 11-33 illustrates the use of BILBO registers. In this system,
registers A and B can be loaded from the Dbus using the LDA and LDB signals. Then the
registers are added and the sum and carry are stored in register C. When B1 & B2 5 10, the
registers are in the normal mode 1Test 5 0 2 , and loading of the registers is controlled by
LDA, LDB, and LDC. To test the adder, �rst set B1 & B2 5 00 to place the registers in the
shift register mode and scan in initial values for A, B, and C. Then set B1 & B2 5 01, which
places registers A and B in PRPG mode and register C in MISR mode. After 15 clocks, the
test is complete. Then set B1 & B2 5 00 and scan out the signature.

 when "10" => -- Normal Operating mode
 Q <= Z;
 when "11" => -- Multiple Input Signature Register mode
 Q <= Z(1 to NBITS) xor (FB & Q(1 to NBITS-1));
 end case;
 end if;
 end process;
 So <= Q(NBITS);
end behavior;

FIGURE 11-33: System
with BILBO Registers
and Tester

Adder

CE

Z

B1
B2

B1
B2

QB

CE

Z
QC

CE

Z

B1
B2

QA
Carry

Sum

4

LdC
Test

4

4

LdA
Test

LdB
Test

Dbus Scan path

B1 B2 Si

Tester

So

4

System

The VHDL code for the system is given in Figure 11-34, and a test bench is given in
Figure 11-35. The system uses three BILBO registers and the 4-bit adder of Figure 8-20. The
test bench scans in a test vector to initialize the BILBO registers; then it runs the test with
registers A and B used as PRPGs and register C as a MISR. The resulting signature is shifted
out and compared with the correct signature.

11.7 Built-In Self-Test 587

FIGURE 11-35: Test Bench for BILBO System

-- System with BILBO test bench

entity BILBO_test is
end BILBO_test;

architecture Btest of BILBO_test is
 component BILBO_System is
 port(Clk, LdA, LdB, LdC, B1, B2, Si: in bit;
 So: out bit;

FIGURE 11-34: VHDL Code for System with BILBO Registers and Tester

entity BILBO_System is
 port(Clk, LdA, LdB, LdC, B1, B2, Si: in bit;
 So: out bit;
 DBus: in bit_vector(3 downto 0);
 Output: inout bit_vector(4 downto 0));
end BILBO_System;
architecture BSys1 of BILBO_System is
 component Adder4 is
 port(A, B: in bit_vector(3 downto 0); Ci: in bit;
 S: out bit_vector(3 downto 0); Co: out bit);
 end component;
 component BILBO is
 generic(NBITS: natural range 4 to 8 := 4);
 port(Clk, CE, B1, B2, Si : in bit;
 So: out bit;
 Z: in bit_vector(1 to NBITS);
 Q: inout bit_vector(1 to NBITS));
 end component;

 signal Aout, Bout: bit_vector(3 downto 0);
 signal Cin: bit_vector(4 downto 0);
 alias Carry: bit is Cin(4);
 alias Sum: bit_vector(3 downto 0) is Cin(3 downto 0);
 signal ACE, BCE, CCE, CB1, Test, S1, S2: bit;
begin
 Test <= not B1 or B2;
 ACE <= Test or LdA;
 BCE <= Test or LdB;
 CCE <= Test or LdC;
 CB1 <= B1 xor B2;
 RegA: BILBO generic map (4) port map(Clk, ACE, B1, B2, S1, S2, DBus, Aout);
 RegB: BILBO generic map (4) port map(Clk, BCE, B1, B2, Si, S1, DBus, Bout);
 RegC: BILBO generic map (5) port map(Clk, CCE, CB1, B2, S2, So, Cin, Output);
 Adder: Adder4 port map(Aout, Bout, '0', Sum, Carry);
end BSys1;

588 Chapter 11 Hardware Testing and Design for Testability

This chapter introduced the subject of testing hardware, including combinational circuits,
sequential circuits, complex ICs, and PC boards. Use of scan techniques for testing and built-
in self-test has become a necessity as digital systems have become more complex. It is very
important that design for testability be considered early in the design process so that the �nal
hardware can be tested ef�ciently and economically.

 DBus: in bit_vector(3 downto 0);
 Output: inout bit_vector(4 downto 0));
 end component;
 signal Clk: bit := '0';
 signal LdA, LdB, LdC, B1, B2, Si, So: bit := '0';
 signal DBus: bit_vector(3 downto 0);
 signal Output: bit_vector(4 downto 0);
 signal Sig: bit_vector(4 downto 0);

 constant test_vector: bit_vector(12 downto 0) := "1000110000000";
 constant test_result: bit_vector(4 downto 0) := "01011";
begin
 clk <= not clk after 25 ns;
 Sys: BILBO_System port map(Clk,Lda,LdB,LdC,B1,B2,Si,So,DBus,Output);
 process
 begin
 B1 <= '0'; B2 <= '0'; -- Shift in test vector
 for i in test_vector'right to test_vector'left loop
 Si <= test_vector(i);
 wait until clk = '1';
 end loop;

 B1 <= '0'; B2 <= '1'; -- Use PRPG and MISR
 for i in 1 to 15 loop
 wait until clk = '1';
 end loop;

 B1 <= '0'; B2 <= '0'; -- Shift signature out
 for i in 0 to 5 loop
 Sig <= So & Sig(4 downto 1);
 wait until clk = '1';
 end loop;

 if (Sig = test_result) then -- Compare signature
 report "System passed test.";
 else
 report "System did not pass test!";
 end if;

 wait;
 end process;
end Btest;

Problems
11.1 (a) Determine the necessary inputs to the following circuit to test for u stuck-at-0.

(b) For this set of inputs, determine which other stuck-at faults can be tested.
(c) Repeat (a) and (b) for r stuck-at-1.

c

d

C

D

F

A

B

a

qp r

st

b

u

v

w

11.2 For the following circuit,
(a) Determine the values of A, B, C, and D necessary to test for e s-a-1. Specify the other faults tested by this

input vector.
(b) Repeat (a) for g s-a-0.

C

D

j

A

B

a

b

e

c

f g

d

h

i

11.3 Are there any untestable stuck-at-faults in the circuit in Problem 11.2? If yes, which are they?
11.4 Find a minimum set of tests that will test all single stuck-at-0 and stuck-at-1 faults in the following circuit.

For each test, specify which faults are tested for s-a-0 and for s-a-1.

C
D

E

A
B P

Q

i
g

h

e
d

f

b
a

c Z

11.5 Give a minimum set of test vectors that will test for all stuck-at faults in the following circuit. List the faults tested
by each test vector.

Problems 589

590 Chapter 11 Hardware Testing and Design for Testability

11.6 For the following circuit, specify a minimum set of test vectors for a, b, c, d, and e that will test for all stuck-at
faults. Specify the faults tested by each vector.

d
e

gf
a
b
c h

a

b
m

c
n

c
p

d
F

11.7 For the following circuit, specify a minimum set of test vectors for a, b, c, and d that will test for all stuck-at faults.
Specify the faults tested by each vector. If any fault is untestable, indicate that.

A
B

F
0

1

E

C
D

G

H

11.8 For the following circuit, specify a set of test vectors with minimum number of speci�ed bits for A,B,C,D and E
that will test for the faults mentioned below. Specify the other faults tested by each vector.

(i) A s-a-0
(ii) A s-a-1

(iii) G s-a-1

11.9 For the following circuit, �nd a minimum number of test vectors that will test all s-a-0 and s-a-1 faults at the
AND and OR gate inputs. For each test vector, specify the values of A, B, C, and D, and the stuck-at faults that
are tested.

A
B

C

D

A9

B9

C9

e
f
g

h

j

k
l
m

p
q
r

Zi

11.10 Find a test sequence to test for b s-a-0 in the sequential circuit of Figure 11-7.

11.11 A sequential circuit has the following state graph:

S1

S2 S3

1/0
0/1

1/1

0/0
0/1

1/0

0/1
1/1

1/0
S0 S1 S2 S3

0/1 0/1
0/1

1/0 1/0

0/1
1/1

1/0

0/1 0/1 0/1

1/0
1/0T0 T1 T2 T3

The three states can be distinguished using the input sequence 11 and observing the output. The circuit has a reset
input R that resets the circuit to state S1. Give a set of test sequences that will test every state transition and give
the transition tested by each sequence. (When you test a state transition you must verify that the output and the
next state are correct by observing the output sequence.)

11.12 State graphs for two sequential machines are given below. The �rst graph represents a correctly functioning
machine, and the second represents the same machine with a malfunction.

(a) Find a minimal sequence for the �rst machine that can tell which state the machine is in. List the distinguish-
ing sequence, and the outputs for each state.

(b) Assuming that the two machines can be reset to their starting states (S0 and T0), determine the shortest input
sequence that will distinguish the two machines. Mention the test sequence, the output of the correct machine,
and the output for the faulty machine.

Q1Q2 State Next State Output

X 5 0 1 X 5 0 1

00 S0 S0 S1 1 0

01 S1 S2 S2 0 0

10 S2 S3 S3 0 0

11 S3 S1 S0 1 1

(a) Find a distinguishing sequence for the circuit. Assume states cannot be directly read. The distinguishing
sequence allows you to distinguish the states by observing only the output.

(b) Indicate the outputs for each state for the distinguishing sequence.
(c) The circuit has a reset input, R that resets the circuit to state S1. Give a set of test sequences that will test

every state transition and give the transition tested by each sequence. (When you test a state transition, you
must verify that the output and the next state are correct by observing the output sequence.)

Problems 591

11.13 A sequential circuit has the following state table:

592 Chapter 11 Hardware Testing and Design for Testability

11.14 A sequential circuit has the following state table:

Q1Q2 State Next State Output

X 5 0 1 X 5 0 1

00 S0 S0 S1 1 0

01 S1 S3 S2 0 1

10 S2 S1 S3 0 1

11 S3 S2 S0 1 1

(a) Find a distinguishing sequence for the circuit. Assume states cannot be directly read. The distinguishing
sequence allows you to distinguish the states by observing only the output.

(b) Indicate the outputs for each state for the distinguishing sequence.
(c) The circuit has a reset input R that resets the circuit to state S1. Give a set of test sequences that will test every

state transition and give the transition tested by each sequence. (When you test a state transition, you must
verify that the output and the next state are correct by observing the output sequence.)

11.15 When testing a sequential circuit, what are the major advantages of using scan path testing compared to applying
input sequences and observing output sequences?

11.16 A scan path test circuit of the type shown in Figure 11-8 has three �ip-�ops, two inputs, and two outputs. One row
of the state table of the sequential circuit to be tested is as follows:

Q1Q2Q3

Q1
 1Q2

 1Q3
 1 Z1Z2

X1X2 5 00 01 11 10 00 01 11 10

011 010 110 011 111 10 11 00 01

For this row of the table, complete a timing chart similar to Figure 11-9 to show how the circuit can be tested to
verify the next states and outputs for inputs 00, 01, and 10. Show the expected Z1 and Z2 outputs only at the time
when they should be read.

11.17 A scan path test circuit of the type shown in Figure 11-8 has three �ip-�ops, two inputs, and two outputs. One row
of the state table of the sequential circuit to be tested is as follows:

Q1Q2Q3 Q1
 1Q2

 1Q3
 1 Z1Z2

X1X2 5 00 01 11 10 00 01 11 10

110 001 111 011 110 11 10 01 00

For this row of the table, complete a timing chart similar to Figure 11-9 to show how the circuit can be tested to
verify the next states and outputs for inputs 00, 01, and 10. Show the expected Z1 and Z2 outputs only at the time
when they should be read.

11.18 (a) Redraw the code converter circuit of Figure 1-26 in the form of Figure 11-8 using dual-port �ip-�ops.
 (b) Determine a test sequence that will verify the �rst two rows of the transition table of Figure 1-24 (b). Draw

a timing diagram similar to Figure 11-9 for your test sequence.

11.19 (a) Write VHDL code for a dual-port �ip-�op.
(b) Write VHDL code for your solution to Problem 11.12 (a).
(c) Write a test bench that applies the test sequence from Problem 11.12 (b), and compare the resulting wave-

forms with your solution to Problem 11.12 (b).
11.20 Instead of using dual-port �ip-�ops of the type shown in Figure 11-8, scan testing can be accomplished using

standard D �ip-lops with a mux on each D input to select D1 or D2. Redraw the circuit of Figure 1-22 to establish
a scan chain using D �ip-�ops and muxes. A test signal (T) should control the muxes.

11.21 Referring to Figure 11-16, determine the sequence of TMS and TDI inputs required to load the instruction regis-
ter with 011 and the boundary scan register BSR2 with 1101. Start in state 0 and end in state 1. Give the sequence
of states along with the TMS and TDI inputs.

11.22 The INTEST instruction (code 010) allows testing of the core logic by shifting test data into the boundary scan
register (BSR1) and then updating BSR2 with this test data. For input cells this data takes the place of data from
the input pins. Output data from the core logic is captured in BSR1 and then shifted out. For this problem, assume
that the BSR has three cells.
(a) Referring to Figure 11-16, give the sequence for TMS and TDI that will load the instruction register with 010

and BSR2 with 011. Also give the state sequence, starting in state 0.
(b) In the code of Figure 11-21, what changes or additions must be made in the last BSRout assignment state-

ment, in the CaptureDR state, and in the UpdateDR state to implement the INTEST instruction?
11.23 Based on the VHDL code of Figure 11-21, design a two-cell boundary scan register. The �rst cell should be an

input cell, and the second cell an output cell. Do not design the TAP controller; just assume that the necessary
control signals like shift-DR, capture-DR, and update-DR are available. Do not design the instruction register
or instruction decoding logic; just assume that the following signals are available: EXT (EXTEST instruction
is being executed), SPR (Sample/Preload instruction is being executed), and BYP (Bypass instruction is being
executed). Use two �ip-�ops for BSR1, two �ip-�ops for BSR2, and one BYPASS �ip-�op. In addition to the
control signals mentioned above, the inputs are Pin1 (from a pin), Core2 (from the core logic), TDI, and TCK; the
outputs are Core1 (to core logic), Pin2 (to a pin), and TDO. Use TCK as the clock input for all of the �ip-�ops.
Draw a block diagram showing the �ip-�ops, muxes, and so on. Then give the logic equations or connections for
each �ip-�op D input, each CE (clock enable), and each MUX control input.

11.24 Simulate the boundary scan tester of Figure 11-22 and verify that the results are as expected. Change the code
to represent the case where the lower input to IC1 is shorted to ground, simulate again, and interpret the
results.

11.25 Write VHDL code for the boundary scan cell of Figure 11-14 (b). Rewrite the VHDL code of Figure 11-21 to
use this boundary scan cell as a component in place of some of the behavioral code for the BSR. Use a generate
statement to instantiate NCELLS copies of this component. Test your new code, using the boundary scan tester
example of Figure 11-22.

11.26 (a) Draw a circuit diagram for an LFSR with n 5 5 that generates a maximum length sequence.
(b) Add logic so that 00000 is included in the state sequence.
(c) Determine the actual state sequence.

11.27 (a) Draw a circuit diagram for an LFSR with n 5 6 that generates a maximum length sequence.
(b) Add logic so that 000000 is included in the sequence.
(c) Determine the 10 elements of the sequence starting in 101010.

11.28 (a) Write VHDL for an 8-bit MISR that is similar to Figure 11-28.
(b) Design a self-test circuit, similar to Figure 11-25, for a 6116 static RAM (see Figure 8-15). The write-data

generator should store data in the following sequence: 00000000, 10000000, 11000000, …, 11111111, 01111111,
00111111, …, 00000000.

(c) Write VHDL code to test your design. Simulate the system for at least one example with no errors, 1 error,
2 errors, and 3 errors.

Problems 593

594 Chapter 11 Hardware Testing and Design for Testability

11.29 In the system of Figure 11-33, A, B, and C are BILBO registers. The B1 and B2 inputs to each of the registers
determine its BILBO operating mode as follows:

B1B2 5 00, shift register; B1B2 5 01, PRPG 1pattern generator 2 ;
B1B2 5 10, normal system mode; B1B2 5 11, MISR 1signature register 2 .

The shifting into A, B, and C is always LSB �rst. When in the test mode, the Dbus is not used. Specify the
sequence of the tester outputs (B1, B2, and Si) needed to perform the following operations:

(1) Load A with 1011 and B with 1110, clear C.
(2) Test the system by using A and B as pattern generators and C as a signature register for four clock times.
(3) Shift the C register output into the tester.
(4) Return to the normal system mode.

B1B2Si 5 0 0 0,
…

11.30 Given the BILBO register shown below, specify B1 and B0 for each of the following modes:

normal mode

shift register mode

PRPG (LSFR) mode

MISR mode

When in the PRPG mode, what sequence of states would be generated for Q1, Q2, and Q3, assuming that the
initial state is 001?

D1 Q1

M
U

X

B0

Si

D2 Q2

Z2

0

1

Z1

D3 Q3

Z3
So

B1

B1 B0

FB

11.31 (a) Implement a 4-bit LFSR using one or more FPGA blocks given in Figure 6-1(a). Assume X1 and Y1 are LSBs
of the inputs. If you use fewer than 4 inputs, use the LSBs �rst. Highlight the connections on the slices label-
ing all inputs, using the top left X function generator for the MSB. Exclude 0 from the counting sequence.
What are the logic equations in each of the LUTs?

(b) Implement the 4-bit LFSR including 0000 in the sequence with one or more FPGA blocks given in
 Figure 6-1(a). What are the logic equations in each of the LUTs?

11.32 What is the simplest test that can identify whether the data bus wiring in a memory region is correct? How many
reads and writes are involved if the memory is organized as 4K 3 16 bits?

11.33 What is the simplest test that can identify whether the data bus wiring in a memory region is correct? How many
reads and writes are involved if the memory is organized as 4K 3 8 bits?

11.34 How many reads and writes are involved if the checkerboard test is applied to a memory module that is organized
as 4K 3 16 bits?

11.35 Write VHDL code to test a RAM of size 2K bytes (2K 3 8 bits wide) using a walking 1’s pattern (a) for detecting
data bus faults (b) for detecting address bus faults. The RAM can be assumed to be similar to what is modeled
in section 8.8. Include a RAMmodel and a port map statement as follows to include a RAM of appropriate size.

RAM1: RAM6116 port map (Cs_b, We_b, Oe_b, Address, IO);

11.36 Write VHDL code to test a RAM system of size 2K bytes (2K 3 8 bits wide) using a checkerboard pattern. The
RAM can be assumed to be similar to what is modeled in section 8.8. Include a RAMmodel and a port map
statement as follows to include a RAM of appropriate size.

RAM1: RAM6116 port map (Cs_b, We_b, Oe_b, Address, IO);

11.37 Write VHDL code to test a RAM system of size 2K bytes (2K 3 8 bits wide), using the following tests:
(a) MATS11
(b) MARCH X
(c) MARCH A
(d) MARCH B
(e) MARCH C-
(f) MARCH Y

The RAM can be assumed to be similar to what is modeled in section 8.8. Include a RAMmodel and a port map
statement as follows to include a RAM of appropriate size.

RAM1: RAM6116 port map (Cs_b, We_b, Oe_b, Address, IO);

11.38 Write VHDL code to test a RAM system of size 1K bytes (1K 3 8 bits wide) using a March 14N test. The March
14N test performs the following steps.

Address (0) S Address(MAX): W(0101)
Address (0) S Address(MAX): R(0101), W(1010), R(1010)
Address (0) S Address(MAX): R(1010), W(0101), R(0101)
Address (MAX) S Address(0): R(0101), W(1010), R(1010)
Address (MAX) S Address(0): R(1010), W(0101), R(0101)
Address (MAX) S Address(0): R(0101)

The RAM can be assumed to be similar to what is modeled in section 8.8. Include a RAMmodel and a port map
statement as follows to include a RAM of appropriate size.

RAM1: RAM6116 port map (Cs_b, We_b, Oe_b, Address, IO);

Problems 595

596

A P P E N D I X

A VHDL LANGUAGE SUMMARY

Disclaimer: This VHDL summary is not complete and contains some special cases. Only
VHDL statements used in this text are listed. For a complete description of VHDL syntax,
refer to References 6, 9, and 23.

Notes:

 ● VHDL is not case sensitive.
 ● Signal names and other identi�ers may contain letters, numbers, and the underscore (_)

character.
 ● An identi�er must start with a letter.
 ● An identi�er cannot end with an underscore.
 ● Every VHDL statement must be terminated with a semicolon.
 ● VHDL is a strongly typed language. In general, mixing of data types is not allowed.

Legend
bold reserved word

[] optional items

5 6 repeated zero or more times

0 or

1. Predefined Types
bit '0' or '1'

boolean FALSE or TRUE

integer an integer in the range 2 1231 2 1 2 to 1 1231 2 1 2 (some implementations
support a wider range)

real �oating-point number in the range 21.0E38 to 11.0E38

character any legal VHDL character including upper- and lowercase letters, digits,
and special characters (each printable character must be enclosed in
single quotes; e.g., ‘d’, ‘7’, ‘1’)

time an integer with units fs, ps, ns, us, ms, sec, min, or hr

natural integers $ 0

 VHDL Language Summary 597

2. Operators By Increasing Precedence
1. Binary logical operators: and or nand nor xor xnor

2. Relational operators: 5 /5 , , 5 . . 5

3. Shift operators: sll srl sla sra rol ror

4. Adding operators: 1 2 & & (concatenation)

5. Unary sign operators: 1 2

6. Multiplying operators: * / mod rem

7. Miscellaneous operators: not abs **

Attribute Returns

S'ACTIVE true if a transaction occurred during the current delta, else false

S'EVENT true if an event occurred during the current delta, else false

S'LAST_EVENT time elapsed since the previous event on S

S'LAST_VALUE value of S before the previous event on S

S'LAST_ACTIVE time elapsed since previous transaction on S

Attribute Creates

S'DELAYED [(time)]* signal same as S delayed by speci�ed time

S'STABLE [(time)]* boolean signal that is true if S had no events for the speci�ed
time

S'QUIET [(time)]* boolean signal that is true if S had no transactions for the
speci�ed time

S'TRANSACTION signal of type bit that changes for every transaction on S

*Delta is used if no time is speci�ed.

positive integers . 0

bit_vector array of bits

string array of characters

delay_length time $ 0

3. Predefined Attributes
Signal attributes that return a value:

Signal attributes that create a signal:

Array attributes:

type ROM is array (0 to 15, 7 downto 0) of bit;
signal ROM1 : ROM;

598 VHDL Language Summary

4. Predefined Functions

NOW returns current simulation time

FILE_OPEN([status], FileID, string, mode) open �le

FILE_CLOSE(FileID) close �le

Attribute Returns Examples

A'LEFT(N) left bound of ROM1'LEFT 11 2 5 0

Nth index range ROM1'LEFT 12 2 5 7

A'RIGHT(N) right bound of ROM1'RIGHT 11 2 5 15

Nth index range ROM1'RIGHT 12 2 5 0

A'HIGH(N) largest bound of ROM1'HIGH 11 2 5 15

Nth index range ROM1'HIGH 12 2 5 7

A'LOW(N) smallest bound of ROM1'LOW 11 2 5 0

Nth index range ROM1'LOW 12 2 5 0

A'RANGE(N) Nth index range ROM1'RANGE 11 2 5 0 to 15

ROM1'RANGE 12 2 5 7 downto 0

A'REVERSE_RANGE(N) Nth index range ROM1'REVERSE_RANGE 11 2 5
15 downto 0

reversed ROM1'REVERSE_RANGE 12 2 5
0 to 7

A'LENGTH(N) size of Nth index ROM1'LENGTH 11 2 5 16

range ROM1'LENGTH 12 2 5 8

5. Declarations
entity declaration:

entity entity-name is
 [generic (list-of-generics-and-their-types);]

 [port (interface-signal-declaration);]

 [declarations]

end [entity] [entity-name];

interface-signal declaration:
list-of-interface-signals: mode type [:= initial-value]

{; list-of-interface-signals: mode type [:= initial-value]}

Note: An interface signal can be of mode in, out, inout, or buffer.

 VHDL Language Summary 599

architecture declaration:
architecture architecture-name of entity-name is
 [declarations] -- variable declarations not allowed
begin
 architecture-body
end [architecture] [architecture-name];

Note: The architecture body may contain component-instantiation statements, processes,
blocks, assignment statements, procedure calls, etc.

integer type declaration:
type type_name is range integer_range;

enumeration type declaration:
type type_name is (list-of-names-or-characters);

subtype declaration:
subtype subtype_name is type_name [index-or-range-constraint];

variable declaration:
variable list-of-variable-names: type_name [:= initial_value];

signal declaration:
signal list-of-signal-names: type_name [:= initial_value];

constant declaration:
constant constant_name: type_name := constant_value;

alias declaration:
alias identifier[:identifier-type] is item-name;

Note: Item-name can be a constant, signal, variable, �le, function name, type name, etc.

array type and object declaration:
type array_type_name is array index_range of element_type;
signal|variable|constant array_name: array_type_name
[:= initial_values];

procedure declaration:
procedure procedure-name (parameter list) is
 [declarations]
begin
 sequential statements
end procedure-name;

Note: Parameters may be signals, variables, or constants.

function declaration:
function function-name (parameter-list) return return-type is
 [declarations]
begin
 sequential statements -- must include return
 return-value;
end function-name;

Note: Parameters may be signals or constants.

600 VHDL Language Summary

library declaration:
library list-of-library-names;

use statement:
use library_name.package_name.item; (.item may be .all)

package declaration:
package package-name is
 package declarations
end [package][package-name];

package body:
package body package-name is
 package body declarations
end [package body][package name];

component declaration:
component component-name
 [generic (list-of-generics-and-their-types);]
 port (list-of-interface-signals-and-their-types);
end component;

�le type declaration:
type file_name is file of type_name;

�le declaration:
file file_name: file_type [open mode] is "file_pathname";

Note: Mode may be read_mode, write_mode, or append_mode.

6. Concurent Statements
signal assignment statement:

signal <= [reject pulse-width | transport] expression
[after delay_time];

Note: If signal assignment done as concurrent statement, signal value is recomputed every
time a change occurs on the right-hand side. If [after delay_time] is omitted, signal is
updated after delta time.

conditional assignment statement:
signal <= expression1 when condition1
 else expression2 when condition2
 ...
 [else expression];

selected signal assignment statement:
with expression select
 signal <= expression1 [after delay_time] when choice1,
 expression2 [after delay_time] when choice2,
 ...
 [expression [after delay_time] when others];

 VHDL Language Summary 601

assert statement:
assert boolean-expression
 [report string-expression]
 [severity severity-level];

component instantiation:
label: component-name
 [generic map (generic-association-list);]
 port map (list-of-actual-signals);

Note: Use open if a component output has no connection

generate statements:
generate_label: for identifier in range generate
[begin]
 concurrent statement(s)
end generate [generate_label];

generate_label: if condition generate
[begin]
 concurrent statement(s)
end generate [generate_label];

process statement (with sensitivity list):
[process-label:] process (sensitivity-list)
 [declarations] -- signal declarations not allowed
begin
 sequential statements
end process [process-label];

Note: This form of process is executed initially and thereafter only when an item on the sensi-
tivity list changes value. The sensitivity list is a list of signals. No wait statements are allowed.

process statement (without sensitivity list):
[process-label:] process
 [declarations] -- signal declarations not allowed
begin
 sequential statements
end process [process-label];

Note: This form of process must contain one or more wait statements. It starts execution
immediately and continues until a wait statement is encountered.

procedure call:
procedure-name (actual-parameter-list);

Note: An expression may be used for an actual parameter of mode in; types of the actual
parameters must match the types of the formal parameters; open cannot be used.
function call:

function-name (actual-parameter list)

Note: A function call is used within (or in place of) an expression. Function call is not a state-
ment by itself, it is part of a statement.

602 VHDL Language Summary

7. Sequential Statements
signal assignment statement:

signal <= [reject pulse-width] | transport] expression
[after delay_time];

Note: If [after delay_time] is omitted, signal is updated after delta time.

variable assignment statement:
variable := expression;

Note: This can be used only within a process, function, or procedure. The variable is always
updated immediately.

wait statements can be of the form:
wait on sensitivity-list;
wait until boolean-expression;
wait for time-expression;

if statement:
if condition then
 sequential statements
{elsif condition then
 sequential statements} -- 0 or more elsif clauses may
 be included
[else sequential statements]
end if;

case statement:
case expression is
 when choice1 => sequential statements
 when choice2 => sequential statements
 ...
 [when others => sequential statements]
end case;

for loop statement:
[loop-label:] for identifier in range loop
 sequential statements
end loop [loop-label];

Note: You may use exit to exit the current loop.

while loop statement:
[loop-label:] while boolean-expression loop
 sequential statements
end loop [loop-label];

exit statement:
exit [loop-label] [when condition];

 VHDL Language Summary 603

assert statement:
assert boolean-expression
 [report string-expression]
 [severity severity-level];

report statement:
report string-expression
 [severity severity-level];

procedure call:
procedure-name (actual-parameter-list);

Note: An expression may be used for an actual parameter of mode in; types of the actual
parameters must match the types of the formal parameters; open cannot be used.

function call:
function-name (actual-parameter list)

Note: A function call is used within (or in place of) an expression. Function call is not a state-
ment by itself, it is part of a statement.

604

A P P E N D I X

B IEEE STANDARD LIBRARIES

The two packages from the IEEE libraries that we have used in the book are NUMERIC_
BIT and NUMERIC_STD. The headers of these packages read as follows:

Standard VHDL Synthesis Package (1076.3, NUMERIC_BIT)

-- Developers: IEEE DASC Synthesis Working Group, PAR 1076.3
-- Purpose: This package defines numeric types and arithmetic functions
-- : for use with synthesis tools. Two numeric types are defined:
-- :--> UNSIGNED: represents an UNSIGNED number in vector form
-- :--> SIGNED: represents a SIGNED number in vector form
-- :The base element type is type BIT.
-- :The leftmost bit is treated as the most significant bit.
-- :Signed vectors are represented in two's complement form.
-- :This package contains overloaded arithmetic operators on
-- :the SIGNED and UNSIGNED types. The package also contains
-- :useful type conversions functions, clock detection
-- :functions, and other utility functions.

Standard VHDL Synthesis Package (1076.3, NUMERIC_STD)

-- Developers: IEEE DASC Synthesis Working Group, PAR 1076.3
-- Purpose: This package defines numeric types and arithmetic functions
-- :for use with synthesis tools. Two numeric types are defined:
-- :--> UNSIGNED: represents UNSIGNED number in vector form
-- :--> SIGNED: represents a SIGNED number in vector form
-- :The base element type is type STD_LOGIC.
-- :The leftmost bit is treated as the most significant bit.
-- :Signed vectors are represented in two's complement form.
-- :This package contains overloaded arithmetic operators on
-- :the SIGNED and UNSIGNED types. The package also contains
-- :useful type conversions functions.

The entire package listings can be viewed at

http://www.eda.org/rassp/vhdl/models/standards/numeric_bit.vhd
http://www.eda.org/rassp/vhdl/models/standards/numeric_std.vhd

 IEEE Standard Libraries 605

Useful conversion functions in the numeric_bit package:

TO_INTEGER(A): converts an unsigned (or signed) vector A to an integer
TO_UNSIGNED(B, N): converts an integer to an unsigned vector of length N
TO_SIGNED(B, N): converts an integer to an signed vector of length N
UNSIGNED(A): causes the compiler to treat a bit_vector A as an unsigned vector
SIGNED(A): causes the compiler to treat a bit_vector A as a signed vector
BIT_VECTOR(B): causes the compiler to treat an unsigned (or signed) vector B as a
bit_vector

The same conversion functions are available in the numeric_std package, except replace
bit_vector with std_logic_vector.

Notes:

1. The numeric_bit package provides an overloaded operator to add an integer to an
unsigned, but not to add a bit to an unsigned type. Thus, if A and B are unsigned, A+B+1
is allowed, but a statement of the form

Sum <= A + B + carry;

is not allowed when carry is of type bit. The carry must be converted to unsigned before
it can be added to the unsigned vector A+B. The notation unsigned'(0=>carry) will
accomplish the necessary conversion. Use the statement

Sum <= A + B + unsigned'(0=>carry);

2. If we want more bits in the sum than there are in the numbers being added, we must
extend the numbers by concatenating '0' . For example, if X and Y are 4 bits, and a 5-bit
sum including the carry out is desired, extend X to 5 bits by concatenating '0' and X. (Y
will automatically be extended to match.) Hence:

Sum5 <= '0' & X + Y;

accomplishes the addition of two 4-bit numbers and provides a 5-bit sum.

606

A P P E N D I X

C TEXTIO PACKAGE

package TEXTIO is
 -- Type definitions for text I/O
 type LINE is access STRING; -- A LINE is a pointer to a STRING value.
 -- The predefined operators for this type are as follows:
 -- function "=" (anonymous, anonymous: LINE) return BOOLEAN;
 -- function "/=" (anonymous, anonymous: LINE) return BOOLEAN;
 type TEXT is file of STRING; -- A file of variable-length ASCII records.
 -- The predefined operators for this type are as follows:
 -- procedure FILE_OPEN (file F: TEXT; External_Name; in STRING;
 -- Open_Kind: in FILE_OPEN_KIND := READ_MODE);
 -- procedure FILE_OPEN (Status: out FILE_OPEN_STATUS; file F: TEXT;
 -- External_Name: in STRING;
 -- Open_Kind: in FILE_OPEN_KIND := READ_MODE);
 -- procedure FILE_CLOSE (file F: TEXT);
 -- procedure READ (file F: TEXT; VALUE: out STRING);
 -- procedure WRITE (file F: TEXT; VALUE: in STRING);
 -- function ENDFILE (file F: TEXT) return BOOLEAN;
 type SIDE is (RIGHT, LEFT); -- For justifying output data within fields.
 -- The predefined operators for this type are as follows:
 -- function "=" (anonymous, anonymous: SIDE) return BOOLEAN;
 -- function "/=" (anonymous, anonymous: SIDE) return BOOLEAN;
 -- function "<" (anonymous, anonymous: SIDE) return BOOLEAN;
 -- function "<=" (anonymous, anonymous: SIDE) return BOOLEAN;
 -- function ">" (anonymous, anonymous: SIDE) return BOOLEAN;
 -- function ">=" (anonymous, anonymous: SIDE) return BOOLEAN;
 subtype WIDTH is NATURAL; -- For specifying widths of output fields.

 -- Standard text files:
 file INPUT: TEXT open READ_MODE is "STD_INPUT";
 file OUTPUT: TEXT open WRITE_MODE is "STD_OUTPUT";
 -- Input routines for standard types:
 procedure READLINE (file F: TEXT; L: inout LINE);
 procedure READ (L: inout LINE; VALUE: out BIT; GOOD: out BOOLEAN);
 procedure READ (L: inout LINE; VALUE: out BIT);
 procedure READ (L: inout LINE; VALUE: out BIT_VECTOR; GOOD: out BOOLEAN);
 procedure READ (L: inout LINE; VALUE: out BIT_VECTOR);
 procedure READ (L: inout LINE; VALUE: out BOOLEAN; GOOD: out BOOLEAN);
 procedure READ (L: inout LINE; VALUE: out BOOLEAN);

 Textio Package 607

 procedure READ (L: inout LINE; VALUE: out CHARACTER; GOOD: out BOOLEAN);
 procedure READ (L: inout LINE; VALUE: out CHARACTER);
 procedure READ (L: inout LINE; VALUE: out INTEGER; GOOD: out BOOLEAN);
 procedure READ (L: inout LINE; VALUE: out INTEGER);
 procedure READ (L: inout LINE; VALUE: out REAL; GOOD: out BOOLEAN);
 procedure READ (L: inout LINE; VALUE: out REAL);
 procedure READ (L: inout LINE; VALUE: out STRING; GOOD: out BOOLEAN);
 procedure READ (L: inout LINE; VALUE: out STRING);
 procedure READ (L: inout LINE; VALUE: out TIME; GOOD: out BOOLEAN);
 procedure READ (L: inout LINE; VALUE: out TIME);
 -- Output routines for standard types:
 procedure WRITELINE (file F: TEXT; L: inout LINE);
 procedure WRITE (L: inout LINE; VALUE: in BIT;
 JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0);
 procedure WRITE (L: inout LINE; VALUE: in BIT_VECTOR;
 JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0);
 procedure WRITE (L: inout LINE; VALUE: in BOOLEAN;
 JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0);
 procedure WRITE (L: inout LINE; VALUE: in CHARACTER;
 JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0);
 procedure WRITE (L: inout LINE; VALUE: in INTEGER;
 JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0);
 procedure WRITE (L: inout LINE; VALUE: in REAL;
 JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0;
 DIGITS: in NATURAL:= 0);
 procedure WRITE (L: inout LINE; VALUE: in STRING;
 JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0);
 procedure WRITE (L: inout LINE; VALUE: in TIME;
 JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0;
 UNIT: in TIME:= ns);
 -- File position predicate:
 -- function ENDFILE (file F: TEXT) return BOOLEAN;
end TEXTIO;

608

A P P E N D I X

D PROJECTS

For each of these projects, choose an appropriate FPGA or CPLD as a target device and
carry out the following steps:

1. Work out an overall design strategy for the system and draw block diagrams. Divide the
system into modules if appropriate. Develop an algorithm, SM charts, or state graphs as
appropriate for each module. Unless otherwise speci�ed, your design should be a syn-
chronous system with appropriate circuits added to synchronize the inputs with the clock.

2. Write synthesizable VHDL code for each module, simulate it, and debug it. To avoid
timing problems in the hardware, use signals instead of variables and make sure the code
synthesizes without latches. Use test benches when appropriate to verify correct opera-
tion of each module.

3. Integrate the VHDL code for the modules, simulate, and test the overall system.
4. Make any needed changes and synthesize the VHDL code for the target device. Simulate

the system after synthesis.
5. Generate a bit �le for the target device and download it. Verify that the hardware works

correctly.

P1. Push-Button Door Lock
Design a push-button door lock that uses a standard telephone keypad as input. Use the
keypad scanner designed in Chapter 4 as a module. The length of the combination is 4 to
7 digits. To unlock the door, enter the combination followed by the # key. As long as # is
held down, the door will remain unlocked and can be opened. When # is released, the door
is relocked. To change the combination, �rst enter the correct combination followed by the
* key. The lock is then in the “store” mode. The “store” indicator light comes on and remains
on until the combination has been successfully changed. Next enter the new combination
(4 to 7 digits) followed by #. Then enter the new combination a second time followed by #.
If the second time does not match the �rst time, the new combination must be entered two
times again. Store the combination in an array of eight 4-bit registers or in a small RAM.
Store the 4-bit key codes followed by the code for the # key. Also provide a reset button that
is not part of the keypad. When the reset button is pushed, the system enters the “store” state
and a new combination may be entered. Use a separate counter for counting the inputs as
they come in. A 4-bit code, a key-down signal (Kd), and a valid data signal (V) are available
from the keypad module.

 Projects 609

P2. Synchronous Serial Peripheral Interface
Design an SPI (synchronous serial peripheral interface) module suitable for use with a micro-
controller. The SPI allows synchronous serial communication with peripheral devices or with
other microcontrollers. The SPI contains four registers—SPCR (SPI control), SPSR (SPI
status), SPDR (SPI data), and SPSHR (SPI shift register). The following diagram shows how
two SPIs can be connected for serial communications. One SPI operates as a master and one
as a slave. The master -provides the clock for synchronizing transmit and receive operations.
When a byte of data is loaded into the master SPSHR, it initiates serial transmission and
supplies a serial clock (SCK). Data is exchanged between the master and slave shift registers
in eight clocks. As soon as transmission is complete, data from each SPSHR is transferred to
the corresponding SPDR, and the SPI �ag (SPIF) in the SPSR is set.

SPR1&SPR0 5 00 SCK rate 5 Sysclk rate/2

SPR1&SPR0 5 01 SCK rate 5 Sysclk rate/4

SPR1&SPR0 5 10 SCK rate 5 Sysclk rate/16

SPR1&SPR0 5 11 SCK rate 5 Sysclk rate/32

SPDR

SPSHR

SPDR

SPSHR

SCK

MISO

MOSI

Master SPI Slave SPI

The function of the pins depends on whether the device is in master or slave mode:

MOSI—output for master, input for slave

MISO—input for master, output for slave

SCK—output for master, input for slave

The SPDR and SPSHR are mapped to the same address. Reading from this address reads
the SPDR, but writing loads the SPSHR. SPSR bit 7 is the SPI �ag (SPIF). SPSR may also
contain error �ags, but we will omit them from this design. The following sequence will clear
SPIF:

Read SPSR when SPIF is set.

Read or write to the SPDR address.

The SPCR register contains the following bits:

SPIE—enable SPI interrupt

SPE—enable the SPI

MSTR—set to '1' for master mode, '0' for slave mode

SPR1 and SPR0—set SCLK rate as follows:

610 Projects

P3. Bowling Score Keeper
The digital system shown below will be used to keep score for a bowling game. The score-
keeping system will score the game according to the following (regular) rules of bowling:
A game of bowling is divided into ten frames. During each frame, the player gets two tries to
knock down all of the bowling pins. At the beginning of a frame, ten pins are set up. If the
bowler knocks all ten pins down on his or her �rst throw, then the frame is scored as a strike.
If some (or all) of the pins remain standing after the �rst throw, the bowler gets a second try.
If the bowler knocks down all of the pins on the second try, the frame is scored as a spare.
Otherwise, the frame is scored as the total number of pins knocked down during that frame.

UPD

N 4

Frame counterNF

LF

AD

CONTROL

From
pin

machine

Done

Score register

APD FT

APD logic

The total score for a game is the sum of the number of pins knocked down plus bonuses
for scoring strikes and spares. A strike is worth 10 points (for knocking down all ten pins)
plus the number of pins knocked down on the next two throws (not frames). A spare is worth
10 points (for knocking down ten pins) plus the number of pins knocked down on the next
throw. If the bowler gets a spare on the tenth frame, then he or she gets one more throw. The
number of pins knocked down from this extra throw are added to the current score to get the
�nal score. If the bowler gets a strike on the last frame, then he or she gets two more throws,
and the number of pins knocked down are added to the score. If the bowler gets a strike in
frame 9 and 10, then he or she also gets two more throws, but the score from the �rst bonus
throw is added into the total twice (once for the strike in frame 9, once for the strike in frame
10), and the second bonus throw is added in once. The maximum score for a perfect game
(all strikes) is 300. An example of bowling game scoring follows:

Frame First Throw Second Throw Result Score

1 3 4 7 7

2 5 5 spare 7 1 10 5 17

3 7 1 8 17 1 7 1bonus for spare in 2 2 1 8 5 32

… … … … 87

9 10 — strike 87 1 10 5 97

10 10 — strike 97 1 10 1 for this throw 2
1 10 1bonus for strike in 9 2

— 6 3 — 117 1 6 1bonus for strike in 9 2
1 6 1bonus for strike in 10 2
1 3 1bonus for strike in 10 2 5 132

 Projects 611

The score-keeping system has the form shown in the preceding table. The control net-
work has three inputs: APD (All Pins Down), LF (Last Frame), and UPD (update). APD
is 1 if the bowler has knocked all ten pins down (in either one or two throws). LF is 1 if the
frame counter is in state 9 (frame 10). UPD is a signal to the network that causes it to update
the score. UPD is 1 for exactly one clock cycle after every throw the bowler makes. There
are many clock cycles between updates.

The control network has four outputs: AD, NF, FT, and Done. N represents the number
of pins knocked down on the current throw. If AD is 1, N will be added to the score register
on the rising edge of the next clock. If NF is 1, the frame counter will increment on the rising
edge of the next clock. FT is 1 when the �rst throw in a frame is made. Done should be set to
1 when all ten frames and bonus throws, if applicable, are complete.

Use a 10-bit score register and keep the score in BCD form rather than in binary. That
is, a score of 197 would be represented as 01 1001 0111. The lower two decimal digits of the
register should be displayed using two 7-segment LED indicators, and the upper 2 bits can
be connected to two single LEDs. When ADD 5 1 and the register is clocked, N should be
added to the register. N is a 4-bit binary number in the range 0 through 10. Use a 4-bit BCD
counter module for the middle BCD digit. Note that in the lower 4 bits, you will add a binary
number to a BCD digit to give a BCD digit and a carry.

P4. Simple Microcomputer
Design a simple microcomputer for 8-bit signed binary numbers. Use a keypad for data entry
and a 256 3 8 static RAM memory. The microcomputer should have the following 8-bit reg-
isters: A (accumulator), B (multiplier), MDR (memory data -register), PC (program coun-
ter), and MAR (memory address register). The IR (instruction register) may be 5 to 8 bits,
depending on how the instructions are -encoded. The B register is connected to the A register
so that A and B can be shifted together during the -multiply. Only one 8-bit adder and one
complementer is allowed. The microcomputer should have a 256-word-by-8-bit memory for
storing instructions and data. It should have two modes: (a) memory load and (b) execute
program. Use a DIP switch to select the mode.

Memory load mode operates as follows: Select mode 5 0 and reset the system. Then
press two keys on the keypad followed by pushing a button to load each word in memory.
The �rst word is loaded at address 0, the second word at address 1, and so on. Data should
be loaded immediately following the program. Execution mode operates as follows: Select
mode 5 1 and press reset. Execution begins with the instruction at address 0.

Each instruction will be one or two words long. The �rst word will be the opcode, and the
second word (if any) will be an 8-bit memory address or immediate operand. One bit in the
opcode should distinguish between memory address or immediate operand mode. Represent
negative numbers in 2’s complement. Implement the following instructions:

LDA <memadd> load A from the speci�ed memory address

LDA <imm> load A with immediate data

STA <memadd> store A at the speci�ed memory address

ADD <memadd> add data from memory address to A, set carry �ag if carry, set V if
2’s complement over�ow

ADD <imm> add immediate data to A, set carry �ag if carry, set V if over�ow

SUB <memadd> subtract data from memory address from A, set carry �ag if bor-
row, set V if 2’s complement over�ow

612 Projects

The control module should be implemented as a linked state machine, with a separate state
machine for the multiplier control. Try to keep the number of states small. (A good solution
should have about ten states for the main control.) The multiplier control should use a
separate counter to count the number of shifts. Assume that the clock speed is slow enough
so that memory can be accessed in one clock period.

P5. Stack-Based Calculator
Design a stack-based calculator for 8-bit signed binary numbers. Input data to the calculator
can come from a keypad or from DIP switches with a separate push-button to enter the data.
The calculator should have the following operations:

SUB <imm> subtract immediate data from A, set carry �ag if borrow, set V if
over�ow

MUL <memadd> multiply data from memory address by B, result in A & B

MUL <imm> multiply immediate data by B

SWAP swap A and B

PAUSE pause until a button is pressed and released (Note: A register
should always be displayed on LEDs.)

JZ <target addr> jump to target address if A 5 0

JC <target addr> jump to target address if carry �ag (CF) is set

JV <target addr> jump to target address if over�ow �ag (V) is set

enter push the 8-bit input data onto the stack

0 2 clear clear the top of the stack, reset the stack counter, reset over�ow, and so on.

1 2 add replace the top two data entries on the stack with their sum

2 2 sub replace the top two data entries on the stack with their difference
(stack top—next entry)

3 2 mul replace the top two data entries on the stack with their product
(8 bits 3 8 bits to give 8-bit product)

4 2 div replace the top two data entries on the stack with their quotient
(stack top / next entry) (8 bits divided by 8 bits to give 8-bit quotient)

5 2 xchg exchange the top two data entries on the stack

6 2 neg replace the top of the stack with its 2’s complement

Negative numbers should be represented in 2’s complement. Provide an over�ow indicator
for 2’s complement over�ow. This indicator should also be set if the product requires more
than 8 bits including sign or if divide by 0 is attempted.

Implement a stack module that has four 8-bit words. The stack should have the following
operations: push, pop, and exchange the top two words on the stack. The top of the stack
should always be displayed on eight LEDs. Include an indicator for stack over�ow (attempt
to push a �fth word) and stack under�ow (attempt to pop an empty stack or to exchange the
top of stack with an empty location).

Design the control unit for the calculator using linked state machines. Draw a main SM
chart with separate SM charts for the multiplier and divider control. When you design the

 Projects 613

arithmetic unit, try to avoid adding unnecessary registers. You should be able to implement
the arithmetic unit with three registers (8 or 9 bits each), an adder, two complementers, and
so on.

P6. Floating-Point Arithmetic Unit
Design a �oating-point arithmetic unit. Each �oating-point number should have a 4-bit frac-
tion and a 4-bit exponent, with negative numbers represented in 2’s complement. (This is the
notation used in the examples in Chapter 7.) The unit should accept the following �oating-
point instructions:

001 FPL—load �oating-point accumulator (fraction and exponent)

010 FPA—add �oating-point operand to accumulator

011 FBS—subtract �oating-point operand from accumulator

100 FPM—multiply accumulator by �oating-point operand

101 FPD—(optional) divide �oating-point accumulator by �oating-point operand

The result of each operation (4-bit fraction and 4-bit exponent) should be in the �oating-
point accumulator. All output should be properly normalized. The accumulator should
always be displayed as hex digits on 7 segment LEDs. Use an LED to indicate an over�ow.

The input to the �oating-point unit will come from a 4 3 4 hexadecimal keypad, using
a scanner similar to the one designed in Chapter 4. Each instruction will be represented by
three hex digits from the keypad—the opcode, the fraction, and the exponent. For example,
FPA 1.011 3 223 is coded as 2 B D 5 0010 1011 1101. Assume that all inputs are properly
normalized or zero. Your design should include the following modules: fraction unit, expo-
nent unit, control module, and 4-bit binary to seven-segment display conversion logic.

P7. Tic-Tac-Toe Game
Design a machine to play the defensive game of tic-tac-toe using an FPGA. Input will be a
3 3 3 keypad, a reset button, and a switch SW1. If SW1 is off, the machine should always
win if possible, or draw (nobody wins) if winning is not possible. If SW1 is on, part of the
machine’s logic should be bypassed so that the player can win occasionally. Output will be a
3 3 3 array of LEDs with a red and a green LED in each square. Use two LEDs to indicate
player wins or machine wins. If the game is a draw, light both LEDs. Since the machine is
playing a defensive game, the human player will always move �rst. Each time the player
moves, the machine should wait two seconds before making its move. Your VHDL code
should represent a synchronous digital system that makes ef�cient use of available hardware
resources.

Here is one strategy for playing the game: 1player 5 X, machine 5 O 2
1. Player moves �rst.
2. Machine makes an appropriate initial move. If player starts in center, machine plays cor-

ner; otherwise, machine plays center.
3. After each subsequent move by the player, the machine checks the following in sequence:

(a) Two O's in a row: machine plays in the third square and wins.
(b) Two X's in a row: machine plays in the third square to block player.

614 Projects

(c) If it is the machine's second move, a special move may be required: If player's �rst
two moves are opposite corners, the machine's second move must be side. If player's
�rst move is center, the machine's second move should be corner if rule (b) does not
apply.

(d) Two intersecting rows each contain only one X: Machine plays in the square at the
intersection of the two rows (this blocks the player from forcing a win).

(e) If there is no better move, play anywhere.

The preceding rules obviously apply only when the appropriate squares are empty.

P8. CORDIC Computing Unit
CORDIC (coordinate rotation digital computer) is a computing technique that uses two-
dimensional planar rotation to compute trigonometric functions. This algorithm has a wide
variety of applications, ranging from your calculator to global positioning systems. The algo-
rithm is perfect for digital systems since computation is merely a set of repeated adds and
shifts. For details of this algorithm, review the paper1. “A Survey of CORDIC Algorithms for
FPGA-Based Computers,” located at http://www.andraka.com/�les/crdcsrvy.pdf.

Implement the CORDIC algorithm using an FPGA. Your implementation must cor-
rectly produce the sine or cosine of an input angle ranging from 2179 to 1180 degrees,
inclusive. You will only be required to satisfy 8-bit precision. Input will be received in
decimal format via a keypad. Three decimal digits will be input (most signi�cant digit �rst)
followed by a sign. The angle should be initially represented in BCD and then converted to
binary (negative angles represented 2’s complement). Designate two special keys for sine and
cosine. Output will be displayed on a set of four 7-segment LEDs.

The following pseudocode demonstrates the basics of the CORDIC algorithm. Read
the document referenced above and then iterate through this process by hand to help you
understand this algorithm.

for i = 0 to n // n-bit precision
 dx = x???/(2^i) // x is 16-bit register representing

fractional values. It should be
 // initialized to .607 (1001_1011_

0111_0001). After the algorithm
 // completes, x holds cos(a). dx is

also 16 bits.
 dy = y/(2^i) // y is a 16-bit register representing

fractional values. It should
 // be initialized to 0 (0000_0000_

0000_0000). After the
 // algorithm completes, y holds

sin(a). dy is also 16 bits.
 da = arctan(2^-i) // pre-calculated values in a lookup

table
 // these values should be represented

as follows: upper

1R. Andraka, “A Survey of CORDIC Algorithms for FPGA-Based Computers,” in Proceedings of the
1998 ACM/SIGDA Sixth International Symposium on Field Programmable Gate Arrays, pp.191–200,
February 22–24, 1998.

 Projects 615

 // 8 bits whole number part, lower 8
bits fractional part

 // a is the input angle represented
with at least 10 bits.

 // All input angles are whole numbers.
 if (a >= 0) then
 x = x - dy; a = a - da; y = y + dx;
 else
 x = x + dy; a = a + da; y = y - dx;
 end if
end loop

When you work through this algorithm, notice that it does not produce the negative and
positive values associated with sine and cosine. Create separate logic to -determine the sign.
The algorithm shown above only works for 290 to 190 input angles. You can simplify your
design if you do all calculations in the �rst quadrant (e.g., sin(105) is the same as sin(75)).

P9. Calculator for Average and Standard Deviation
Design a special-purpose calculator to calculate the average and standard deviation of a set
of test scores. Input will be from a decimal keypad and output will be an LCD display. Each
test score will be an integer in the range 0 to 100. The number of scores will be in the range
1 to 31.

Entry sequence: For each score, enter one, two, or three digits followed by E (enter).
After all scores have been entered, press A to calculate the average and then press D to
compute the standard deviation. The average and standard deviation should be displayed
with one digit after the decimal point.

The formula for the standard deviation is

s.d 5 ã
a
N

i51
1xi 2 A 22

N
5 ã

a
N

i51
x i

2

N
2 A2

where A is the average. Use the latter form because it is not necessary to store the N scores.
Your design should have three main modules: input, computation, and display. The

computation module computes the average and standard deviation of the input data. All
computation should be done with binary integers. The input data will be scaled up by a factor
of 10 and converted to binary by the input module. The outputs will be converted to decimal
and scaled down by a factor of 10 by the display module.

The input module should include a keypad scanner similar to the one designed in
Chapter 4. Every time a key is pressed, the scanner will debounce and decode the key. It
will then output a 4-bit binary code for the key that was pressed, along with a valid signal
(V). This input module will process the digits from the keypad scanner and convert the input
number to binary. This module should perform the following tasks:

1. If the input is a digit in the range 0 through 9, store it in a register. Ignore invalid inputs.
2. After one, two, or three digits have been entered followed by E, check to see that the

number is within range 1 # 100 2 . If not, turn on an error signal.
3. If the input number is in range, append BCD 0, which in effective multiplies by 10.

Example: If the entry sequence is 7, 9, E, the BCD register should contain 0000 0111
1001 0000 (790).

616 Projects

4. Convert the BCD to binary and signal the computation unit when conversion is complete.
5. When the A or D key is pressed, generate a signal for the computation module.

The computation module should have one register to accumulate the sum of the inputs
and another to accumulate the sum of the squares of the inputs. The data input should be
a binary integer with the decimal range 0 to 1000 1score 3 10 2 . Assume three input control
signals: V1 (valid data), A (compute and output the average), S (compute and output the
standard deviation). Ignore S unless computation of the average has been completed. The
computation module should include a square root circuit which will �nd the square root of a
18-bit binary integer to give a 9-bit integer result. Refer to Reference 35 for a binary square
root algorithm. When testing the computation module, be sure to include the worst cases:
largest average with 31 inputs (s.d. should be 0), largest standard deviation with 30 inputs
(average should be 500).

The display module should drive a two-line LCD display. This module serves two func-
tions: First it displays each number as it is being input, and second it displays the average and
standard deviation. During input, each valid decimal digit should be shifted into the display.
When E is pushed, the input number will remain displayed until another key is pushed. After
the average has been computed, the display module should convert it to BCD and output it to
the �rst line of the LCD display. After the standard deviation has been computed, it should
be converted to BCD and -displayed on the second line.

P10. Four-Function Decimal Calculator
Design a four-function hand-held calculator for decimal numbers and implement it using an
FPGA. The input will be a keypad and the output will be an LCD display. When you imple-
ment your design on the FPGA, optimize for area since speed is unimportant for a hand
calculator. General operation of the calculator should be similar to a standard four-function
calculator.

The main calculator input keypad has 16 keys to be labeled as follows:

7 8 9 4

4 5 6 *

1 2 3 2

0 . 5 1

Use one additional key for the clear function. The input and output will be a maximum of
eight decimal digits and a decimal point with an optional minus sign. Assume that at any
time, any key may be pressed. Either take appropriate action or ignore the key press. If more
than eight digits are entered, extra digits are ignored.

If the answer requires more than eight digits, some digits to the right of the decimal point
are truncated.

Example: 123.45678 1 12345.678 5 12469.134

If more than eight digits are required to the left of the decimal point, display the letter E
to indicate an error. For numbers less than 1, display a 0 before the decimal point.

Your calculator should have three modules. The input module scans, debounces, and
decodes the keypad. The main module accepts digits and commands from the input module
and processes them. The display module displays the input numbers and results on an LCD
display.

 Projects 617

The main module should have two 8-digit BCD registers, A and B. Register A should
have an associated counter that counts the number of digits (ctrA), another counter that
counts the number of digits to the right of the decimal point (rctA), and a sign �ip-�op
(signA). Register B should have similar associated hardware. As each decimal digit is
entered, its BCD code should be shifted into A. The result of each computation should be
placed in A. The display module should always display the contents of A, along with the
associated decimal point and sign. When the �rst digit of a new number is entered into A,
the previous contents of A should be transferred to B. Although input and output is sign and
magnitude BCD, internal computations should be done using 2’s complement binary arith-
metic. A typical sequence of calculations to add A and B is

1. Adjust A and B to align the decimal points.
2. Convert A and B to binary (Abin and Bbin).
3. Add Abin and Bbin
4. Convert the result to BCD, store in A.
5. If an over�ow occurs, correct it if possible, else set the E (error) �ag.

The display module should output signals to the LCD to properly display the -contents of the
A register. After initializing and clearing the LCD, it should display “E” if the error �ip-�op
is set. Otherwise it should output a minus sign if signA 5 '1', followed by up to eight digits
with the decimal point in the correct place. Leading zeros should be replaced by blanks.

618

REFERENCES

References 15, 22, 30, 31, 43, 46, 47 and 54 are general references on digital logic and digital
system design. References 2, 3, 4, 16, 17, 21, 27, 30, 33, 44, 45, 48, 56, and 57 provide informa-
tion on PLDs, FPGAs, CPLDs, and programmable SoCs (PSOCs). References 11, 22, 34, 42,
48, 49, 50, and 59 provide a basic introduction to VHDL. References 5, 7, 9, 10, 18, 19, 26, 36,
37 and 58 cover more advanced VHDL topics. Reference 47 provides Verilog equivalents
of the example codes provided in this book. References 1, 8, 12, 32, 35, and 40 relate to
hardware testing and design for testability. The MIPS ISA and architectures of several MIPS
processors are described in references 14, 28, 29 and 41. Reference 41 provides an excellent
introduction to various computer organization topics, the understanding of which will help in
learning the material presented in Chapter 9. Reference 55 provides a comprehensive treat-
ment of functional veri�cation and can provide more in depth treatment of the introductory
material presented in Chapter 10 on functional veri�cation. References 6 and 24 provides
information on the ARM Instruction Set Architecture and ARM processors. References 20
and 23 provide interesting history on the legal battles on whether microcode is hardware or
software.

1. Abromovici, M., Breuer, M., and Friedman, F. Digital Systems Testing and Testable
Design. Indianapolis, Ind. Wiley–IEEE Press, 1994.

2. Actel Corporation, Actel Technical Documentation, www.actel.com/techdocs/

3. Altera Corporation, Altera Literature, www.altera.com/literature/lit-index.html

4. Atmel Corporation, Atmel Products, www.atmel.com/products

5. Armstrong, James, and Gary, G. Structured Logic Design with VHDL. Upper
Saddle River, N.J.: Prentice Hall, 1993.

6. ARM Limited, www.arm.com

7. Ashenden, Peter J. The Designer’s Guide to VHDL, 2nd ed. San Francisco, Calif.:
Morgan Kaufmann, an imprint of Elsevier, 2002.

8. Bardell, P. H., and McAnney, W. H. “Self-Testing of Logic Modules,” Proceedings
of the International Test Conference, Philadelphia, PA November, 1982, pp. 200–204.

9. Berge, F., and Maginot, R. J. VHDL Designer’s Reference. Boston, Mass.: Kluwer
Academic Publishers, 1992.

10. Bhasker, J. A Guide to VHDL Syntax. Upper Saddle River, N.J.: Prentice Hall,
1995.

References 619

11. Bhasker, J. A VHDL Primer, 3rd ed. Upper Saddle River, N.J.: Prentice Hall, 1999.

12. Bleeker, H., van den Eijnden, P., and de Jong, Frans. Boundary Scan Test—
A Practical Approach. Boston, Mass.: Kluwer Academic Publishers, 1993.

13. Brayton, Robert K. et al. Logic Minimization Algorithms for VLSI Synthesis.
 Boston, Mass.: Kluwer Academic Publishers, 1984.

14. Britton, Robert. MIPS Assembly Language Programming. Upper Saddle River,
N.J.: Prentice Hall, 2003.

15. Brown, Stephen and Vranesic, Zvonko. Fundamentals of Digital Logic with VHDL
Design, 2nd ed. New York: McGraw-Hill, 2005.

16. Brown, Stephen D., Francis, Robert J., Rose, Jonathan, and Vranesic, Zvonko G.
Field-Programmable Gate Arrays. Boston, Mass.: Kluwer Academic Publishers,
1992.

17. Chan, P., and Mourad, S. Digital Design Using Field Programmable Gate Arrays.
Upper Saddle River, N.J.: Prentice Hall, 1994.

18. Chang, K. C. Digital Design and Modeling with VHDL and Synthesis. Los Alamitos,
Calif.: IEEE Computer Society Press, 1997.

19. Cohen, Ben. VHDL—Coding Styles and Methodologies. Boston, Mass.: Kluwer
Academic Publishers, 1995.

20. Contreras, Jorge L., Handley, Laura, and Yang, Terrance. “NEC v. Intel: Breaking
New Ground in the Law of Copyright,” Harvard Journal of Law and Technology,
vol. 3, no. Spr, 1990.

21. Cypress Semiconductor Programmable Logic Documentation, www.cypress.com

22. Dewey, Allen. Analysis and Design of Digital Systems with VHDL. Toronto,
Ontario, Canada: Thomson Engineering, 1997.

23. Hinckley, Robert C. “NEC v. Intel: Will Hardware Be Drawn into the Black Hole
of Copyright Editors’,” Santa Clara High Technology Law Journal, vol. 3, no. 1,
1987.

24. Hohl, William, ARM Assembly Language: Fundamentals and Techniques, CRC
Press, Taylor and Francis Group, 2009

25. IEEE Standard Multivalue Logic System for VHDL Model Interoperability (Std_
logic_1164). New York: The Institute of Electrical and Electronics Engineers, 1993.

26. IEEE Standard VHDL Language Reference Manual. New York: The Institute of
Electrical and Electronics Engineers, 1993.

27. Jenkins, Jesse H. Designing with FPGAs and CPLDs. Upper Saddle River, N.J.:
Prentice Hall, 1994.

28. Kane, Gerry, and Heinrich, Joseph. MIPS RISC Architecture. Upper Saddle River,
N.J.: Prentice Hall, 1991.

29. Kane, Gerry. MIPS RISC Architecture. Upper Saddle River, N.J.: Prentice Hall,
1989.

620 References

30. Katz, Randy H. Contemporary Logic Design, 2nd ed. Upper Saddle River, N.J.:
Prentice Hall, 2004.

31. Kohavi, Z., Switching and Finite Automata Theory. New York: McGraw-Hill, 1979.

32. Larsson, Erik Introduction to Advanced System-on-Chip Test Design and Optimiza-
tion. Springer, 2005.

33. Lattice Semiconductors, www.latticesemi.com

34. Mazor, Stanley, and Langstraat, Patricia. A Guide to VHDL, 2nd ed. Boston, Mass.:
Kluwer Academic Publishers, 1993.

35. McCluskey, E. J. Logic Design Principles with Emphasis on Testable Semicustom
Circuits. Upper Saddle River, N.J.: Prentice Hall, 1986.

36. Navabi, Zainalabedin. VHDL—Analysis and Modeling of Digital Systems, 2nd ed.
New York: McGraw-Hill, 1997.

37. Ott, Douglas E., and Wilderotter, Thomas J. A Designer’s Guide to VHDL Synthe-
sis. Boston, Mass.: Kluwer Academic Publishers, 1994.

38. OVM Golden Reference Guide, Doulos, September 2008

39. Parhami, Behrooz. Computer Arithmetic: Algorithms and Hardware Design. New
York: Oxford University Press, 2000.

40. Parker, Kenneth P. The Boundary Scan Handbook, 3rd ed. New York: Springer,
2003.

41. Patterson, David A., and Hennessey, John L. Computer Organization and Design:
The Hardware Software Interface, 3rd ed. San Francisco, Calif.: Morgan Kaufmann,
an imprint of Elsevier, 2005.

42. Perry, Douglas. VHDL: Programming by Example, 4th ed. New York: McGraw-
Hill, 2002.

43. Prosser, Franklin P., and Winkel, David E. The Art of Digital Design: An Introduc-
tion to Top-Down Design, 2nd ed. Englewood Cliffs, N.J.: Prentice Hall, 1987.

44. “PSoC® 4: PSoC 4200 Family Datasheet,” Cypress Semiconductors, http://www
.cypress.com/�le/138656/download

45. QuickLogic Corporation, Products and Services, www.quicklogic.com

46. Roth, Charles H. and Kinney, Larry L., Fundamentals of Logic Design, 7th ed.
Cengage Learning, 2014.

47. Roth, Charles H., John, Lizy K., and Lee, Byeong K. Digital Systems Design Using
Verilog, 1st ed. Boston, Mass: Cengage Learning, 2014.

48. Rucinski, Andrzej, and Hludik, Frank. Introduction to FPGA-Based Microsystem
Design. Texas Instruments, 1993.

49. Rushton, Andrew, VHDL for Logic Synthesis, 2nd ed. New York: John Wiley &
Sons Ltd., 1998.

References 621

50. Salcic, C., and Smailagic, A. Digital Systems Design and Prototyping Using Field
Programmable Logic, 2nd ed. Boston, Mass.: Kluwer Academic Publishers, 2000.
(Includes VHDL software for Altera products.)

51. Skahill, Kenneth, and Cypress Semiconductor. VHDL for Programmable Logic.
Reading, Mass.: Addison-Wesley, 1996. (Includes VHDL software for Cypress
products.)

52. Smith, M. J. S. Application-Speci�c Integrated Circuits. Reading, Mass.: Addison
Wesley, 1997.

53. Tallyn, Kent. “Reprogrammable Missile: How an FPGA Adds Flexibility to the
Navy’s TomaHawk,” Military and Aerospace Electronics, April 1990. Article
reprinted in The Programmable Gate Array Data Book, San Jose, Cal.: Xilinx, 1992.

54. Wakerly, John F. Digital Design Principles and Practices, 4th ed. Upper Saddle
River, N.J.: Prentice Hall, 2006.

55. Wile, B., Gross, J., Roesner, W., Comprehensive Functional Veri�cation, Morgan
Kaufman, 2005

56. Xilinx, Inc. Xilinx Documentation and Literature, www.xilinx.com/support/library
.htm

57. XILINX, Inc. The Programmable Logic Data Book, 1996. www.xilinx.com

58. Yalamanchili, S. Introductory VHDL: From Simulation to Synthesis. Upper Saddle
River, N.J.: Prentice Hall, 2001. (Includes XILINX Student Edition Foundation
Series Software.)

59. Yalamanchili, S. VHDL: A Starter’s Guide, 2nd ed. Upper Saddle River, N.J.: Pren-
tice Hall, 2005.

622

INDEX

BILBO (Built-In Logic Block Observer),
built-in self-test, 583

Binary dividers, 235–244
signed divider, 238–244
unsigned divider, 235–238

Binary �xed-point fractions, 217–218
Binary multiplier and derivation of SM charts,

261–263
Binary multiplier controller implementation,

272–274
Bit vector, 47
Black box approach to veri�cation, 524
Block carry look-ahead logic, 190–191
Block RAM, 325
Boolean algebra, 3–7

adding redundant terms, 5–6
combining terms, 5
DeMorgan’s law, 3
eliminating literals, 5
eliminating terms, 5

Boundary scan, 566–577
ANSI/IEEE Standard 1149.1, 566
bed-of-nails test �xture, 566
Joint Test Action Group (JTAG), 566
test-access port (TAP), 567

Bowling score keeper project, 610–611
Branch instructions, ARM instruction coding,

480–482
Buffer mode, 49, 53–54
Built-in self-test, 555, 579–588

BILBO (Built-In Logic Block Observer), 583
linear feedback shift registers (LFSRs), 580
multiple-input signature register (MISR), 580
pseudo-random pattern generator

(PRPG), 581
signature, 580
SRSG (Shift Register Sequence

Generator), 582
STUMPS (Self-Testing Using MISR and

Parallel SRPG), 582
taps, 580
test-per-clock, 583
test-per-scan, 582–583

Calculator for average and standard deviation
project, 615–616

Capacity in FPGAs, 335–336
equivalent gate count, 335
Programmable Electronics Performance

(PREP) benchmarks, 336
Carry chains in FPGAs, 319–320

memory access instructions, 471–473
post-indexing, 472
pre-indexing, 472
three-address format, 466

ARM subset VHDL model, 491–509
code for ARM processor CPU, 493–501
integrated ARM, 501–502
memory, 492–493
register �le, 491–492
testing ARM processor model, 502–509

Array attributes in vector section, VHDL,
401–402

Array attributes, VHDL, 400–401
Array multiplier, 213–216

port map, 215
VHDL coding, 215

Arrays, 97–101
matrices, 98–101

Assertion-based testing, 525
Asset and report statements, VHDL code,

102–106
Asynchronous design, clock distribution

circuitry, 545–546
Attributes, VHDL, 398–402

array attributes, 400–401
array attributes in vector section, 401–402
signal attributes, 398–400
use of attributes, 401–402

Automatic test pattern generators (ATPGs), 554

BCD adder, 186–188
BCD to excess-3 code converter, Mealy

sequential circuit design, 21–25
Bed-of-nails test �xture, boundary scan, 566
Begin statements, 54
Behavioral and structural VHDL code, 85–94

behavior models, 86
data�ow, 86, 91
NAND gate, 85
sequential machine modeling, 87–94
structural models, 86, 91

Behavioral level, hardware description
language, 42

Behavior description of design, computer-aided
design (CAD), 40

Behavior models, 86
Biased notation, IEEE 754 �oating-point

formats, 363
Bidirectional bus, VHDL, 414
Bidirectional tristate bus, VHDL, 414
Big-endian, 454

ABEL, 146
Add-and-shift multiplier, 208–213
Adders

BCD, 186–188
carry look-ahead adders, 189–192
parallel pre�x adders, 192–196
ripple-carry adder, 188
32-bit, 188–198

Adding redundant terms, 5–6
Addition, �oating-point, 378–385
Addout, 223
Affecting condition �ags, ARM ISA processor

design, 470–471
Altera Stratix IV Logic Module, 323
Analysis, VHDL code, 63
ANSI/IEEE Standard 1149.1, boundary

scan, 566
Antifuse programming technology, 157–158
Applications, FPGA’s, 171–173

�nal products in medium-speed systems, 171
glue logic, 172
hardware accelerators/coprocessors, 173
rapid prototyping, 171
recon�gurable circuits and systems, 171–172

Approaches to veri�cation, 524
black box approach, 524
gray box approach, 524
white box approach, 524

Architecture description, 47
Area, power, and delay optimizations, 345–346
Area-Time (AT) product, 346
Arithmetic components synthesis, 343–345
Arithmetic instructions

ARM ISA processor design, 466–468
MIPS ISA, 436–437

Arithmetic units, dedicated, 169
ARM instruction coding, 475–482

branch instructions, 480–482
data processing instructions, 475–477
memory access instruction formats, 478–480
multiply instructions, 477–478

ARM instructions implementation of subset,
483–490

data path design, 484–489
instruction execution �ow, 489–490

ARM ISA processor design, 465–475
affecting condition �ags, 470–471
arithmetic instructions, 466–468
conditional execution, 469–470
control transfer instructions, 473–475
logical instructions, 468–469

Index 623

Data register, VHDL, 414
Data types, VHDL, 67–68

enumeration, 68
strongly typed language, 68

Debouncer, 230
Debugging tips for VHDL codes, 106–114
Decision box, 256
Declarations, VHDL language, 598–600
Decoder, 230
Dedicated memory in FPGAs, 324–330

block RAM, 325
distributed memory, 327
VHDL models for inferring memory in

FPGAs, 327–330
Dedicated multipliers in FPGAs, 330–331
Dedicated specialized components in FPGAs,

168–171
arithmetic units, 169
content addressable memories, 171
digital sign processing blocks, 170
embedded processors, 170
memory, 169
microsemi fusion architecture, 171

Delay fault, 555
DeMorgan’s law, 3
Derivation of SM charts, 261–271

binary multiplier, 261–263
dice game, 263–270

Design entry, computer-aided design (CAD), 39–40
Design examples, 184–255

add-and-shift multiplier, 208–213
array multiplier, 213–216
BCD adder, 186–188
BCD top seven-segment display decoder,

185–186
binary dividers, 235–244
keypad scanner, 228–235
scoreboard and controller, 203–205
signed integer/fraction multiplier, 216–228
state graphs for control circuits, 201–202
synchronization and debouncing, 206–208
32-bit adder, 188–198
traf�c light controller, 198–201

Design �ow, FPGAs, 173–174
Design �ow, PLDs, 146
Design formulation, computer-aided design

(CAD), 39
Design for testability (DFT), 554
Design requirements, computer-aided design

(CAD), 39
Design speci�cation, 3 computer-aided design

(CAD), 9
Design technologies spectrum, computer-aided

design (CAD), 41
Design translation (synthesis), 336–346

area, power, and delay optimizations, 345–346
Area-Time (AT) product, 346
arithmetic components synthesis, 343–345
case statement synthesis, 338–341
critical path, 345
Energy-Delay (ED) product, 346
if statement synthesis, 341–343
netlist, 337
null statement, 340
synthesis, 337
unintentional latch creation, 340–341

Carry look-ahead adders, 189–192
block carry look-ahead logic, 190–191
generate function, 189
propagate function, 189

Cascade chains in FPGAs, 320–322
register chains in FPGAs, 320

Case sensitivity, 46
Case statement synthesis, 338–341
Characteristic equation, 16
Checkerboard test, standard memory test

patterns, 578
Circuits with skew timing rules, 536–538
Clock distribution circuitry, 544–546

asynchronous design, 545–546
Clock gating, 540–544

control signal gating, 540–541
control signal gating for falling-edge triggered

devices, 541–542
control signal gating for rising edge triggered

devices, 542–543
footer switch, 543
header switch, 543
power gating, 543–544

Clock skew, 165
Code

for ARM processor CPU, 493–501
for MIPS processor CPU, 454–459

Combinational circuits VHDL description,
44–47

bit vector, 47
case sensitivity, 46
concurrent statements, 44
identi�ers, 46

Combinational logic, 1–3
full adders, 2
gates, 1–2
maxterm expansion, 3
minterm expansions, 2
truth table, 2

Combinational logic testing, 556–560
coverage of test vectors, 560
path sensitization, 558
sensitized path, 558
sensitized to fault, 558

Combining terms, 5
Compilation, simulation, synthesis of VHDL

code, 63–67
analysis, 63
discrete event simulation, 64
elaboration, 63
event, 64
initialization phase, 64
simulation with multiple processes, 65–67
transaction scheduling, 64
transport, 65

Complete MIPS, 459–460
Complex Instruction Set Computing (CISC), 433
Complex programmable logic devices, 147–150

CPLD implementation of parallel adder with
accumulator, 149–150

interconnect array (IA), 147
interconnects, programmable, 162–166
Xilinx CoolRunner, 147

Computer-aided design (CAD), 39–42
behavior description of design, 40
design entry, 39–40

design formulation, 39
design requirements, 39
design speci�cation, 39
design technologies spectrum, 41
hardware description languages (HDLs), 40
mapped design, 42
modern digital system design �ow, 40
netlist, 41
post-synthesis simulation, 41
routing, 42
schematic capture, 40
structural description of design, 40–41
synthesis, 41

Concurrent statements, 44
Concurrent statements, VHDL language,

600–601
Concurrent statement use, 73–75
Conditional execution, ARM ISA processor

design, 469–470
Conditional generate statements, VHDL, 420
Conditional output box, 256
Condition, state machine charts, 256
Con�gurable Logic Block (CLB), 159
Con�guration bits, 155
Constants, 97
Constrained random testing, 523
Content addressable memories, 171
Controllability, hardware testing, 554
Controller, 203–204, 231–232
Control signal gating, 540–541
Control signal gating for falling-edge triggered

devices, 541–542
Control signal gating for rising edge triggered

devices, 542–543
Control transfer instructions

ARM ISA processor design, 473–475
MIPS ISA, 439–441

CORDIC computing unit project, 614–615
Cost of programmability, FPGAs, 331–333
Coverage of test vectors, combinational logic

testing, 560
CPLD implementation of parallel adder with

accumulator, 149–150
Critical path, 345

Dark circle operation, 194–195
Data�ow, 86, 91
Data �ow level, hardware description language, 42
Data path, 203
Data path design, ARM subset implementation,

484–489
instruction decode unit, 485
instruction execution unit, 485–488
instruction fetch unit, 484–485
overall data path, 488–489

Data path design, instruction decode unit
ARM subset implementation, 485
MIPS subset implementation, 447

Data path design, MIPS subset implementation,
445–449

instruction decode unit, 447
instruction execution unit, 447–448
instruction fetch unit, 446–447
overall data path, 448–449

Data processing instructions, ARM instruction
coding, 475–477

624 Index

dedicated specialized components in FPGAs,
168–171

design �ow, 173–174
I/O programmable blocks in FPGAs, 166–168
logic block architectures, 158–162
organization of FPGAs, 152–155
programmable SoCs (PSOCs), 174–175
programming technologies, 155–158

Field programmable gate arrays (FPGAs)
design, 308–360

capacity, 335–336
carry chains in FPGAs, 319–320
cascade chains in FPGAs, 320–322
cost of programmability, 331–333
dedicated memory, 324–330
dedicated multipliers, 330–331
design translation (synthesis), 336–346
function implementation, 308–313
logic blocks in commercial FPGAs, 322–324
mapping, placement, and routing, 346–350
one-hot state assignment, 333–335
Shannon’s decomposition, 314–318

Final products in medium-speed systems, 171
Flash memories, 133
Flip-�ops and latches, 16–18

characteristic equation, 16
Flip-�op paths timing rules, 531–535
Flip-�ops modeling using VHDL processes, 55–59
else sequential statement, 57
if condition, 57
then sequential statement, 57

Flip-�op to �ip-�op path timing rules, 528–531
Floating-point arithmetic, 361–390, 613

addition, 378–385
division, 385–386
multiplication, 370–378
representation of �oating-point numbers,

361–370
subtraction, 385
unit project, 613

Footer switch, clock gating, 543
For loop, VHDL, 101–102
Formal veri�cation, 525
Four-bit full adder, 50–53
Four-function decimal calculator project, 616–617
4-valued logic system, VHDL, 404–405
Four-variable function generator, 159
Fractional part, IEEE 754 �oating-point

formats, 363
Fraction multiplier, multiplication, �oating-

point, 374
Full adders, 2
Functional coverage, 523
Functional veri�cation, 521–525

approaches, 524
languages, of veri�cation, 524–524
self-checking test benches, 521–522
veri�cation �ow, 522–524

Function implementation, FPGAs, 308–318
look-up table (LUT), 309
ring counter, 312
with Shannon’s decomposition, 314–318

Functions, VHDL, 391–394

GALs (generic array logic), 130
Gate arrays, 129
Gates, 1–2

Dice controller microprogramming, 289–295
microinstruction, 293
single-address microcode for, 290
two-address microcode implementation for,

299–290
Dice game and derivation of SM charts, 263–270
Dice game implementation, 274–278
Digital sign processing blocks, 170
Digital system veri�cation, 515–553

clock distribution circuitry, 544–546
clock gating, 540–544
emulation, 519
functional veri�cation, 521–525
glitches, sequential circuits, 539
importance of, 515–519
Intel Pentium bug, 517–519
static timing analysis, circuits with clock skew,

535–538
static timing analysis, circuits with no skew,

528–535
terminology, 519–521
testing, 519
timing veri�cation, 526–528
validation, 519
veri�cation, 519

Direct interconnects, 164
Direct testing, 522
Discrete event simulation, VHDL code, 64
Distinguishing sequence, sequential logic

testing, 562
Distributed memory, 327
Division, �oating-point, 385–386
Don’t cares, 7
Dynamic hazard, 12

Elaboration, VHDL code, 63
Eliminating literals, 5
Eliminating terms, 5
Else sequential statement, 57
Embedded processors, 170
Emulation, 519
End statements, 54
Energy-Delay (ED) product, 346
Entity description, 47
Entrance path, 257
Enumeration, 68
EPROM/EEPROM programming technology,

156–157
Equivalent gate count, 335
Equivalent states and reduction of state tables,

28–30
implication chart, 29

Error, fault models, 555
Event, VHDL code, 64
Exit path, 257
Exponent adder, multiplication, �oating-point,

372–374
Exponent, IEEE 754 �oating-point formats,

363

Failure, fault models, 555
Faults and fault models, 555–556

error, 555
failure, 555

Field programmable gate arrays (FPGAs), 150–174
applications, 171–173

General-purpose interconnect, 163–164
Generate function, 189
Generate statements, VHDL, 419–420

conditional generate statements, 420
Generics, VHDL, 417–418
Glitches, sequential circuits, 539
Global lines, 164
Glue logic, 172
Golden models test benches, 521–522
Golden vectors test benches, 521
Gray box approach to veri�cation, 524
Greedy algorithm, 348

Half-dark circle operation, 195
Handel-C, hardware description language, 43
Hardware accelerators/coprocessors, 173
Hardware description languages, 40, 42–44

behavioral level, 42
data �ow level, 42
Handel-C, 43
learning a language, 43–44
lexical elements of language, 43
structural level, 42
System C, 43
System Verilog, 43

Hardware testing, 554–595
automatic test pattern generators (ATPGs), 554
boundary scan, 566–577
built-in self-test, 555, 579–588
combinational logic testing, 556–560
controllability, 554
design for testability (DFT), 554
faults and fault models, 555–556
memory testing and standard memory test

patterns, 577–579
observability, 554
scan design, 554
scan path testing, 564–566
sequential logic testing, 560–564

Hardwiring, 278
Hazards in combinational circuits, 12–16

dynamic hazard, 12
logic hazard, 15
static hazards, 15

Header switch, clock gating, 543
Hierarchical architectures, 154
History, microprogramming, 280–281
Hold time, 31
Hold time violation, 527, 528
Horizontal long lines, 164

Identi�ers, 46
IEEE double precision format, 364–365
IEEE 1164, VHDL, 408
IEEE 9-valued logic system, VHDL, 408–412

IEEE 1164, 408
synthesis using IEEE 1164, 411–412

IEEE 754 �oating-point formats, 362–370
biased notation, 363
exponent, 363
fractional part, 363
IEEE double precision format, 364–365
IEEE 754 standard special cases, 365–366
IEEE single precision format, 363–364
over�ow, 363
rounding modes, 369
sign-magnitude system, 363

Index 625

placement, 348
routing, 348
simulated annealing techniques, 348
standard cell approach, 347

March test, 578–579
Matrices, 98–101
Matrix-based (symmetrical array) architectures, 153
MATS and march tests, standard memory test

patterns, 578–579
Maxterm expansion, 3
Mealy sequential circuit design, 18–25

BCD to excess-3 code converter, 21–25
sequence detector, 18–20

Memory
ARM subset VHDL model, 492–493
MIPS subset VHDL model, 452–454

Memory access instruction formats, ARM
instruction coding, 478–480

Memory access instructions
ARM ISA processor design, 471–473
MIPS ISA, 438–439

Memory address register (MAR), VHDL, 414
Memory, dedicated, 169
Memory testing and standard memory test

patterns, 577–579
checkerboard test, 578
MATS and march tests, 578–579
walking 1 test, 577–578

Memristors, 32–34
Microinstruction, dice controller

microprogramming, 293
Microprocessor without hardware Interlock

Pipeline Stages (MIPS), 434
Microprogramming, 278–295

control store, 281
dice controller, 289–295
hardwiring, 278
history, 280–281
microprogram memory, 281
program, 281
quali�ers, 283
sequencing, 281
single-quali�er, single-address microcode,

285–288
two-address microcode, 282–285

Microsemi Fusion architecture, 171
Microsemi Fusion VersaTile, 323–324
Minterm expansions, 2
MIPS instruction encoding, 441–444

I-format, 442
J-format, 442
R-format, 442

MIPS ISA, 436–441
arithmetic instructions, 436–437
control transfer instructions, 439–441
logical instructions, 437–438
memory access instructions, 438–439

MIPS subset implementation, 445–451
data path design, 445–449
instruction execution �ow, 449–451

MIPS subset VHDL model, 451–465
code for MIPS processor CPU, 454–459
complete MIPS, 459–460
memory, 452–454
processor signals, 455–456
register �le, 452
testing, 461–465

open veri�cation methodology, 525
Scripting Languages, 525
Transactional Level Modeling (TLM), 525

Learning a hardware description language,
43–44

Legend, VHDL language, 596
Lexical elements of hardware description

language, 43
Libraries, VHDL, 75–79
Linear feedback shift registers (LFSRs), built-in

self-test, 580
Linkage mode, 49
Linked state machines, 295–297
Link path, 257
Little-endian, 454
Logical instructions

ARM ISA processor design, 468–469
MIPS ISA, 437–438

Logic Array Blocks (LABs), 159
Logic block architectures, 158–162

Con�gurable Logic Block (CLB), 159
four-variable function generator, 159
Logic Array Blocks (LABs), 159
look-up-table-based programmable logic

blocks, 159–160
multiplex and gates logic blocks, 160–161
Versa Tiles, 159

Logic blocks in commercial FPGAs, 322–324
Altera Stratix IV Logic Module, 323
Microsemi Fusion VersaTile, 323–324
slice, 322
Xilinx Kintex Con�gurable Logic Block,

322–323
Logic design fundamentals, 1–38

Boolean algebra
combinational logic, 1–3
equivalent states and reduction of state tables,

28–30
�ip-�ops and latches, 16–18
hazards in combinational circuits, 12–16
Karnaugh maps (K-maps), 7–10
Mealy sequential circuit design, 18–25
Moore sequential circuit design, 25–28
NAND and NOR gates, 10–12
sequential circuit timing, 30–31
tristate logic and busses, 31–34

Logic design with memristors, 32–34
Logic hazard, 15
Look-up-table-based programmable logic

blocks, 159–160
Look-up table (LUT), FPGAs, 309
Look-up table (LUT) method, 133
Loops, 101–102
for loop, VHDL, 101–102
infinite loop, VHDL, 101
while loop, VHDL, 102

Main control unit, multiplication, �oating-point,
374–378

Mapped design computer-aided design
(CAD), 42

Mapping, 346–348
Mapping, placement, and routing, 346–350

greedy algorithm, 348
iterative improvement algorithm, 348
mapping, 346–348
place and route, 348

under�ow, 363
IEEE 754 standard special cases, 365–366
IEEE single precision format, 363–364
IEEE standard libraries, 604–605

NUMERIC_BIT, 604
NUMERIC_STD, 604–605

If condition, 57
I-format, MIPS instruction encoding, 442
If statements, 61
If statement synthesis, 341–343
Implication chart, 29
In mode, 48
Inertial delays, 62–63
Infinite loop, VHDL, 101
Initialization phase, VHDL code, 64
Inout mode, 48
Instruction decode unit, data path design

ARM subset implementation, 485
MIPS subset implementation, 447

Instruction execution �ow
ARM instructions implementation of subset,

489–490
MIPS subset implementation, 449–451

Instruction execution unit, data path design
ARM subset implementation, 485–488
MIPS subset implementation, 447–448

Instruction fetch unit, data path design
ARM subset implementation, 484–485
MIPS subset implementation, 446–447

Integrated ARM, 501–502
Intel Pentium bug, 517–519
Interconnect array (IA), 147
Interconnects, programmable, 162–166

clock skew, 165
direct interconnects, 164
general-purpose interconnect, 163–164
global lines, 164
horizontal long lines, 164
nonsegmented channel routing, 165
row-based FPGAs interconnects, 165
segmented tracks, 166
symmetric array FPGAs interconnects, 162

I/O programmable blocks in FPGAs, 166–168
I/O standards, 168

Iterative improvement algorithm, 348

J-format, MIPS instruction encoding, 442
Joint Test Action Group (JTAG), boundary

scan, 566

Karnaugh maps (K-maps), 7–10
don’t cares, 7
prime implicants, 8
simpli�cation using map-entered variables, 9–10

Keypad scanner, 228–235
controller, 231–232
debouncer, 230
decoder, 230
scanner, 230
test bench for scanner, 233–235
VHDL code, 232–233

Kill and alive functions, 196
Kogge-Stone Adders, 193

Languages, of veri�cation, 524–525
assertion-based testing, 525
formal veri�cation, 525

626 Index

PALASM, 146
Parallel pre�x adders, 192–196

dark circle operation, 194–195
half-dark-circle operation, 195
kill and alive bits, 196
squares operation, 195–196
white circle operation, 194

Path sensitization, combinational logic
testing, 558

Physical veri�cation, 515
Place and route, 348
Placement, 348
Port declaration, 48
Port map, 215, 226
Positive skew, 536
Post-indexing, ARM ISA processor design, 472
Post-synthesis simulation, computer-aided

design (CAD), 41
Power gating, 543–544
Prede�ned attributes, VHDL language, 597–598
Prede�ned functions, VHDL language, 598
Prede�ned types, VHDL language, 596–597
Pre-indexing, ARM ISA processor design, 472
Prime implicants, 8
Procedures, VHDL, 394–397
Processes using wait statements, 59–61
if statements, 61
wait statements, 60

Processor signals, MIPS subset VHDL model,
455–456

Process statements, 54
Process use, 75
Programmable array logic, 141–144
Programmable Electronics Performance

(PREP) benchmarks, 336
Programmable logic arrays, 136–141
Programmable logic devices, 128–183

complex programmable logic devices, 147–150
�eld programmable gate arrays, 150–174
GALs (generic array logic), 130
gate arrays, 129
overview, 128–131
simple programmable logic devices, 131–146

Programmable logic devices/generic array logic,
144–146

Programmable SoCs (PSOCs), 174–175
overview, 175
system on a chip (SoC), 174

Program, microprogramming, 281
Programming technologies, 155–158

antifuse programming technology, 157–158
comparison of programming technology, 158
con�guration bits, 155
EPROM/EEPROM programming technology,

156–157
SRAM programming technology, 155

Projects, 608–617
bowling score keeper, 610–611
calculator for average and standard deviation,

615–616
CORDIC computing unit, 614–615
�oating-point arithmetic unit, 613
four-function decimal calculator, 616–617
push-button door lock, 608
simple microcomputer, 611–612
stack-based calculator, 612–613
synchronous serial peripheral interface, 609

tic-tac-toe game, 613–614
Propagate function, 189
Propagation delay, 31
Pseudo-random pattern generator (PRPG),

built-in self-test, 581
Push-button door lock project, 608

Quali�ers, microprogramming, 283

Rapid prototyping, 171
Read-only memories, 131–136
Realization of SM charts, 271–274

binary multiplier controller implementation,
272–274

Recon�gurable circuits and systems, 171–172
Reduced Instruction Set Computing (RISC),

433–514
ARM instruction coding, 475–482
ARM instructions implementation of subset,

483–490
ARM processor design, 465–475
ARM subset VHDL model, 491–509
MIPS instruction encoding, 441–444
MIPS ISA, 436–441
MIPS subset implementation, 445–451
MIPS subset VHDL model, 451–465
philosophy, 433–436

Reference models test benches, 521–522
Register chains in FPGAs, 320
Register �le

ARM subset VHDL model, 491–492
MIPS subset VHDL model, 452

Registers and counters modeling, 79–85
Regression testing, 523
Representation of �oating-point numbers,

361–370
IEEE 754 �oating-point formats, 362–370
simple �oating-point format using 2’s

complement, 361–362
R-format, MIPS instruction encoding, 442
Ring counter, 312
Ripple-carry adder, 188
Rounding modes, IEEE 754 �oating-point

formats, 369
Routing, 348
Routing, computer-aided design (CAD), 42
Row-based architecture, 153
Row-based FPGAs interconnects, 165

Scan design, hardware testing, 554
Scanner, 230
Scan path testing, 564–566
Schematic computer-aided design (CAD),

capture, 40
Scoreboard and controller, 203–205

controller, 203–204
data path, 203
VHDL model, 204–205

Scripting Languages, 525
Sea-of-gate architecture, 154
Segmented tracks, 166
Self-checking test benches, 521–522

golden models test benches, 521–522
golden vectors test benches, 521
reference models test benches, 521–522

Sensitized path, combinational logic testing, 558

ModelSim VHDL simulator, 51
Models, VHDL, for multiplexers, 72–75

concurrent statement use, 73–75
process use, 75

Modern digital system design �ow, 40
Modules, VHDL, 47–54

architecture description, 47
buffer mode, 49, 53–54
entity description, 47
four-bit full adder, 50–53
in mode, 48
inout mode, 48
linkage mode, 49
ModelSim VHDL simulator, 51
out mode, 48
port declaration, 48

Moore sequential circuit design, 25–28
NRZ to Manchester code converter, 27–28
sequence detector, 26–27

Multiple-input signature register (MISR),
built-in self-test, 580

Multiplex and gates logic blocks, 160–161
Multiplication, �oating-point, 370–378

exponent adder, 372–374
fraction multiplier, 374
main control unit, 374–378

Multiply instructions, ARM instruction coding,
477–478

Multivalued logic and signal resolution, VHDL,
403–408

4-valued logic system, 404–405
signal resolution functions, 405–408

Named association, VHDL, 418
NAND gate, 85
Netlist, 337
Netlist, computer-aided design (CAD), 41
Nonsegmented channel routing, 165
NOW prede�ned function, VHDL, 397–398
NRZ to Manchester code converter, Moore

sequential circuit design, 27–28
Null statement, 340
NUMERIC_BIT, 604
NUMERIC_STD, 604–605

Observability, hardware testing, 554
One-hot state assignment and FPGAs,

333–335
Open veri�cation methodology, 525
Operators by increasing precedence, VHDL

language, 597
Operators, VHDL, 68–69
Organization of FPGAs, 152–155

hierarchical architectures, 154
matrix-based (symmetrical array)

architectures, 153
row-based architecture, 153
sea-of-gate architecture, 154
slew rate, 153

Out mode, 48
Output list, 256
Overall data path, data path design

ARM subset implementation, 488–489
MIPS subset implementation, 448–449

Over�ow, IEEE 754 �oating-point formats, 363
Overload operator creating, VHDL, 402–403

Index 627

System on a chip (SoC), 174
System Verilog, hardware description language, 43
Synchronization and debouncing, 206–208

single pulser, 206–208

Tape-out, 523–524
Taps, built-in self-test, 580
Tensilica Xtensa Chips, 508–509
Test-access port (TAP), boundary scan, 567
Test bench for scanner, 233–235
Testing

ARM processor model, 502–509
MIPS subset VHDL model, 461–465
veri�cation, 519

Test-per-clock, built-in self-test, 583
Test-per-scan, built-in self-test, 582–583
TEXTIO package, 606–607
Then sequential statement, 57
32-bit adder, 188–198
Three-address format, ARM ISA processor

design, 466
Tic-tac-toe game project, 613–614
Timing closure, 528
Timing veri�cation, 526–528

sequential circuit timing basics, 526
static timing analysis, 526–528

Traf�c light controller, 198–201
Transactional Level Modeling (TLM), 525
Transaction scheduling, VHDL code, 64
Transport delays, 62–63
Transport, VHDL code, 65
Tristate logic and busses, 31–34

logic design with memristors, 32–34
Truth table, 2
Two-address microcode, 282–285
Two-address microcode implementation for dice

controller microprogramming, 289–290

Under�ow, IEEE 754 �oating-point formats, 363
Unintentional latch creation, 340–341
Unsigned divider, 235–238
Use of attributes, VHDL, 401–402

Validation, 519
Variables, signals, and constants, 94–97

constants, 97
signal versus variable, 95

Veri�cation, 519
Veri�cation �ow, 522–524

constrained random testing, 523
direct testing, 522
functional coverage, 523
regression testing, 523
tape-out, 523–524

Versa Tiles, 159
VHDL, 39–127, 327–330, 391–432

asset and report statements, 102–106
attributes, 398–402
behavioral and structural, 85–94
combinational circuits VHDL description,

44–47
compilation, simulation, synthesis of VHDL

code, 63–67
computer-aided design (CAD), 39–42
data types and operators, 67–69
debugging tips for VHDL codes, 106–114
�les and TEXTIO, 421–424

realization of SM charts, 271–274
state machine charts, 256–260

Squares operation, 195–196
SRAM model using IEEE 1164, VHDL,

412–414
SRAM programming technology, 155
SRAM read/write system model, VHDL,

414–417
bidirectional bus, 414
bidirectional tristate bus, 414
data register, 414
memory address register (MAR), 414

SRSG (Shift Register Sequence Generator),
built-in self-test, 582

Stack-based calculator project, 612–613
Standard cell approach, 347
State box, 257
State graphs for control circuits, 201–202
State machine charts, 256–260

condition, 256
conditional output box, 256
decision box, 256
entrance path, 257
exit path, 257
link path, 257
output list, 256
SM blocks, 257
state box, 257
state name, 256

State name, 256
Static analysis path, 527
Static hazards, 15
Static timing analysis, 526–528

hold time violation, 527, 528
setup time violation, 527, 528
slack, 528
static analysis path, 527
timing closure, 528

Static timing analysis, circuits with clock skew,
535–538

circuits with skew timing rules, 536–538
positive skew, 536

Static timing analysis, circuits with no skew,
528–535

�ip-�op paths timing rules, 531–535
�ip-�op to �ip-�op path timing rules, 528–531

Strongly connected state graph, sequential logic
testing, 562

Strongly typed language, 68
Structural description of design, computer-aided

design (CAD), 40–41
Structural level, hardware description

language, 42
Structural models, 86, 91
STUMPS (Self-Testing Using MISR and

Parallel SRPG), built-in self-test, 582
Subtraction, �oating-point, 385
Symmetric array FPGAs interconnects, 162
Synchronous serial peripheral interface project,

609
Synthesis, 337

arithmetic components synthesis, 343–345
case statement synthesis, 338–341
If statement synthesis, 341–343
using IEEE 1164, VHDL, 411–412

Synthesis, computer-aided design (CAD), 41
System C, hardware description language, 43

Sensitized to fault, combinational logic
testing, 558

Sequence detector, Mealy sequential circuit
design, 18–20

Sequence detector, Moore sequential circuit
design, 26–27

Sequencing, microprogramming, 281
Sequential circuit timing, 30–31, 526

basics, 526
hold time, 31
propagation delay, 31

Sequential logic testing, 560–564
distinguishing sequence, 562
strongly connected state graph, 562

Sequential machine modeling, 87–94
Sequential statements and VHDL processes, 54–55
begin statements, 54
end statements, 54
process statements, 54

Sequential statements, VHDL language, 602–603
Setup time, 31
Setup time violation, 527, 528
Shannon’s decomposition, FPGAs, 314–318
Signal attributes, VHDL, 398–400
Signal resolution functions, VHDL, 405–408
Signal versus variable, 95
Signature, built-in self-test, 580
Signed divider, 238–244
Signed integer/fraction multiplier, 216–228

addout, 223
binary �xed-point fractions, 217–218
port map, 226

Sign-magnitude system, IEEE 754 �oating-point
formats, 363

Simple �oating-point format using 2’s
complement, 361–362

Simple microcomputer project, 611–612
Simple programmable logic devices, 131–146

ABEL, 146
design �ow for PLDs, 146
�ash memories, 133
look-up table (LUT) method, 133
PALASM, 146
programmable array logic, 141–144
programmable logic arrays, 136–141
programmable logic devices/generic array

logic, 144–146
read-only memories, 131–136

Simpli�cation using map-entered variables, 9–10
Simulated annealing techniques, 348
Simulation with multiple processes, VHDL

code, 65–67
Single-address microcode for dice controller

microprogramming, 290
Single-instruction computer, 436
Single pulser, 206–208
Single-quali�er, single-address microcode, 285–288
Slack, 528
Slew rate, 153
Slice, 322
SM blocks, 257
SM charts and microprogramming, 256–307

derivation of SM charts, 261–271
dice game implementation, 274–278
linked state machines, 295–297
microprogramming, 278–295

628 Index

named association, 418
NOW prede�ned function, 397–398
overload operator creating, 402–403
procedures, 394–397
processes using wait statements, 59–61
registers and counters modeling, 79–85
sequential statements and VHDL processes,

54–55
simple synthesis examples, 69–72
SRAM model using IEEE 1164,

412–414
SRAM read/write system model, 414–417
transport delays, 62–63
variables, signals, and constants, 94–97

VHDL language summary, 596–603
concurrent statements, 600–601
declarations, 598–600

legend, 596
operators by increasing precedence, 597
prede�ned attributes, 597–598
prede�ned functions, 598
prede�ned types, 596–597
sequential statements, 602–603

Wait statements, 60
Walking 1’s test, standard memory test patterns,

577–578
While loop, VHDL, 102
White box approach to veri�cation, 524
White circle operation, 194

Xilinx CoolRunner, 147
Xilinx Kintex Con�gurable Logic Block,

322–323

VHDL (Continued)
�ip-�ops modeling using VHDL processes,

55–59
functions, 391–394
generate statements, 419–420
generics, 417–418
hardware description languages, 42–44
IEEE 9-valued logic system, 408–412
inertial delays, 62–63
libraries, 75–79
loops, 101–102
models for inferring memory in FPGAs,

327–330
models for multiplexers, 72–75
modules, 47–54
multivalued logic and signal resolution,

403–408

 This is an electronic version of the print textbook. Due to electronic rights restrictions,
some third party content may be suppressed. Editorial review has deemed that any suppressed
content does not materially affect the overall learning experience. The publisher reserves the right
to remove content from this title at any time if subsequent rights restrictions require it. For
valuable information on pricing, previous editions, changes to current editions, and alternate
formats, please visit www.cengage.com/highered to search by ISBN#, author, title, or keyword for
materials in your areas of interest.

 Important Notice: Media content referenced within the product description or the product
text may not be available in the eBook version.

	Cover
	Title Page
	©
	Contents
	Preface
	About the Authers
	1 Review of Logic Design Fundamentals
	1.1 Combinational Logic
	1.2 Boolean Algebra and Algebraic Simplification
	1.3 Karnaugh Maps
	1.3.1 Simplification Using Map-Entered Variables

	1.4 Designing With NAND and NOR Gates
	1.5 Hazards in Combinational Circuits
	1.6 Flip-Flops and Latches
	1.7 Mealy Sequential Circuit Design
	1.7.1 Mealy Machine Design Example 1: Sequence Detector
	1.7.2 Mealy Machine Design Example 2: BCD to Excess-3Code Converter

	1.8 Moore Sequential Circuit Design
	1.8.1 Moore Machine Design Example 1: Sequence Detector
	1.8.2 Moore Machine Design Example 2: NRZ to Manchester Code Converter

	1.9 Equivalent States and Reduction of State Tables
	1.10 Sequential Circuit Timing
	1.10.1 Propagation Delays: Setup and Hold Times

	1.11 Tristate Logic and Busses
	Problems

	2 Introduction to VHD
	2.1 Computer-Aided Design
	2.2 Hardware Description Languages
	2.2.1 Learning a Language

	2.3 VHDL Description of Combinational Circuits
	2.4 VHDL Modules
	2.4.1 Four-Bit Full Adder
	2.4.2 Use of “Buffer” Mode

	2.5 Sequential Statements and VHDL Processes
	2.6 Modeling Flip-Flops Using VHDL Processes
	2.7 Processes Using Wait Statements
	2.8 Two Types of VHDL Delays: Transport and Inertial Delays
	2.9 Compilation, Simulation, and Synthesis of VHDL Code
	2.9.1 Simulation with Multiple Processes

	2.10 VHDL Data Types and Operators
	2.10.1 Data Types
	2.10.2 VHDL Operators

	2.11 Simple Synthesis Examples
	2.12 VHDL Models for Multiplexers
	2.12.1 Using Concurrent Statements
	2.12.2 Using Processes

	2.13 VHDL Libraries
	2.14 Modeling Registers and Counters Using VHDL Processes
	2.15 Behavioral and Structural VHDL
	2.15.1 Modeling a Sequential Machine

	2.16 Variables, Signals, and Constants
	2.16.1 Constants

	2.17 Arrays
	2.17.1 Matrices

	2.18 Loops in VHDL
	2.19 Assert and Report Statements
	2.20 Tips for Debugging VHDL Code
	Problems

	3 Introduction to Programmable Logic Devices
	3.1 Brief Overview of Programmable Logic Devices
	3.2 Simple Programmable Logic Devices
	3.2.1 Read-Only Memories
	3.2.2 Programmable Logic Arrays
	3.2.3 Programmable Array Logic
	3.2.4 Programmable Logic Devices/Generic Array Logic

	3.3 Complex Programmable Logic Devices

	3.3.1 An Example CPLD: The Xilinx CoolRunner

	3.4 Field Programmable Gate Arrays

	3.4.1 Organization of FPGAs
	3.4.2 FPGA Programming Technologies
	3.4.3 Programmable Logic Block Architectures
	3.4.4 Programmable Interconnects
	3.4.5 Programmable I/O Blocks in FPGAs
	3.4.6 Dedicated Specialized Components in FPGAs
	3.4.7 Applications of FPGAs
	3.4.8 Design Flow for FPGAs

	Untitled
	Problems

	4 Design Examples
	4.1 BCD to Seven-Segment Display Decoder
	4.2 A BCD Adder
	4.3 32-Bit Adders
	4.3.1 Carry Look-Ahead Adders
	4.3.2 Parallel Prefix Adders
	4.3.3 Discussion

	4.4 Traffic Light Controller
	4.5 State Graphs for Control Circuits
	4.6 Scoreboard and Controller
	4.6.1 Data Path
	4.6.2 Controller
	4.6.3 VHDL Model

	4.7 Synchronization and Debouncing
	4.7.1 Single Pulser

	4.8 Add-and-Shift Multiplier
	4.9 Array Multiplier
	4.9.1 VHDL Coding

	4.10 A Signed Integer/Fraction Multiplier
	4.11 Keypad Scanner
	4.11.1 Scanner
	4.11.2 Debouncer
	4.11.3 Decoder
	4.11.4 Controller
	4.11.5 VHDL Code
	4.11.6 Test Bench for Keypad Scanner

	4.12 Binary Dividers
	4.12.1 Unsigned Divider
	4.12.2 Signed Divider

	Problems

	5 SM Charts and Microprogramming
	5.1 State Machine Charts
	5.2 Derivation of SM Charts
	5.2.1 Binary Multiplier
	5.2.2 A Dice Game

	5.3 Realization of SM Charts
	5.3.1 Implementation of Binary Multiplier Controller

	5.4 Implementation of the Dice Game
	5.5 Microprogramming
	5.5.1 Two-Address Microcode
	5.5.2 Single-Qualifier, Single-Address Microcode
	5.5.3 Microprogramming the Dice Controller

	5.6 Linked State Machines

	Problems

	6 Designing with Field Programmable Gate
Arrays
	6.1 Implementing Functions in FPGAs
	6.2 Implementing Functions Using Shannon’s Decomposition
	6.3 Carry Chains in FPGAs
	6.4 Cascade Chains in FPGAs
	6.5 Examples of Logic Blocks in Commercial FPGAs
	6.6 Dedicated Memory in FPGAs
	6.6.1 VHDL Models for Inferring Memory in FPGAs

	6.7 Dedicated Multipliers in FPGAs
	6.8 Cost of Programmability
	6.9 FPGAs and One-Hot State Assignment
	6.10 FPGA Capacity: Maximum Gates versus Usable Gates
	6.11 Design Translation (Synthesis)
	6.11.1 Synthesis of a Case Statement
	6.11.2 Synthesis of if Statements
	6.11.3 Synthesis of Arithmetic Components
	6.11.4 Area, Power, and Delay Optimizations

	6.12 Mapping, Placement, and Routing
	6.12.1 Mapping
	6.12.2 Place and Route

	Problems

	7 Floating-Point Arithmetic
	7.1 Representation of Floating-Point Numbers
	7.1.1 A Simple Floating-Point Format Using 2’s Complement
	7.1.2 The IEEE 754 Floating-Point Formats

	7.2 Floating-Point Multiplication

	7.3 Floating-Point Addition
	7.4 Other Floating-Point Operations
	7.4.1 Subtraction
	7.4.2 Division

	Problems

	8 Additional Topics in VHD
	8.1 VHDL Functions
	8.2 VHDL Procedures
	8.3 VHDL Predefined Function Called NOW
	8.4 Attributes
	8.4.1 Signal Attributes
	8.4.2 Array Attributes
	8.4.3 Use of Attributes

	8.5 Creating Overloaded Operators
	8.6 Multivalued Logic and Signal Resolution
	8.6.1 A 4-Valued Logic System
	8.6.2 Signal Resolution Functions

	8.7 The IEEE 9-Valued Logic System
	8.7.1 Synthesis using IEEE 1164

	8.8 SRAM Model Using IEEE 1164
	8.9 Model for SRAM Read/Write System
	8.10 Generics
	8.11 Named Association
	8.12 Generate Statements
	8.12.1 Conditional Generate

	8.13 Files and TEXTIO
	Problems

	9 Design of RISC Microprocessors
	9.1 The RISC Philosophy
	9.2 The MIPS ISA
	9.2.1 Arithmetic Instructions
	9.2.2 Logical Instructions
	9.2.3 Memory Access Instructions
	9.2.4 Control Transfer Instructions

	9.3 MIPS Instruction Encoding

	9.4 Implementation of a MIPS Subset
	9.4.1 Design of the Data Path
	9.4.2 Instruction Execution Flow

	9.5 VHDL Model of the MIPS Subset
	9.5.1 VHDL Model for the Register File
	9.5.2 VHDL Model for Memory
	9.5.3 VHDL Code for the MIPS Processor CPU
	9.5.4 Complete MIPS
	9.5.5 Testing the MIPS Processor Model
	Untitled

	9.6 Design of an ARM Processor
	9.6.1 The ARM ISA

	9.7 ARM Instruction Encoding
	9.7.1 Data Processing Instructions
	9.7.2 Multiply Instructions
	9.7.3 Memory Access Instruction Formats
	9.7.4 Branch instructions

	9.8 Implementation of a Subset of ARM Instructions
	9.8.1 Design of the Data Path
	9.8.2 Instruction Execution Flow

	9.9 VHDL Model of the ARM Subset
	9.9.1 VHDL Model for the Register File
	9.9.2 VHDL Model for Memory
	9.9.3 VHDL Code for the ARM Processor CPU
	9.9.4 Integrated ARM
	9.9.5 Testing the ARM Processor Model

	Problems

	10 Verifcation of Digital Systems
	10.1 Importance of Verification
	10.2 Verification Terminology
	10.3 Functional Verification
	10.3.1 Self-Checking Test Benches
	10.3.2 Verification Flow
	10.3.3 Verification Approaches
	10.3.4 Verification Languages

	10.4 Timing Verification
	10.4.1 Sequential Circuit Timing Basics
	10.4.2 Static Timing Analysis

	10.5 Static Timing Analysis for Circuits with No Skew
	10.5.1 Timing Rules for Flip-Flop to Flip-Flop Paths

	10.6 Static Timing Analysis for Circuits with Clock Skew
	10.6.1 Timing Rules for Circuits with Skew

	10.7 Glitches in Sequential Circuits
	10.8 Clock Gating
	10.9 Clock Distribution Circuitry
	10.9.1 Asynchronous Design

	Problems

	11 Hardware Testing and Design for Testability
	11.1 Faults and Fault Models
	11.2 Testing Combinational Logic
	11.3 Testing Sequential Logic
	11.4 Scan Testing
	11.5 Boundary Scan
	11.6 Memory Testing
	11.6.1 Standard Memory Test Patterns

	11.7 Built-In Self-Test
	Problems

	Appendices
	Appendix A: VHDL Language Summaary
	Appendix B: IEEE Standard Libraries
	Appendix C: Textio Package
	Appendix D: Projects

	References
	Index

